首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The architecture of a plant affects its ability to compete for light and to respond to environmental stresses, thus affecting overall fitness and productivity. Two components of architecture, branching and height, were studied in 182 F7 recombinant inbred lines (RILs) at the vegetative, flowering and mature developmental stages in the panicoid C4 model grass system, Setaria. The RIL population was derived from a cross between domesticated S. italica (foxtail millet) and its wild relative S. viridis (green foxtail). In both field and greenhouse trials the wild parent was taller initially, started branching earlier, and flowered earlier, while the domesticated parent was shorter initially, but flowered later, producing a robust tall plant architecture with more nodes and leaves on the main culm and few or no branches. Biomass was highly correlated with height of the plant and number of nodes on the main culm, and generally showed a negative relationship with branch number. However, several of the RILs with the highest biomass in both trials were significantly more branched than the domesticated parent of the cross. Quantitative trait loci (QTL) analyses indicate that both height and branching are controlled by multiple genetic regions, often with QTL for both traits colocalizing in the same genomic regions. Genomic positions of several QTL colocalize with QTL in syntenic regions in other species and contain genes known to control branching and height in sorghum, maize, and switchgrass. Included in these is the ortholog of the rice SD-1 semi-dwarfing gene, which underlies one of the major Setaria height QTL. Understanding the relationships between height and branching patterns in Setaria, and their genetic control, is an important step to gaining a comprehensive knowledge of the development and genetic regulation of panicoid grass architecture.  相似文献   

3.
Weedy plants with intermediate (domesticated × wild) phenotypes occur in most pearl millet fields in West Africa, even in the absence of wild populations. They are usually found, in high numbers, both inside and outside of drills. Questions pertaining to the evolutionary dynamics of diversity within the pearl millet complex (domesticated–weedy–wild forms) were addressed in this study. The diversity of the different components of this complex sampled in two pearl millet fields in two villages of southwestern Niger was assessed at both molecular (AFLP) and morphological levels. Results show that, in both fields, weedy plants found outside of drills are morphologically distinct from weedy plants found inside drills, despite their close similarity at AFLP markers. The data suggest some introgression from the wild to the weedy population but nevertheless that the gene flow between the parapatric wild and domesticated populations is very low. This challenges the traditional view that regular hybridization between domesticated and wild pearl millets explains the abundance of these weedy plants despite farmers’ seed selection. The level of genetic differentiation between fields from the two villages was low when considering domesticated and weedy plants. This could be explained by high gene flow resulting from substantial seed exchanges between farmers. The fact that it is very difficult for farmers to keep their own selected seeds, and the consequent substantial seed exchanges between them, is probably the main factor accounting for the maintenance and dispersal of weedy pearl millets in the region, even in areas where no wild forms have been observed.C. Mariac and T. Robert contributed equally to the work.  相似文献   

4.
Zhang J  Lu H  Wu N  Yang X  Diao X 《PloS one》2011,6(5):e19726
Foxtail millet (Setaria italica) is one of the oldest domesticated cereal crops in Eurasia, but identifying foxtail millets, especially in charred grains, and differentiating it from its wild ancestor, green foxtail (Setaria viridis), in the archaeobotanical remains, is still problematic. Phytolithic analysis provides a meaningful method for identifying this important crop. In this paper, the silicon structure patterns in the glumes, lemmas, and paleas from inflorescence bracts in 16 modern plants of foxtail millet and green foxtail from China and Europe are examined using light microscopy with phase-contrast and a microscopic interferometer. Our research shows that the silicon structure of ΩIII from upper lemmas and paleas in foxtail millet and green foxtail can be correspondingly divided into two groups. The size of ΩIII type phytolith of foxtail millet is bigger than that from green foxtail. Discriminant function analysis reveals that 78.4% of data on foxtail millet and 76.9% of data on green foxtail are correctly classified. This means certain morphotypes of phytoliths are relatively reliable tools for distinguishing foxtail millet from green foxtail. Our results also revealed that the husk phytolith morphologies of foxtail millets from China and Eastern Europe are markedly different from those from Western Europe. Our research gives a meaningful method of separating foxtail millet and green foxtail. The implications of these findings for understanding the history of foxtail millet domestication and cultivation in ancient civilizations are significant.  相似文献   

