首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Arabidopsis Flavonoid Mutants Are Hypersensitive to UV-B Irradiation   总被引:22,自引:0,他引:22       下载免费PDF全文
Increases in the terrestrial levels of ultraviolet-B (UV-B) radiation (280 to 320 nm) due to diminished stratospheric ozone have prompted an investigation of the protective mechanisms that contribute to UV-B tolerance in plants. In response to UV-B stress, flowering plants produce a variety of UV-absorptive secondary products derived from phenylalanine. Arabidopsis mutants with defects in the synthesis of these compounds were tested for UV-B sensitivity. The transparent testa-4 (tt4) mutant, which has reduced flavonoids and normal levels of sinapate esters, is more sensitive to UV-B than the wild type when grown under high UV-B irradiance. The tt5 and tt6 mutants, which have reduced levels of UV-absorptive leaf flavonoids and the monocyclic sinapic acid ester phenolic compounds, are highly sensitive to the damaging effects of UV-B radiation. These results demonstrate that both flavonoids and other phenolic compounds play important roles in vivo in plant UV-B protection.  相似文献   

2.
We conducted three experiments to examine the influence of ultraviolet-B radiation (UV-B; 280–320 nm) exposure on reproduction in Brassica rapa (Brassicaceae). Plants were grown in a greenhouse under three biologically effective UV-B levels that simulated either an ambient stratospheric ozone level (control), 16% (“low enhanced”), or 32% (“high enhanced”) ozone depletion levels at Morgantown, WV, USA in mid-March. In the first experiment, we examined whether UV-B level during plant growth influenced in vivo pollen production and viability, and flower production. Pollen production and viability per flower were reduced by ≈50% under both enhanced UV-B levels relative to ambient controls. While plants under high-enhanced UV-B produced over 40% more flowers than plants under the two lower UV-B treatments, whole-plant production of viable pollen was reduced under high-enhanced UV-B to 17% of that of ambient controls. Whole-plant production of viable pollen was reduced under low-enhanced UV-B to 34% of ambient controls. In the second experiment, we collected pollen from plants under the three UV-B levels and examined whether source-plant UV-B exposure influenced in vitro pollen germination and viability. Pollen from plants under both enhanced-UV-B treatments had initially lower germination and viability than pollen from the ambient level. After in vitro exposure to the high-enhanced UV-B levels for 6 h, viability of the pollen from plants grown under ambient UV-B was reduced from 65 to 18%. In contrast, viability of the pollen from plants grown under both enhanced UV-B treatments was reduced to a much lesser extent: only from ≈43 to 22%. Thus, ambient source-plant pollen was more sensitive to enhanced UV-B exposure. In the third experiment, we used pollen collected from source plants under the three UV-B levels to fertilize plants growing under ambient-UV-B levels, and assessed subsequent seed production and germination. Seed abortion rates were higher in plants pollinated with pollen from the enhanced UV-B treatments, than from ambient UV-B. Despite this, seed yield (number and mass) per plant was similar, regardless of the UV-B exposure of their pollen source. Our findings demonstrate that enhanced UV-B levels associated with springtime ozone depletion events have the capacity to substantially reduce viable pollen production, and could ultimately reduce reproductive success of B. rapa.  相似文献   

3.
Populations of the desert annual Dimorphotheca sinuata , derived from a common seed stock, were exposed concurrently over four successive generations to either ambient (representing no stratospheric ozone depletion) or elevated (representing 20% stratospheric ozone depletion) UV-B levels during their complete life cycle. Leaf fluctuating asymmetry (FA) was measured in populations of plants grown from seeds of selected generations which had experienced different UV-B exposure histories, and from seeds collected from a wild population of this species which grows in a naturally enhanced UV-B environment. These measured plants had been grown in a greenhouse under essentially UV-B-free conditions. Leaf FA was significantly increased by greater numbers of enhanced UV-B exposures in the parentage of the seed. There was a linear to exponential dose–response relationship between number of UV-B exposure iterations in seed parentage and leaf FA, suggesting that damage to DNA caused by UV-B exposure during plant development may not be fully repaired, and thus be inherited by offspring and accumulated over successive generations in this species. Leaf FA of plants grown from seed from the wild population was not significantly greater than that of control plants whose parentage experienced only ambient UV-B exposures, although this negative result may have been due to low sampling intensity and measurement resolution, and the relatively low UV-B enhancement experienced by the wild population. We conclude that leaf FA may constitute a relatively sensitive yet inexpensive means of quantifying UV-B damage to plants.  相似文献   

