首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Retinoic acid (RA) plays an important role in the regulation of cell growth and differentiation. To investigate whether RA extends in vitro the life span of human epithelial cells, we examined the effect of all-trans RA on both the cumulative population-doubling level (PDL) and the replicative senescence of cultured oral keratinocytes. When proliferating oral keratinocytes were cultured in medium containing 1 nM of all-trans RA, the in vitro life span of the cells was increased 1.5- to 1.8-fold compared to the vehicle control and the replicative senescence of the cells was significantly inhibited. Since the replicative senescence of human epithelial cells is associated with a steady increase of p16(INK4A) and a loss of telomerase activity, we expected that RA could delay the replicative senescence of oral keratinocytes by decreasing p16(INK4A) expression and/or inhibiting the loss of telomerase activity. To test this possibility, we examined the expression of replicative senescence-associated genes and the telomerase activities of different PDL numbers of oral keratinocytes exposed to 1 nM of all-trans RA. The protein level of cellular p16(INK4A) in the RA-treated oral keratinocytes was gradually but significantly enhanced by an increased PDL number; however, the level was significantly lower than that of the vehicle control at all of the same PDL numbers. In contrast, the telomerase activity was maintained in oral keratinocytes with increasing PDL numbers induced by RA treatment. Summarizing, these results indicate that RA induces the in vitro life-span extension of oral keratinocytes, which is linked to a decreased cellular level of p16(INK4A) and the maintenance of telomerase activity.  相似文献   

3.
4.
5.
In this issue of Cell Metabolism, Ristow and colleagues (Zarse et?al., 2012) elucidate a conserved mechanism through which reduced insulin-IGF1 signaling activates an AMP-kinase-driven metabolic shift toward oxidative proline metabolism. This, in turn, produces an adaptive mitochondrial ROS signal that extends worm life span. These findings further bolster the concept of mitohormesis as a critical component of conserved aging and longevity pathways.  相似文献   

6.
The cellular proto-oncogene c-Ha-ras-1 undergoes up to 4-fold amplification during the limited replicative life span of normal human diploid fibroblasts in vitro. Levels of c-Ha-ras-1 messenger RNA and its p21 protein product are correspondingly elevated. Cellular proto-oncogene amplification and overexpression, although frequently associated with tumorigenesis, may thus occur during normal cellular growth.  相似文献   

7.
Hyperactivation of p53 leads to a reduction in tumor formation and an unexpected shortening of life span in two different model systems . The decreased life span occurs with signs of accelerated aging, such as osteoporosis, reduction in body weight, atrophy of organs, decreased stress resistance, and depletion of hematopoietic stem cells. These observations suggest a role for p53 in the determination of life span and the speculation that decreasing p53 activity may result in positive effects on some aging phenotypes . In this report, we show that expression of dominant-negative versions of Drosophila melanogaster p53 in adult neurons extends life span and increases genotoxic stress resistance in the fly. Consistent with this, a naturally occurring allele with decreased p53 activity has been associated with extended survival in humans . Expression of the dominant-negative Drosophila melanogaster p53 constructs does not further increase the extended life span of flies that are calorie restricted, suggesting that a decrease in p53 activity may mediate a component of the calorie-restriction life span-extending pathway in flies.  相似文献   

8.
9.
The oxidative stress hypothesis of aging predicts that a reduction in the generation of mitochondrial reactive oxygen species (ROS) will decrease oxidative damage and extend life span. Increasing mitochondrial proton leak-dependent state 4 respiration by increasing mitochondrial uncoupling is an intervention postulated to decrease mitochondrial ROS production. When human UCP2 (hUCP2) is targeted to the mitochondria of adult fly neurons, we find an increase in state 4 respiration, a decrease in ROS production, a decrease in oxidative damage, heightened resistance to the free radical generator paraquat, and an extension in life span without compromising fertility or physical activity. Our results demonstrate that neuronal-specific expression of hUCP2 in adult flies decreases cellular oxidative damage and is sufficient to extend life span.  相似文献   

10.
The hypothesis that overexpression of glutamate-cysteine ligase (GCL), which catalyzes the rate-limiting reaction in de novo glutathione biosynthesis, could extend life span was tested in the fruit fly, Drosophila melanogaster. The GAL4-UAS binary transgenic system was used to generate flies overexpressing either the catalytic (GCLc) or modulatory (GCLm) subunit of this enzyme, in a global or neuronally targeted pattern. The GCL protein content of the central nervous system was elevated dramatically in the presence of either global or neuronal drivers. GCL activity was increased in the whole body or in heads, respectively, of GCLc transgenic flies containing global or neuronal drivers. The glutathione content of fly homogenates was increased by overexpression of GCLc or GCLm, particularly in flies overexpressing either subunit globally, or in the heads of GCLc flies possessing neuronal drivers. Neuronal overexpression of GCLc in a long-lived background extended mean and maximum life spans up to 50%, without affecting the rate of oxygen consumption by the flies. In contrast, global overexpression of GCLm extended the mean life span only up to 24%. These results demonstrate that enhancement of the glutathione biosynthetic capability, particularly in neuronal tissues, can extend the life span of flies, and thus support the oxidative stress hypothesis of aging.  相似文献   