5.
6.
Foxtail millet (Setaria italica) and Common millet (Panicum miliaceum) are the oldest domesticated dry farming crops in Eurasia. Identifying these two millets in the archaeobotanical remains are still problematic, especially because the millet grains preserve only when charred. Phytoliths analysis provides a viable method for identifying this important crop. However, to date, the identification of millet phytoliths has been questionable, because very little study has been done on their morphometry and taxonomy. Particularly, no clear diagnostic feature has been used to distinguish between Foxtail millet and Common millet. Here we examined the anatomy and silicon structure patterns in the glumes, lemmas, and paleas from the inflorescence bracts in 27 modern plants of Foxtail millet, Common millet, and closely related grasses, using light microscopy with phase-contrast and microscopic interferometer. Our research shows that five key diagnostic characteristics in phytolith morphology can be used to distinguish Foxtail millet from Common millet based on the presence of cross-shaped type, regularly arranged papillae, Ω-undulated type, endings structures of epidermal long cell, and surface ridgy line sculpture in the former species. We have established identification criteria that, when used together, give the only reliable way of distinguishing between Foxtail millet and Common millet species based on their phytoliths characteristics, thus making a methodological contribution to phytolith research. Our findings also have important implications in the fields of plant taxonomy, agricultural archaeology, and the culture history of ancient civilizations.  相似文献   

7.
A survey of anthropological, archaeological, botanical, and historical literature reveals that two species of fox-tail millet were domesticated in the Old World (S. italica, S. pumila), and one may have been domesticated in the New World (S. parviflora). Others were prehistorically and historically gathered and eaten as cereal starch sources, includingS. liebmannii, S. macrostachya, S. pallide-fusca, S. palmifolia, S. parviflora, S. pumila, S. sphacelata, S. verticillata, S. viridis, and perhaps others. The American species are briefly discussed and compared with the Old World plants, and a synopsis of food changes is presented.  相似文献   

8.
Morphometric and isozymic analyses of adjacent cultivated and spontaneous populations of pearl millet in Niger revealed in the field a unique continuous distribution of phenotypes ranging from the most cultivated one to a typical cultivated × wild hybrid. The natural population was subdivided into a major wild group and a hybrid wild × cultivated group. Cultivated millet displayed an equilibrium state between recombined domesticated and wild genes. The natural population, in spite of a high rate of immigration by pollen from cultivated plants, retained its structure by apparently reproducing itself exclusively from the major wild group.  相似文献   

9.
Association mapping focused on 36 genes involved in branch development was used to identify candidate genes for variation in shoot branching in Arabidopsis thaliana. The associations between four branching traits and moderate-frequency haplogroups at the studied genes were tested in a panel of 96 accessions from a restricted geographic range in Central Europe. Using a mixed-model association-mapping method, we identified three loci--MORE AXILLARY GROWTH 2 (MAX2), MORE AXILLARY GROWTH 3 (MAX3), and SUPERSHOOT 1 (SPS1)--that were significantly associated with branching variation. On the basis of a more extensive examination of the MAX2 and MAX3 genomic regions, we find that linkage disequilibrium in these regions decays within approximately 10 kb and trait associations localize to the candidate genes in these regions. When the significant associations are compared to relevant quantitative trait loci (QTL) from previous Ler x Col and Cvi x Ler recombinant inbred line (RIL) mapping studies, no additive QTL overlapping these candidate genes are observed, although epistatic QTL for branching, including one that spans the SPS1, are found. These results suggest that epistasis is prevalent in determining branching variation in A. thaliana and may need to be considered in linkage disequilibrium mapping studies of genetically diverse accessions.  相似文献   

10.
Being an excellent source of calcium, finger millet crop has nutraceutical importance. Mineral accumulation, being a polygenic trait, becomes essential to target potential candidate genes directly or indirectly involved in the regulation of calcium transport and signaling in cereals and might have influence on grain calcium accumulation. In view of this, genic microsatellite markers were developed from the coding and non-coding sequences of calcium signaling and transport genes viz. calcium transporters (channels; ATPases and antiporters), calcium-binding proteins and calcium-regulated protein kinases available in rice and sorghum. In total, 146 genic "simple sequence repeat" (SSR) primers were designed and evaluated for cross-transferability across a panel of nine grass species including finger millet. The average transferability of genic SSR markers from sorghum to other grasses was highest (73.2 %) followed by rice (63.4 %) with an overall average of 68.3 % which establishes the importance of these major crops as a useful resource of genomic information for minor crops. The transfer rate of SSR markers was also correlated with the phylogenetic relationship (or genetic relatedness) of the species. Primers with successful amplification in finger millet were further used to screen for polymorphism across a set of high and low calcium containing genotypes. The results reveal a conserved behavior across the finger millet genotypes indicating that the mineral transport and the storage machinery largely remain conserved in plants and even SSR variations in them remain suppressed during the course of evolution. Single nucleotide polymorphism and differential expression patterns of candidate genes, therefore, might be a plausible reason to explain variations in grain calcium contents among finger millet genotypes.  相似文献   

