首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent developments in water status measurement techniques using the psychrometer, the pressure probe, the osmometer and pressure chamber are reviewed, and the process of cell elongation from the viewpoint of plant-water relations is discussed for plants subjected to various environmental stress conditions. Under water-deficient conditions, cell elongation of higher plants can be inhibited by interruption of water flow from the xylem to the surrounding elongating cells. The process of growth inhibition at low water potentials could be reversed by increasing the xylem water potential by means of pressure application in the root region, allowing water to flow from the xylem to the surrounding cells. This finding confirmed that a water potential field associated with growth process,i.e., the growth-induced water potential, is an important regulating factor for cell elongation other than metabolic factors. The concept of the growth-induced water potential was found to be applicable for growth retardation caused by cold stress, heat stress, nutrient deficiency and salinity stress conditions. In the present review, the fact that the cell elongation rate is primarily associated with how much water can be absorbed by elongating cells under water-deficiency, nutrient deficiency, salt stress, cold stress and heat stress conditions is suggested.  相似文献   

2.
Quantification of the iron nutritional status of phytoplankton is of great interest not only for the study of the oceans but also for fresh waters. Flavodoxin is a small flavoprotein proposed as a molecular marker for iron stress, since it is induced as a consequence of iron deprivation, replacing the iron-sulphur protein ferredoxin. Flavodoxin and ferredoxin from Scenedesmus vacuolatus have been immunoquantified in cells grown under different iron nutritional conditions. Flavodoxin and ferredoxin levels correlate with the iron availability, and the calculated flavodoxin index can be used as an iron-stress marker. Other physiological parameters such as copper deficiency, heterotrophic or mixotrophic growth, nitrogen source and salt stress were also tested as potential factors influencing flavodoxin expression. Salt stress and heterotrophic growth conditions alter flavodoxin and ferredoxin expression. Once flavodoxin expression is repressed by iron (and severe deficiency alleviated), S.vacuolatus still increases its ferredoxin from 0·5 to 1·6 mol of ferredoxin per mole of ferredoxin-NADP+ reductase, and this ratio can be used for the evaluation of mild deficiency.  相似文献   

3.
The effects of salinity on the morphogenesis of various organs of kidney bean (Phaseolus vulgaris L.) and eggplant (Solanum melongena L.) plants grown in nosterile culture and of explants from these organs grown in vitro were studied. Salt stress was produced by adding NaCl (0.5 and 1.0%) to water or the Murashige and Skoog nutrient medium. Salt stress suppressed rhizogenesis, particularly profoundly in the salt-sensitive beans. Callus cultures obtained from different organs differed in their salt tolerance, which was evaluated from the callus growth. Under salinity conditions, homologous structures of the two crops differed markedly in survival and regeneration. Different organs and corresponding explants of one and the same plant differed in the threshold sensitivity to salinity, which indicates the organ-specificity of salt resistance.  相似文献   

4.
A greenhouse experiment was conducted to assess whether exogenously applied 24-epibrassionlide (24-epiBL) could alleviate the adverse effects of salt on wheat. Two hexaploid wheat (Triticum aestivum L.) cultivars, S-24 (salt tolerant) and MH-97 (moderately salt sensitive), were grown under control (0 mM NaCl in full strength Hoagland’s nutrient solution) or saline conditions (150 mM of NaCl in full strength Hoagland’s nutrient solution). After 41 days growth of wheat plants under saline conditions, 24-epiBL was applied as a foliar spray. Four levels of BR were used as 0 (water spray), 0.0125, 0.025, and 0.0375 mg l−1. Application of 24-epiBL increased plant biomass and leaf area per plant of both cultivars under non-saline conditions. However, under saline conditions, improvement in growth due to exogenous 24-epiBL was observed only in S-24. Photosynthetic rate was reduced due to salt stress in both cultivars, but this inhibitory effect was ameliorated significantly by the exogenous application of 24-epiBL. Exogenously applied 24-epiBL also enhanced the photosystem-II efficiency in both cultivars measured as F v /F m ratio. Although the activities of antioxidant enzymes, Superoxide dismutase (SOD), Peroxidase (POD) and Catalase (CAT) were increased due to salt stress in both wheat cultivars, exogenously applied 24-epiBL had a varying effect on the antioxidant system. The activity of SOD remained unaffected in both cultivars due to 24-epiBL application, but that of POD and CAT was promoted in the salt stressed plants of cv. S-24 only. In conclusion, improvement in growth in both wheat cultivars due to foliar applied 24-epiBL was found to be associated with 24-epiBL-induced enhancement in photosynthetic capacity. The 24-epiBL-induced regulation of antioxidant enzymes or growth under saline conditions was cultivar specific.  相似文献   