4.
Cotton (Gossypium hirsutum L.) crop, cultivated between 40 degrees N and 40 degrees S, is currently experiencing 2-11 kJ m-2 d-1 of UV-B radiation. This is predicted to increase in the near future. An experiment was conducted to study the effect of enhanced UV-B radiation on vegetative and reproductive morphology and leaf anatomy of cotton in sunlit, controlled environment chambers. From emergence to harvest, cotton plants were exposed to 0, 8 or 16 kJ m-2 d-1 of UV-B in a square wave approach for 8 h from 0800 to 1600 h. Changes in plant height, internode and branch length, mainstem node number, leaf area, length and area of petals and bracts, and anther number per flower were recorded. Epidermal cell and stomatal density, stomatal index, leaf thickness, and epidermal, palisade and mesophyll tissue thickness were also measured. Initial chlorotic symptoms on leaves turned into necrotic patches on continued exposure to enhanced UV-B. Exposure to high UV-B reduced both vegetative and reproductive parameters and resulted in a smaller canopy indicating sensitivity of cotton to UV-B radiation. Enhanced UV-B radiation increased epicuticular wax content on adaxial leaf surfaces, and stomatal index on both adaxial and abaxial leaf surfaces. Leaf thickness was reduced following exposure to UV-B owing to a decrease in thickness of both the palisade and mesophyll tissue, while the epidermal thickness remained unchanged. The vegetative parameters studied were affected only by high levels of UV-B (16 kJ m-2 d-1), whereas the reproductive parameters were reduced at both ambient (8 kJ m-2 d-1) and high UV-B levels. The study shows that cotton plants are sensitive to UV-B at both the whole plant and anatomical level.  相似文献   

5.
Light is emerging as a central regulator of plant immune responses against herbivores and pathogens. Solar UV-B radiation plays an important role as a positive modulator of plant defense. However, since UV-B photons can interact with a wide spectrum of molecular targets in plant tissues, the mechanisms that mediate their effects on plant defense have remained elusive. Here, we show that ecologically meaningful doses of UV-B radiation increase Arabidopsis resistance to the necrotrophic fungus Botrytis cinerea and that this effect is mediated by the photoreceptor UVR8. The UV-B effect on plant resistance was conserved in mutants impaired in jasmonate (JA) signaling (jar1-1 and P35S:JAZ10.4) or metabolism of tryptophan-derived defense compounds (pen2-1, pad3-1, pen2 pad3), suggesting that neither regulation of the JA pathway nor changes in levels of indolic glucosinolates (iGS) or camalexin are involved in this response. UV-B radiation, acting through UVR8, increased the levels of flavonoids and sinapates in leaf tissue. The UV-B effect on pathogen resistance was still detectable in tt4-1, a mutant deficient in chalcone synthase and therefore impaired in the synthesis of flavonoids, but was absent in fah1-7, a mutant deficient in ferulic acid 5-hydroxylase, which is essential for sinapate biosynthesis. Collectively, these results indicate that UVR8 plays an important role in mediating the effects of UV-B radiation on pathogen resistance by controlling the expression of the sinapate biosynthetic pathway.  相似文献   