11.
Unravelling the mechanisms involved in adaptation to understand plant morphological evolution is a challenging goal. For crop species, identification of molecular causal polymorphisms involved in domestication traits is central to this issue. Pearl millet, a domesticated grass mostly found in semi‐arid areas of Africa and India, is an interesting model to address this topic: the domesticated form shares common derived phenotypes with some other cereals such as a decreased ability to develop basal and axillary branches in comparison with the wild phenotype. Two recent studies have shown that the orthologue of the maize gene Teosinte‐Branched1 in pearl millet (PgTb1) was probably involved in branching evolution during domestication and that a miniature inverted‐repeat transposable element (MITE) of the Tuareg family was inserted in the 3′ untranslated region of PgTb1. For a set of 35 wild and domesticated populations, we compared the polymorphism patterns at this MITE and at microsatellite loci. The Tuareg insertion was nearly absent in the wild populations, whereas a strong longitudinal frequency cline was observed in the domesticated populations. The geographical pattern revealed by neutral microsatellite loci clearly demonstrated that isolation by distance does not account for the existence of this cline. However, comparison of population differentiation at the microsatellite and the MITE loci and analyses of the nucleotide polymorphism pattern in the downstream region of PgTb1 did not show evidence that the cline at the MITE locus has been shaped by selection, suggesting the implication of a neutral process. Alternative hypotheses are discussed.  相似文献   

12.
13.
Seed dormancy in rice interrelates to the weedy characteristics shattering, awn, black hull color, and red pericarp color. A cross between the weedy strain SS18-2 and the breeding line EM93-1 was developed to investigate the genetic basis and adaptive significance of these interrelationships. These characteristics or their components differed in average degree of dominance from –0.8 to 1.5, in heritability from 0.5 to 0.96, and in their contribution to phenotypic or genotypic variation in dormancy by up to 25%. Five dormancy, four shattering, and three awn-length quantitative trait loci (QTLs) were detected in the BC1 population replicated in 2 years. Two QTLs for hull color were identified, and the SS18-2-derived and EM93-1-derived alleles increased the intensity of black, and red or yellow pigmentations, respectively. The only QTL for pericarp color co-located with the red pericarp gene Rc, with the SS18-2-derived allele increasing the intensity of black and red pigmentations. Four of the five dormancy QTLs were flanked or bracketed by one to four QTLs for the interrelated characteristics. The QTL organization pattern indicates the central role of seed dormancy in adaptive syndromes for non-domesticated plants, implies that the elimination of dormancy from cultivars could arise from the selections against multiple interrelated characteristics, and challenges the use of dormancy genes at these loci in breeding varieties for resistance to pre-harvest sprouting (PHS). However, another QTL (qSD12) provides candidate gene(s) for PHS resistance because it has a large effect in the population and it is independent of the loci for interrelated characteristics.  相似文献   

14.
Two species of Echinochloa are grown as cereals. Echinochloa crusgalli is native to temperate Eurasia and was domesticated in Japan some 4,000 yr ago. Echinochloa colona is widely distributed in the tropics and subtropics of the Old World. It was domesticated in India. Echinochloa colona is morphologically allied to E. crusgalli, but hybrids between them are sterile. Echinochloa colona differs consistently from E. crusgalli in having smaller spikelets with membran-aceous rather than chartaceous glumes. Hybrids between wild and cultivated taxa of E. colona and between those of E. crusgalli are fertile. Cultivated E. colona is variable. It is grown as a cereal across India, Kashmir and Sikkim. Four morphological races are recognized, although these do not have geographical, ecological or ethnological unity. Race laxa is confined to Sikkim where races robusta, intermedia and stolonifera are also grown. In India, races robusta, intermedia and stolonifera are often grown as mixtures, and Echinochloa is sometimes grown as a mixture with other cereals, particularly Setaria italica (foxtail millet) or Eleusine coracana (finger millet). The species is planted on poor soil, and some cultivars mature in less than 2 mo. They hold considerable promise as cereals for the semiarid tropics.  相似文献   

15.
The dimensions of archaeobotanical grains identified as Panicum miliaceum (broomcorn millet) vary greatly in size. This is illustrated by the remains from the archaeological site of Zanovskoe in eastern Ukraine (5th–1st centuries cal. b.c.). We carried out experimental work on broomcorn millet plants and grains, aiming at a comprehensive understanding of factors that may have contributed to variation in the grain size of broomcorn millet in archaeobotanical assemblages. We analyzed the dependence of grain size variation on selected environmental and taphonomic factors. Our results indicate that immaturity is more likely than environmental stress to account for small grain size in broomcorn millet plants. Depending on charring temperature and time, immature broomcorn millet grains can withstand charring and are potentially preserved in archaeological assemblages. Depending on maturity level, such grains vary in size and shape. These results are potentially important for accurate identification of archaeobotanical specimens.  相似文献   