5.
The marine diatom Thalassiosira pseudonana was grown in continuous culture systems to study the interactive effects of temperature, irradiance, nutrient limitation, and the partial pressure of CO2 (pCO2) on its growth and physiological characteristics. The cells were able to grow at all combinations of low and high irradiance (50 and 300 μmol photons · m−2 · s−1, respectively, of visible light), low and high pCO2 (400 and 1,000 μatm, respectively), nutrient limitation (nitrate-limited and nutrient-replete conditions), and temperatures of 10–32°C. Under nutrient-replete conditions, there was no adverse effect of high pCO2 on growth rates at temperatures of 10–25°C. The response of the cells to high pCO2 was similar at low and high irradiance. At supraoptimal temperatures of 30°C or higher, high pCO2 depressed growth rates at both low and high irradiance. Under nitrate-limited conditions, cells were grown at 38 ± 2.4% of their nutrient-saturated rates at the same temperature, irradiance, and pCO2. Dark respiration rates consistently removed a higher percentage of production under nitrate-limited versus nutrient-replete conditions. The percentages of production lost to dark respiration were positively correlated with temperature under nitrate-limited conditions, but there was no analogous correlation under nutrient-replete conditions. The results suggest that warmer temperatures and associated more intense thermal stratification of ocean surface waters could lower net photosynthetic rates if the stratification leads to a reduction in the relative growth rates of marine phytoplankton, and at truly supraoptimal temperatures there would likely be a synergistic interaction between the stresses from temperature and high pCO2 (lower pH).  相似文献   

6.
Adaptation to high salinity and low or high temperature is essential for bacteria to survive. Accumulation of exogenous osmolytes is one of the ways that helps bacteria to survive under such extracellular stress. We have analysed the capability of various L-amino acids and their D-isomers to act as osmolytes and thus enableEscherichia coli cells to survive under various stress conditions.E. coli cells were grown in the presence or absence of L-and D-proline, alanine, serine and lysine under salt, heat and cold stresses. Of the various amino acids tested, L-proline, closely followed by L-serine turned out to be highly protective against environmental stresses. L-proline provided excellent protection (95%) against salt stress, followed by cold (60%) and heat (40%) stresses. D-amino acids on the other hand, proved to be highly inhibitory under stress conditions. Thus L-amino acids were found to be growth protectants under stress while their D-isomers were inhibitory during stress as well as normal conditions.  相似文献   

7.
为探索苦楝应对盐胁迫的响应机制,该文以1年生苦楝(Melia azedarach)实生苗为材料,在盆栽条件下设置中性盐Na_2SO_4和碱性盐Na_2CO_33个盐浓度(200、400、600 mmol·L~(-1))处理40 d,研究苦楝的抗盐碱水平及在不同程度盐碱胁迫条件下的生长及光合生理变化。结果表明:随着盐浓度的提高,苦楝的苗高、地径和生物量的增长量均呈现下降趋势,且碱性盐胁迫条件下降程度更大,盐胁迫提高苦楝的根冠比。处理10 d时,苦楝幼苗的所有光合指标随中性盐和碱性盐浓度的提高呈相似的下降特征,碱性盐胁迫条件下的降低幅度显著大于中性盐胁迫,且随处理时间的增加,中性盐和碱性盐处理下苦楝幼苗的净光合速率和蒸腾速率显著降低。随着盐浓度的提高,苦楝的叶绿素含量呈现下降趋势,200 mmol·L~(-1)盐胁迫对叶绿素含量影响较小,400、600 mmol·L~(-1)盐胁迫均对叶绿素含量有显著影响。600 mmol·L~(-1)碱性盐胁迫条件下,苦楝叶片相对电导率和饱和水分亏缺最高,显著高于其余处理。同等浓度下,碱性盐胁迫的苦楝叶片相对电导率和饱和水分亏缺显著高于中性盐胁迫处理。综上结果认为,苦楝具有一定的耐盐碱能力,碱性盐比中性盐对苦楝幼苗的影响更大。  相似文献   