6.
Gaberščik  Alenka  Novak  Mateja  Trošt  Tadeja  Mazej  Zdenka  Germ  Mateja  Björn  Lars-Olof 《Plant Ecology》2001,154(1-2):49-56
Pulmonaria officinalis is an understorey spring geophyte, which starts its vegetative period before full foliation of the tree storey. During its early growth phase it is exposed to full solar radiation, therefore the enhanced UV-B radiation could present a threat to this species. An outdoor experiment in which potted plants were exposed to below ambient, ambient, and above ambient (corresponding to 17% ozone reduction) UV-B radiation, was conducted in order to evaluate the radiation effects. The amount of photosynthetic pigments and photochemical efficiency of PSII were not affected, but the amount of UV-B absorbing compounds was lower in plants grown under reduced UV-B. This change was measurable after only fourteen days in reproductive shoots, while in the vegetative shoots, it was not detectable until after three months. The leaves of P. officinalis are variegated and the light green spots became less transparent to PAR under enhanced UV-B. The results reveal that under simulated 17% ozone depletion the harmful effects of UV-B on the measured parameters were negligible.  相似文献   

7.
An application of stable carbon isotope analysis to the mechanistic interpretation of ultraviolet-B (UV-B) effects on growth inhibition is described that is particularly useful for small plants such as Arabidopsis thaliana that are not well suited for gas exchange studies. Many investigators use tissue δ13C, relative abundance of 13C and 12C, as a proxy for water use efficiency and as an indicator of environmental effects on stomatal behaviour and on photosynthesis during growth. Discrimination against 13C is enhanced by both high stomatal conductance and damage to photosynthetic machinery. Because the thinning of the stratospheric ozone layer is permitting more UV-B to enter the biosphere, the mechanisms of action of UV-B radiation on plants are of particular current interest. Arabidopsis thaliana wild-type Landsberg erecta (L er ) and the UV-B-sensitive mutant fah I , deficient in UV-absorbing sinapate esters, were grown in a controlled environment and exposed to UV-BBE doses of 0 or 6–7 kJ m−2 day−1. UV-B exposure decreased dry matter production and δ13C in both genotypes, but growth inhibition was generally greater in fah I than in L er . The fah I mutant also had less leaf greenness than L er . Changes in leaf tissue δ13C were detected before growth inhibition and were evident in treatments of both genotypes that did not cause marked growth effects. This suggests that the effects of UV-B contributing to increased carbon isotope discrimination in L er may have been primarily associated with high stomatal conductance, and in fah I with both high stomatal conductance and damage to photosynthetic machinery.  相似文献   

8.
Soybean (Glycine max [L.] Merr. cv. Essex) was grown in an unshaded greenhouse under three levels of biologically effective ultraviolet-B (UV-BBE) radiation (effective daily dose: 0, 11.5 and 13.6 kJ m–2) for 91 days. Plants were harvested at regular intervals beginning 10 days after germination until reproductive maturity. Mathematical growth analysis revealed that the effects of UV-B radiation varied with plant growth stage. The transition period between vegetative and reproductive growth was the most sensitive to UV-B radiation. Intermediate levels of UV-B had deleterious effects on plant height, leaf area, and total plant dry weight at late vegetative and reproductive stages of development. Specific leaf weight increased during vegetative growth but was unaffected by UV-B during reproductive growth stages. Relative growth, net assimilation, and stem elongation rates were decreased by UV-B radiation during vegetative and early reproductive growth stages. Variation in plant responses may be due in part to changes in microclimate within the plant canopy or to differences in repair or protection mechanisms at differing developmental stages.  相似文献   

9.
In a greenhouse experiment effects have been studied the UV-B-irradiation of barley (intensity of biologically active UV-B-radiation was 0.15, 0.29 and 0.45 W/m2) on the morphophysiologic parameters, productivity and reproductive sphere of offsprings of two succeeding generations. It has been shown that along with a decrease in the specific leaf mass and biomass M1-generation plants exhibited an increase in the stem height and assimilative leaf area. The reduction of grain yield in offsprings of the first post-radiation generation was mainly caused by the reduced size in the reproductive organs and by reduced number of caryopsides in a ear. The observed effects were independent of the UV-B exposure levels to the precursors. The aftereffect of UV-B-irradiation for M2-generation plants shown itself as changes in the specific leaf area, less pronounced compared to the precursors, and reduction in the vegetative mass and grain yield, most significant in offsprings of plants exposed to the maximum UV-B levels. Disturbances in the reproductive sphere appeared as reduction in the size of developing grains. The data derived suggest that long-term effects of UV-B-irradiation are possible not only in the first but also in the second generation of impacted plants.  相似文献   