11.
We studied in vitro the influence of ionizing radiations on the life span of non-transformed HF 19 human fibroblasts. The life span of surviving clones was found to be reduced when the cells had received two or three doses of 6 Gy separated by an interval of 15 doublings. In addition, this reduction in life span was greater when the cells were older at the time of irradiation.  相似文献   

12.
13.
The relationships between mitochondrial respiration, reactive oxygen species (ROS), and life span are complex and remain controversial. Inhibition of the target of rapamycin (TOR) signaling pathway extends life span in several model organisms. We show here that deletion of the TOR1 gene extends chronological life span in Saccharomyces cerevisiae, primarily by increasing mitochondrial respiration via enhanced translation of mtDNA-encoded oxidative phosphorylation complex subunits. Unlike previously reported pathways regulating chronological life span, we demonstrate that deletion of TOR1 delays aging independently of the antioxidant gene SOD2. Furthermore, wild-type and tor1 null strains differ in life span only when respiration competent and grown in normoxia in the presence of glucose. We propose that inhibition of TOR signaling causes derepression of respiration during growth in glucose and that the subsequent increase in mitochondrial oxygen consumption limits intracellular oxygen and ROS-mediated damage during glycolytic growth, leading to lower cellular ROS and extension of chronological life span.  相似文献   

14.
Normal human prostate (NHP) epithelial cells undergo senescence in vitro and in vivo, but the underlying molecular mechanisms remain obscure. Here we show that the senescence of primary NHP cells, which are immunophenotyped as intermediate basal-like cells expressing progenitor cell markers CD44, alpha2beta1, p63, hTERT, and CK5/CK18, involves loss of telomerase expression, up-regulation of p16, and activation of p53. Using genetically defined manipulations of these three signaling pathways, we show that p16 is the primary determinant of the NHP cell proliferative capacity and that hTERT is required for unlimited proliferative life span. Hence, suppression of p16 significantly extends NHP cell life span, but both p16 inhibition and hTERT are required to immortalize NHP cells. Importantly, immortalized NHP cells retain expression of most progenitor markers, demonstrate gene expression profiles characteristic of proliferating progenitor cells, and possess multilineage differentiation potential generating functional prostatic glands. Our studies shed important light on the molecular mechanisms regulating the proliferative life span of NHP progenitor cells.  相似文献   

15.
The redox state of tissues tends to become progressively more prooxidizing during the aging process. The hypothesis tested in this study was that enhancement of reductive capacity by overexpression of glucose-6-phosphate dehydrogenase (G6PD), a key enzyme for NADPH biosynthesis, could protect against oxidative stress and extend the life span of transgenic Drosophila melanogaster. Overexpression of G6PD was achieved by combining a UAS-G6PD responder transgene at one of four independent loci with either a broad expression (armadillo-GAL4, Tubulin-GAL4, C23-GAL4, and da-GAL4) or a neuronal driver (D42-GAL4 and Appl-GAL4). The mean life spans of G6PD overexpressor flies were extended, in comparison with driver and responder controls, as follows: armadillo-GAL4 (up to 38%), Tubulin-GAL4 (up to 29%), C23-GAL4 (up to 27%), da-GAL4 (up to 24%), D42-GAL4 (up to 18%), and Appl-GAL4 (up to 16%). The G6PD enzymatic activity was increased, as were the levels of NADPH, NADH, and the GSH/GSSG ratio. Resistance to experimental oxidative stress was enhanced. Furthermore, metabolic rates and fertility were essentially the same in G6PD overexpressors and control flies. Collectively, the results demonstrate that enhancement of the NADPH biosynthetic capability can extend the life span of a relatively long-lived strain of flies, which supports the oxidative stress hypothesis of aging.  相似文献   