8.
采用砂培方式,研究了外源5-氨基乙酰丙酸(ALA)对盐胁迫下菘蓝种子的萌发、幼苗叶片的可溶性糖含量、丙二醛(MDA)含量及其抗氧化酶活性的影响,探讨ALA缓解菘蓝受盐胁迫伤害的响应机制。结果显示:(1)菘蓝种子萌发及幼苗生长在100 mmol·L-1 NaCl胁迫下受到明显的抑制,种子发芽率、发芽势、发芽指数、活力指数与自然含水量均显著降低,丙二醛含量、可溶性糖含量以及超氧化物歧化酶(SOD)、过氧化物酶(POD)活性显著升高。(2)盐胁迫下适宜浓度的ALA处理显著提高了种子萌发率、自然含水量及SOD、POD和CAT活性,降低了可溶性糖和丙二醛的含量,并以16.7 mg·L-1 ALA处理盐胁迫下菘蓝种子的发芽率、发芽势最大,其幼苗的SOD、POD、CAT活性最强。研究表明,盐胁迫显著抑制菘蓝种子的萌发及幼苗生长,适宜浓度的ALA能够有效缓解盐胁迫对菘蓝种子萌发及幼苗生长的伤害,提高植株的抗盐性,并以16.7 mg·L-1 ALA处理效果最佳。  相似文献   

9.
Salinity is a major yield-reducing factor in coastal and arid irrigated rice production systems. Rice seedlings (Oryza sativa cv. Tarom Atri) were exposed to different NaCl concentrations for 8 days after germination. Plants height, fresh and dry weight, relative water content, pigment and carbohydrate content, photosynthetic efficiency and lipid peroxidase and antioxidant enzyme activity of rice seedlings grown under salt stress were investigated. Seedling grown under 25and 50 mM salt were shorter than the control. They could, however, develop their secondary leaves. Seedlings grown in the nutrient solution supplied with 100 and 200 mM extra salt could not develop their secondary leaves. Fresh weight ofseedlings grown under salt stress reduced up to 42.2% of the non-treated seedlings. Chlorophylls and carotenoids contents decreased significantly in the salt-treated seedlings. Carotenoid contents in NaCl-treated seedlings were decreased to 39.3%. No significant changes occurred in the photochemical efficiency of control and stressed plants. Increasing concentrations of NaCl resulted in increase and decrease of Na+ and K+ ions, respectively. NaCl salinity caused an increase in both peroxide content and lipid peroxidation. Seedlings which recovered for 24 h showed lower peroxide and malondialdehyde content.  相似文献   

10.
11.
Growth of mycorrhizal tomato and mineral acquisition under salt stress   总被引:19,自引:0,他引:19  
 High salt levels in soil and water can limit agricultural production and land development in arid and semiarid regions. Arbuscular mycorrhizal fungi (AMF) have been shown to decrease plant yield losses in saline soils. The objective of this study was to examine the growth and mineral acquisition responses of greenhouse-grown tomato to colonization by the AMF Glomus mosseae [(Nicol. And Gerd.) Gerd. and Trappe] under varied levels of salt. NaCl was added to soil in the irrigation water to give an ECe of 1.4 (control), 4.7 (medium) and 7.4 dS m–1 (high salt stress). Plants were grown in a sterilized, low P (silty clay) soil-sand mix. Mycorrhizal colonization was higher in the control than in saline soil conditions. Shoot and root dry matter yields and leaf area were higher in mycorrhizal than in nonmycorrhizal plants. Total accumulation of P, Zn, Cu, and Fe was higher in mycorrhizal than in nonmycorrhizal plants under both control and medium salt stress conditions. Shoot Na concentrations were lower in mycorrhizal than in nonmycorrhizal plants grown under saline soil conditions. The improved growth and nutrient acquisition in tomato demonstrate the potential of AMF colonization for protecting plants against salt stress in arid and semiarid areas. Accepted: 21 February 2000  相似文献   