10.
McCloud  Eric S.  Berenbaum  May R. 《Plant Ecology》2000,146(1):61-66
Narrow-leaved plantain (Plantago lanceolata L.), a perennial forb, flowers for virtually the full length of the growing season in temperate latitudes and as a result it is exposed to widely variable intensities of shortwave (UV-B) radiation. In order to determine effects of spring and summer levels of UV-B exposure on growth and development, representatives of 42 maternal families were grown for 85 days at 3.2 and 6.4 kJ m–2 day–1 BE300, levels corresponding to early spring and mid-summer in central Illinois. Impacts on early vegetative stages were most pronounced; early vegetative growth was decreased by higher levels of UV-B and both leaf angle (a measure of erectness) and leaf hair density were increased. At harvest, vegetative growth was significantly affected by higher levels of UV-B as well; the mass of senescent leaves and crown tissue were both decreased. Although exposure to higher levels of UV-B decreased inflorescence number by nearly 15%, it did not significantly alter reproductive biomass. Significant variation attributable to maternal families was present in nearly all measurements and the range of variation among families was wider than among UV-B treatments. A marginally significant (p=0.07) maternal family by UV-B interaction was found for the number of inflorescences, suggesting that, within populations of this plant, some small amount of genetic variation exists to allow for differential reproductive performance under a regime simulating spring and summer differences in UV-B exposure. For the most part, however, in this cosmopolitan species the level of adaptation to natural levels of variation in UV-B radiation does not differ dramatically among maternal families.  相似文献   

11.
We studied the contents of flavonols (kaempferol and quercetin) in the meristem of vegetative and generative apices of the main plant shoot in floral Papaver somniferum mutants, as well as in the normal plants at successive stages of flower development. Five stages of flower development were distinguished. Flavonols (kaempferol and quercetin) were present in all flower organs at all stages of floral morphogenesis we studied. However, their contents and distribution in different organs and at different stages of flower development markedly varied. No significant differences were found in the contents of flavonols in the meristems of vegetative and generative apices of the main shoot in the lines of floral mutants, as well as between the lines with different amounts of vegetative phytomeres. In the plants with normal flower structure, the contents of flavonols (kaempferol + quercetin) sharply increased with the beginning of differentiation of flower organs, i.e. from stage 3, to reach a maximum in the open flower, when gametogenesis is terminated and fertilization takes place. The level of flavonol contents in the petals (upper part) and stamen was at a maximum at all stages of flower development, while that in the gynaecium was at a minimum. The kaempferol: quercetin ratio shifted towards quercetin at successive stages of flower development, most significantly in the stamens. The involvement of flavonols in the regulation of floral morphogenesis at stages of flower organs differentiation and functioning is discussed.  相似文献   

12.
13.
Eggs of dab (Limanda limanda) and plaice (Pleuronectes platessa) were experimentally exposed to ultraviolet-B (UV-B) radiation in a solar radiation simulator. The experimental design tried to simulate present and future conditions with reference to increased UV-B exposure due to northern hemisphere ozone loss, employing mainly two scenarios, a reduction to 270 (S1) and to 180 (S2) Dobson units (DU) in single or repetitive exposures of 2, 4 or 6 h. Depending on the total dose of UV-B irradiation and the developmental stage, exposed eggs displayed loss of buoyancy as a sublethal effect, as well as increased embryo mortality and reduced viable hatch. In the single exposure experiments only under conditions of 180 DU for 6 h were effects apparent. Double exposure under conditions of 270 DU did not lead to lasting effects. At the sublethal effect level, i.e. loss of buoyancy, considerable photorepair was observed. It was concluded, that under the present general weather conditions in spring and at the present levels of environmental ozone, allowing for a reduction to 180 DU, the embryonic development of North Sea spring spawning fish is not endangered by UV-B radiation. Received in revised form: 19 June 2000 Electronic Publication  相似文献   