16.
Life span (the age of death for individuals that survived the establishment phase) is a key trait in plant life history. Despite its importance for understanding plant–environment relationships, there are still numerous substantial knowledge gaps about variation in plant maximum life spans and the ecological processes underlying these patterns.Based on plant age data obtained by means of herbochronology, we analysed patterns of intraspecific plant maximum life span variation in three perennial species (Campanula scheuchzeri, Helianthemun nummularium and Lotus corniculatus) along environmental gradients of mean annual temperature, soil depth and soil nutrients. This variation was compared with predictions from the ‘death-by-starvation hypothesis’ proposed by Hans Molisch in 1938, an unjustly forgotten ‘extrinsic’ theory on plant life span variation.Our study suggests that plant age variation within populations responds sensitively to growing conditions. The most important finding is that mean annual temperature or environmental conditions related to it seems to be a driving factor for intraspecific variation in plant maximum life span in all species studied. Despite large within-population variation, individuals of C. scheuchzeri, L. corniculatus and H. nummularium generally had a longer life span under colder climates (uplands in our case). In addition, soil depth (as a proxy for habitat susceptibility to drought) was found to have a significant positive effect on the age values in the case of C. scheuchzeri.These findings, therefore, are in line with Molisch’s “death-by-starvation hypothesis”: extended maximum life span results from reduced production of sink tissues and slow vegetative growth. We conclude that the analysis of plant life span adjustments along gradients of environmental factors can considerably contribute to our understanding of how plants may cope with changing environmental conditions, e.g., due to global change.  相似文献   

17.
重建端粒酶活性延长人成纤维细胞寿命的研究   总被引:8,自引:1,他引:8  
汪铮  易静 《实验生物学报》2000,33(2):129-140
  相似文献   

18.
Expression of telomerase (hTERT) in certain cell types has been shown to extend cellular life span without malignant transformation. We studied the phenotype of 26 telomerase-transduced fibroblast clones (TTFC) generated from a mass culture of hTERT retrovirally transduced MRC-5 cells. About two-thirds of the transduced clones senesced at the expected time or shortly thereafter, despite high levels of expression of telomerase and telomere length maintenance. The remaining one-third of the clones were "immortalized" (followed for over 200 cumulative population doublings). All clones maintained a nontransformed phenotype: contact inhibition, anchorage dependency, lack of tumor formation in nude mice, dose dependency to serum and growth factors, low expression of a matrix metalloproteinase associated with metastatic invasion (MMP-9) and high expression of its inhibitor TIMP-1, and no cytogenetic abnormalities by G-banding. In addition, fibroblast-specific biological parameters, such as colony size, production of collagenase, and response to MMC and gamma radiation were tightly regulated at the clonal and subclonal levels.  相似文献   

19.
Studies in mammals have led to the suggestion that hyperglycemia and hyperinsulinemia are important factors both in aging and in the development of cancer. It is possible that the life-prolonging effects of calorie restriction are due to decreasing IGF-1 levels. A search of pharmacological modulators of insulin/IGF-1 signaling pathway (which resemble effects of life span extending mutations or calorie restriction) could be a perspective direction in regulation of longevity. Antidiabetic biguanides are most promising among them. Here we show the the chronic treatment of female outbred SHR mice with metformin (100 mg/kg in drinking water) slightly modified the food consumption but decreased the body weight after the age of 20 months, slowed down the age-related switch-off of estrous function, increased mean life span by 37.8%, mean life span of last 10% survivors by 20.8%, and maximum life span by 2.8 months (+10.3%) in comparison with control mice. On the other side, treatment with metformin failed influence blood estradiol concentration and spontaneous tumor incidence in female SHR mice. Thus, antidiabetic biguanide metformin dramatically extends life span, even without cancer prevention in this model.  相似文献   

20.
Sun J  Folk D  Bradley TJ  Tower J 《Genetics》2002,161(2):661-672
A transgenic system ("FLP-out") based on yeast FLP recombinase allowed induced overexpression of MnSOD enzyme in adult Drosophila melanogaster. With FLP-out a brief heat pulse (HP) of young, adult flies triggered the rearrangement and subsequent expression of a MnSOD transgene throughout the adult life span. Control (no HP) and overexpressing (HP) flies had identical genetic backgrounds. The amount of MnSOD enzyme overexpression achieved varied among six independent transgenic lines, with increases up to 75%. Life span was increased in proportion to the increase in enzyme. Mean life span was increased by an average of 16%, with some lines showing 30-33% increases. Maximum life span was increased by an average of 15%, with one line showing as much as 37% increase. Simultaneous overexpression of catalase with MnSOD had no added benefit, consistent with previous observations that catalase is present in excess in the adult fly with regard to life span. Cu/ZnSOD overexpression also increases mean and maximum life span. For both MnSOD and Cu/ZnSOD lines, increased life span was not associated with decreased metabolic activity, as measured by O2 consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号