12.
The effects of environmental stress combinations on the soluble metabolites were investigated in several cultivars of Triticum aestivum and T. durum. The seedlings grown at optimum (24/16°C), low (5/–5°C) (LT), and high (40/30°C) (HT) day/night temperature conditions were exposed to waterlogging, drought, and salinity (0.7% NaCl, w/w) stresses for six days. Root and shoot fresh weight significantly decreased under waterlogging, drought and salt stresses. Fresh weight was most reduced at severe drought + HT combinations. The lowest relative water content was found under drought stress + HT combination. Soluble carbohydrate (SC) contents increased under LT conditions, but decreased under HT conditions. Under HT + salt combinations, T. aestivum genotypes showed higher SC content thanT. durum genotypes. Proline content significantly increased in the case of water deficit and salt stress. Under drought and salt stresses, T. aestivum genotypes had lower proline contents than T. durum genotypes. These results indicate that biochemical responses to drought, waterlogging, and salt stresses were significantly changed in wheat seedlings under LT and HT conditions.  相似文献   

13.
A growth chamber experiment was conducted to determine if P fertilization to enhance the P nutrition of otherwise N and P deficient Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] seedlings reduces water stress in the seedlings during drought periods. Seedlings were grown in pasteurized mineral soil under well-watered conditions and fertilized periodically with a small amount of nutrient solution containing P at either of three levels: 0, 20, or 50 mg P L-1. By age 6 mo, leaf nutrient analysis indicated that N and P were deficient in control (0 mg P L-1) seedlings. The highest level of P fertilization, which doubled leaf P concentration, did not affect plant biomass, suggesting that N deficiency was limiting growth. When these seedlings were subjected to drought, there was no effect of P fertilization on leaf water potential or osmotic potential. Furthermore, P fertilized seedlings had lower stomatal conductance and net photosynthesis rate. These results indicate that enhanced P nutrition, in the presence of N deficiency, does not reduce water stress in Douglas fir seedlings during drought periods.  相似文献   

14.
旱盐互作对冬小麦幼苗生长及其抗逆生理特性的影响   总被引:8,自引:0,他引:8  
采用水培方法,以不同浓度的PEG-6000(0、8.3%、12.6%(W/V))和NaCl(0、25、50 mmol·L-1)溶液模拟不同程度的干旱胁迫及盐胁迫,研究了盐分对干旱胁迫条件下冬小麦沧-6001幼苗生长及其抗逆生理特性的影响.结果表明:在8.3%或12.6% PEG-6000处理条件下,添加25 mmol·L-1NaCl均使植株干物质积累和植株含水量比单一PEG处理增加,同时叶片可溶性糖和可溶性蛋白质含量增加,丙二醛和脯氨酸含量下降,植株各部位Na+含量升高、K+含量下降;在12.6% PEG-6000处理条件下,添加50 mmol·L-1NaCl对植株的胁迫效应高于单一PEG处理.表明在干旱胁迫条件下,加入适量盐分可缓解干旱胁迫对冬小麦幼苗生长的抑制.  相似文献   

15.
盐磷耦合胁迫下大豆的生长和钠、磷离子长距离运输   总被引:3,自引:0,他引:3  
以2个耐盐性和磷效率有差异的大豆品种为材料,采用水培方法,探讨盐分与缺磷耦合胁迫对大豆生长和钠、磷离子长距离运输影响的结果表明:(1)盐分和低磷胁迫对大豆生长有交互作用,磷浓度相对较高(2MMOL·L-1)时大豆耐盐性降低;(2)钠由木质部的向顶部运输增加,钠在韧皮部的再分配增多;(3)盐胁迫下磷在木质部的运输能力提高,韧皮部中磷的再分配受影响不大;(4)磷盐互作对大豆生长的影响在品种之间无差异。  相似文献   

16.
The study aimed to test whether night-time transpiration provides any potential benefit to wheat plants which are subjected to salt stress. Hydroponically grown wheat plants were grown at four levels of salt stress (50, 100, 150, and 200 mM NaCl) for 5–8 days prior to harvest (day 14–18). Salt stress caused large decreases in transpiration and leaf elongation rates during day and night. The quantitative relation between the diurnal use of water for transpiration and leaf growth was comparatively little affected by salt. Night-time transpirational water loss occurred predominantly through stomata in support of respiration. Diurnal gas exchange and leaf growth were functionally linked to each other through the provision of resources (carbon, energy) and an increase in leaf surface area. Diurnal rates of water use associated with leaf cell expansive growth were highly correlated with the water potential of the xylem, which was dominated by the tension component. The tissue-specific expression level of nine candidate aquaporin genes in elongating and mature leaf tissue was little affected by salt stress or day/night changes. Growing plants under conditions of reduced night-time transpirational water loss by increasing the relative humidity (RH) during the night to 95% had little effect on the growth response to salt stress, nor was the accumulation of Na+ and Cl in shoot tissue altered. We conclude that night-time gas exchange supports the growth in leaf area over a 24 h day/night period. Night-time transpirational water loss neither decreases nor increases the tolerance to salt stress in wheat.  相似文献   