16.
Many different crop species were selected for a common suite of ‘domestication traits’, which facilitates their use for studies of parallel evolution. Within domesticated rice (Oryza sativa), there has also been independent evolution of weedy strains from different cultivated varieties. This makes it possible to examine the genetic basis of parallel weed evolution and the extent to which this process occurs through shared genetic mechanisms. We performed comparative QTL mapping of weediness traits using two recombinant inbred line populations derived from crosses between an indica crop variety and representatives of each of the two independently evolved weed strains found in US rice fields, strawhull (S) and blackhull awned (B). Genotyping‐by‐sequencing provided dense marker coverage for linkage map construction (average marker interval <0.25 cM), with 6016 and 13 730 SNPs mapped in F5 lines of the S and B populations, respectively. For some weediness traits (awn length, hull pigmentation and pericarp pigmentation), QTL mapping and sequencing of underlying candidate genes confirmed that trait variation was largely attributable to individual loci. However, for more complex quantitative traits (including heading date, panicle length and seed shattering), we found multiple QTL, with little evidence of shared genetic bases between the S and B populations or across previous studies of weedy rice. Candidate gene sequencing revealed causal genetic bases for 8 of 27 total mapped QTL. Together these findings suggest that despite the genetic bottleneck that occurred during rice domestication, there is ample genetic variation in this crop to allow agricultural weed evolution through multiple genetic mechanisms.  相似文献   

17.
18.
Phenotypic plasticity and genotype-environment interactions (GEI) play an important role in the evolution of life histories. Knowledge of the molecular genetic basis of plasticity and GEI provides insight into the underlying mechanisms of life-history changes in different environments. We used a genomewide single-nucleotide polymorphism map in a recombinant N2 x CB4856 inbred panel of the nematode Caenorhabditis elegans to study the genetic control of phenotypic plasticity to temperature in four fitness-related traits, that is, age at maturity, fertility, egg size and growth rate. We mapped quantitative trait loci (QTL) for the respective traits at 12 and 24 degrees C, as well as their plasticities. We found genetic variation and GEI for age at maturity, fertility, egg size and growth rate. GEI in fertility and egg size was attributed to changes in rank order of reaction norms. In case of age at maturity and growth rate, GEI was caused mainly by differences in the among-line variance. In total, 11 QTLs were detected, five QTL at 12 degrees C and six QTL at 24 degrees C, which were associated with life-history traits. Five QTL associated with age at maturity, fertility and growth rate showed QTL x environment interaction. These colocalized with plasticity QTL for the respective traits suggesting allelic sensitivity to temperature. Further fine mapping, complementation analyses and gene silencing are planned to identify candidate genes underlying phenotypic plasticity for age at maturity, fertility and growth.  相似文献   

19.
Zhang G  Liu X  Quan Z  Cheng S  Xu X  Pan S  Xie M  Zeng P  Yue Z  Wang W  Tao Y  Bian C  Han C  Xia Q  Peng X  Cao R  Yang X  Zhan D  Hu J  Zhang Y  Li H  Li H  Li N  Wang J  Wang C  Wang R  Guo T  Cai Y  Liu C  Xiang H  Shi Q  Huang P  Chen Q  Li Y  Wang J  Zhao Z  Wang J 《Nature biotechnology》2012,30(6):549-554
Foxtail millet (Setaria italica), a member of the Poaceae grass family, is an important food and fodder crop in arid regions and has potential for use as a C(4) biofuel. It is a model system for other biofuel grasses, including switchgrass and pearl millet. We produced a draft genome (~423 Mb) anchored onto nine chromosomes and annotated 38,801 genes. Key chromosome reshuffling events were detected through collinearity identification between foxtail millet, rice and sorghum including two reshuffling events fusing rice chromosomes 7 and 9, 3 and 10 to foxtail millet chromosomes 2 and 9, respectively, that occurred after the divergence of foxtail millet and rice, and a single reshuffling event fusing rice chromosome 5 and 12 to foxtail millet chromosome 3 that occurred after the divergence of millet and sorghum. Rearrangements in the C(4) photosynthesis pathway were also identified.  相似文献   

20.
Dehydration-responsive element binding (DREB) genes assist in improving stress tolerance of plants by activating the expression of several stress-responsive genes. Therefore, development of functional markers for useful alleles utilizing DREB genes is crucial for crop improvement strategies. Earlier we reported a synonymous single nucleotide polymorphism (SNP) associated with dehydration tolerance at 558th bp (an A/G transition) in the SiDREB2 gene of foxtail millet (Setaria italica L.) and developed an allele-specific marker (ASM) for SiDREB2. In the present study, we validated this ASM using a set of 122 foxtail accessions, of which 45 were investigated in an earlier study. The QTL associated with SiDREB2 contributed to ~20 % of the total phenotypic variation (PV) for relative water content (RWC) and this signified the importance of this QTL for dehydration tolerance in foxtail millet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号