14.
Nutrient use-efficiency (NUE) is commonly measured in relation to vegetative growth without regard for economic productivity of crops whose valued product is reproductive. Although vegetative measures can be useful, particularly in forage crops, their validity in the quantification of NUE in grain crops is questionable. This study was undertaken primarily to examine the relationship between vegetative and economic potassium use-efficiency (KUE) in several wheat (T. aestivum) genotypes under conditions of potassium stress. Genotype environment interaction for vegetative KUE was also examined. Vegetative KUE was assessed as shoot fresh weight, efficiency ratio (VKER) and utilization index (VKUI) whereas economic KUE was evaluated as grain weight, total weight and economic efficiency ratio (EKER). Significant genotype-environment interactions for shoot weight, VKER and VKUI were observed. In some instances interaction was associated with crossovers between genotypes indicating that it can affect selection. Correlations between vegetative and economic measures of KUE were generally nonsignificant, but negative and significant for shoot weight of three-week-old plants and grain weight. It appears that if genotypes differ considerably for harvest index and it is not positively correlated with total biomass, vegetative measures of KUE are unreliable as indicators of economic KUE. Therefore, economic rather than vegetative measures should be used to evaluate KUE in crops whose valued product is reproductive. ei]{gnH}{fnMarschner} ei]{gnH.}{fnLambers}  相似文献   

15.
Two Chinese cultivars of Glycine max, namely Heidou and Jindou, were exposed to ambient and supplemental levels of ultraviolet-B (UV-B) radiation simulating a 24% depletion in stratospheric ozone over a 9-week growing period at an outdoor experimental site. Enhanced UV-B irradiation significantly reduced leaf, stem and root biomass, and plant height in the Heidou cultivar. These changes were associated with a diminished photosynthetic (net CO2) rate, stomatal conductance, transpiration rate and water use efficiency, and accompanied by decreased foliar chlorophyll a and b, and total carotenoid concentrations and elevated foliar flavonoid levels. In contrast, the Jindou cultivar displayed only a significantly reduced stem mass and stomatal conductance, but no changes in pigment composition under elevated UV-B. The greater tolerance of elevated UV-B exposures by the Jindou cultivar was attributed partly to its higher foliar flavonoid content, smaller leaf size, thicker leaf cuticle and scabrous (hairy) lamina. Nevertheless both the Heidou cultivar and the less UV-B sensitive Jindou cultivar displayed an altered carbon isotope composition (δ13C) in their tissues following exposure to elevated UV-B. Such carbon isotope composition changes in plant tissues suggested a means of early detection of photosynthetic disruption in plants with anticipated increase in UV-B due to stratospheric ozone depletion.  相似文献   

16.
Irradiation with artificial quasi-solar light was used to investigate lethal and sublethal effects of enhanced ultraviolet-B (UV-B) radiation on eggs, larval and juvenile stages of North Sea plaice. The irradiation experiments resembled a worst-case scenario with a synchronous occurrence of ozone depletion, sunny weather, and low water turbulence. In eggs, UV-B exposure increased mortality and induced loss of positive buoyancy. UV-B exposures for 1 or 2 days, according to the weather conditions in spring, impaired eggs only if UV-B intensities and doses exceeded those under a further 60% ozone loss. In larvae and juveniles, long-term UV-B exposures during and after metamorphosis affected ventilation rate at normoxia and ventilatory regulation during hypoxic incubations. Oxygen consumption rates of juveniles were not affected by UV-B irradiation. Received in revised form: 20 April 2000 Electronic Publication  相似文献   