17.
Two replicate experiments were conducted to investigate the effect of light intensity on the growth and nutrient uptake of Skeletonema costatum (Grev.) Cleve in silicate-limited continuous culture. Each experiment began with 4 identical chemostat cultures of S. costatum growing at the normal laboratory light (0.14 ly · min?1, continuous illumination) under strong silicate limitation. Screens were placed over 3 cultures reducing them to light intensities of 0.042, 0.021 and 0.0018 ly · min?1. Based on growth rules, nutrient uptake rates, cell morphology and chemical composition, the cultures receiving 0.021, and 0.0018 ly · min?1 appeared to he light-limited, whereas the culture receiving 0.14 ly.  相似文献   

18.
Thermotolerant ethanol fermenting yeasts have been extensively used in industrial bioethanol production. However, little is known about yeast physiology under stress during bioethanol processing. This study investigated the physiological characteristics of the thermotolerant yeast Pichia kudriavzevii, strains NUNS-4, NUNS-5 and NUNS-6, under the multiple stresses of heat, ethanol and sodium chloride. Results showed that NUNS-4, NUNS-5 and NUNS-6 displayed higher growth rates under each stress condition than the reference strain, Saccharomyces cerevisiae TISTR5606. Maximum specific growth rates under stresses of heat (45°C), 15% v/v ethanol and 1·0 M sodium chloride were 0·23 ± 0·04 (NUNS-4), 0·11 ± 0·01 (NUNS-5) and 0·15 ± 0·01 h–1 (NUNS-5), respectively. Morphological features of all yeast studied changed distinctly with the production of granules and vacuoles when exposed to ethanol, and cells were elongated under increased sodium chloride concentration. This study suggests that the three P. kudriavzevii strains are potential candidates to use in industrial–scale fermentation due to a high specific growth rate under multiple stress conditions. Multiple stress-tolerant P. kudriavzevii NUNS strains have received much attention not only for improving large-scale fuel ethanol production, but also for utilizing these strains in other biotechnological industries.  相似文献   

19.
为探究施盐和磷对重要海防林树种台湾相思幼苗叶光合作用与养分特征的影响,该研究设置0%(B0)、0.2%(B1)、0.4%(B2)、0.6%(B3)、0.8%(B4)的NaCl溶液和0 (P0)、0.5 (P1)、1.5 (P2)g·kg-1 3个供磷水平的过磷酸钙磷肥,在此基础上设置盐磷6个耦合处理,测定幼苗光合作用和养分特征指标。结果表明:(1)盐胁迫显著抑制台湾相思幼苗的生长发育,盐含量越高影响程度越大;低盐施磷对台湾相思幼苗生长不利,中高盐施磷显著减缓盐对幼苗生长的抑制作用。(2)台湾相思幼苗光合作用受盐胁迫影响显著;中低盐施磷后气孔关闭程度上升会加剧盐胁迫对幼苗光合作用的影响,高盐适当施磷可显著提高台湾相思幼苗光合能力。(3)盐胁迫显著降低叶绿素含量且对光系统Ⅱ造成危害;低盐胁迫施磷对台湾相思幼苗叶绿素合成不利,高盐适当施磷可以提高叶绿素合成量、稳定细胞膜结构以及提高叶片潜在光合能力...  相似文献   

20.
Salt stress may impose osmotic and respiratory costs on nonhalophytes that limit the availability of carbohydrates for growth. This was examined in kenaf (Hibiscus cannabinus L.) by the analysis of soluble carbohydrates, starch, and respiration rates in mature and expanding leaves from plants exposed to moderate salt stress. Plants were grown for 35 days in solution culture at 1, 37, and 75 mM NaCl under greenhouse conditions. Total carbohydrates increased in mature and expanding leaves with increasing salinity. The majority of this increase was as starch. Mature leaf respiration also increased under salt stress. The net accumulation of non-osmotically active carbohydrates in expanding leaves suggests that growth was not limited by the generation or availability of carbohydrates but rather by the ability of the plant to effectively utilize this substrate in osmotic adjustment and growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号