17.
We studied the contents of flavonols (kaempferol and quercetin) in the meristem of vegetative and generative apices of the main plant shoot in floral Papaver somniferum L. mutants, as well as in the normal plants at successive stages of flower development. Five stages of flower development were distinguished. Flavonols (kaempferol and quercetin) were present in all flower organs at all stages of floral morphogenesis we studied. However, their contents and distribution in different organs and at different stages of flower development markedly varied. No significant differences were found in the contents of flavonols in the meristems of vegetative and generative apices of the main shoot in the lines of floral mutants, as well as between the lines with different amounts of vegetative phytomeres. In the plants with normal flower structure, the contents of flavonols (kaempferol + quercetin) sharply increased with the beginning of differentiation of flower organs, i.e. from stage 3, to reach a maximum in the open flower, when gametogenesis is terminated and fertilization takes place. The level of flavonol contents in the petals (upper part) and stamen was at a maximum at all stages of flower development, while that in the gynaecium was at a minimum. The kaempferol : quercetin ratio was shifted towards quercetin at successive stages of flower development, most significantly in the stamens. The involvement of flavonols in the regulation of floral morphogenesis at stages of flower organs differentiation and functioning is discussed.  相似文献   

18.
Seeds from four plant pairs collected from contrasting elevations in Hawaii were grown in greenhouses at the University of Maryland at UV-B radiation levels that approximated a 20% and 40% stratospheric ozone depletion anticipated at sea level in Maui. In general, increases in UV-B radiation resulted in earlier reproductive effort, increased dark respiration and maintenance of relative water content (RWC), photosynthesis, and apparent quantum efficiency (AQE) in plants from higher elevations where natural UV-B radiation is already high. In contrast, plants collected from low elevational ranges showed a significant decline in average plant and floral dry biomass, a decline in AQE and RWC, and a reduction in light-saturated photosynthetic capacity. Increases in UV-B-absorbing compounds (e.g., flavonoids), were noted for low elevation but not high elevation plants. However, plants from high elevations produced a consistently larger amount of these compounds even in the absence of UV-B radiation. This study suggests that plants growing in a naturally high UV-B environment may have developed or maintained mechanisms related to reproductive phenology and carbon uptake which may maintain productivity in a high UV-B environment. This would also suggest that ecotypic differentiation may have occurred in response to increasing UV-B radiation over an elevational gradient. The range of adaptability to increased UV-B also implies changes in species and community dynamics that might be anticipated in natural plant populations if stratospheric ozone depletion continues.  相似文献   

19.
Aims Abiotic stresses may interact with each other to determine impacts on plants so that their combined impact is less than or more than additive. Increasing UV-B radiation and surface ozone (O 3) are two major components of global change that may have such interactive impacts. Moreover, invasive and native populations of plants may respond differently to stresses as they can vary in primary and secondary metabolism.Methods Here, we conducted a factorial field experiment with open-top chambers assigned to an ozone treatment (ambient, 100 ppb, or 150 ppb) and UV-B treatment (ambient or increased 20%). We grew seedlings of native and invasive populations of Triadica sebifera in these chambers for one growing season.Important findings Invasive plants grew faster than native plants in ambient UV-B but they did not differ significantly in elevated UV-B. Litter production of invasive plants was especially sensitive to UV-B in a way that increased with UV-B for native plants but decreased for invasive plants which may be important for nutrient cycling. In ambient UV-B, total mass decreased as ozone increased. Total mass was lower with elevated UV-B but there was no additional impact of increasing ozone. Leaf area did not decrease with UV-B so SLA and LAR were lowest at ambient ozone levels. These results suggest that the effects of ozone will depend on UV-B conditions perhaps due to changes in foliar traits. The traits that allow invasive populations of plants to be successful invaders may make them especially sensitive to UV-B which may reduce their success in future climatic conditions.  相似文献   

20.
UV-B辐射对植物花粉萌发率和花粉管生长的累积效应   总被引:3,自引:1,他引:2  
研究了19种植物花粉在不同UV-B辐射强度和辐照时间下其萌发率和花粉管伸长的变化,结果表明,UV-B辐射增加显著抑制大多数植物花粉的萌发率和花粉管生长;与对照相比,较高强度的UV-B对花粉的抑制作用大于较低强度;几个种的花粉萌发率及花粉管生长对UV-B增强不敏感,甚至被UV-B辐射所促进;辐射时间越长,对花粉抑制作用愈大,说明具有辐射累积效应,由此可知,植物花粉的萌发过程对UV-B的敏感性变化在自然条件下将会产生严重的生态学后果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号