首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth of the filamentous fungus Aspergillus niger, a common food spoilage organism, is inhibited by the weak acid preservative sorbic acid (trans-trans-2,4-hexadienoic acid). Conidia inoculated at 105/ml of medium showed a sorbic acid MIC of 4.5 mM at pH 4.0, whereas the MIC for the amount of mycelia at 24 h developed from the same spore inoculum was threefold lower. The MIC for conidia and, to a lesser extent, mycelia was shown to be dependent on the inoculum size. A. niger is capable of degrading sorbic acid, and this ability has consequences for food preservation strategies. The mechanism of action of sorbic acid was investigated using 31P nuclear magnetic resonance (NMR) spectroscopy. We show that a rapid decline in cytosolic pH (pHcyt) by more than 1 pH unit and a depression of vacuolar pH (pHvac) in A. niger occurs in the presence of sorbic acid. The pH gradient over the vacuole completely collapsed as a result of the decline in pHcyt. NMR spectra also revealed that sorbic acid (3.0 mM at pH 4.0) caused intracellular ATP pools and levels of sugar-phosphomonoesters and -phosphodiesters of A. niger mycelia to decrease dramatically, and they did not recover. The disruption of pH homeostasis by sorbic acid at concentrations below the MIC could account for the delay in spore germination and retardation of the onset of subsequent mycelial growth.  相似文献   

2.
Resistance to sorbic and cinnamic acids is mediated by a phenylacrylic acid decarboxylase (PadA1) in Aspergillus niger. A. niger ΔpadA1 mutants are unable to decarboxylate sorbic and cinnamic acids, and the MIC of sorbic acid required to inhibit spore germination was reduced by ~50% in ΔpadA1 mutants.  相似文献   

3.
The variations observed during earlier studies in the activity of NADP+-isocitrate dehydrogenase (EC. 1.1.1.42) in a strain of Aspergillus niger were found to be related to the extent of washing of mycelium. As a result the mycelium washed four times with phosphate buffer (0.05 M, pH 7.5), the enzyme activity present in 4 and 8 days old fungal mycelia increased five- and two-fold, respectively. In vivo studies showed a complete loss of enzyme activity in mycelia resuspended in HCl-KCl buffer (0.02 M, pH 2.2) containing citric acid (13 mM or more). The in vitro studies revealed 50% loss of enzyme activity in presence of 3.6 to 5.2 mM citric acid. However, in case of Aspergillus niger ATCC 1015, which produced less citric acid than the above strain, a much higher citric acid concentration (13 to 26 mM) was required to cause 50% loss of enzyme activity. These findings suggest a correlation between citric acid inhibition of NADP+-isocitrate dehydrogenase and the ability of A. niger to accumulate citric acid in the medium.  相似文献   

4.
Intracellular pH homeostasis in the filamentous fungus Aspergillus niger was measured in real time by 31P NMR during perfusion in the NMR tube of fungal biomass immobilized in Ca2+-alginate beads. The fungus maintained constant cytoplasmic pH (pH(cyt)) and vacuolar pH (pH(vac)) values of 7.6 and 6.2, respectively, when the extracellular pH (pH(ex)) was varied between 1.5 and 7.0 in the presence of citrate. Intracellular metabolism did not collapse until a Delta pH over the cytoplasmic membrane of 6.6-6.7 was reached (pH(ex) 0.7-0.8). Maintenance of these large pH differences was possible without increased respiration compared to pH(ex) 5.8. Perfusion in the presence of various hexoses and pentoses (pH(ex) 5.8) revealed that the magnitude of Delta pH values over the cytoplasmic and vacuolar membrane could be linked to the carbon catabolite repressing properties of the carbon source. Also, larger Delta pH values coincided with a higher degree of respiration and increased accumulation of polyphosphate. Addition of protonophore (carbonyl cyanide m-chlorophenylhydrazone, CCCP) to the perfusion buffer led to decreased ATP levels, increased respiration and a partial (1 microm CCCP), transient (2 microm CCCP) or permanent (10 microm CCCP) collapse of the vacuolar membrane Delta pH. Nonlethal levels of the metabolic inhibitor azide (N3-, 0.1 mm) caused a transient decrease in pH(cyt) that was closely paralleled by a transient vacuolar acidification. Vacuolar H+ influx in response to cytoplasmic acidification, also observed during extreme medium acidification, indicates a role in pH homeostasis for this organelle. Finally, 31P NMR spectra of citric acid producing A. niger mycelium showed that despite a combination of low pH(ex) (1.8) and a high acid-secreting capacity, pH(cyt) and pH(vac) values were still well maintained (pH 7.5 and 6.4, respectively).  相似文献   

5.
Aspergillus niger ORS-4, isolated from the sugarcane industry waste materials was found to produce notable level of gluconic acid. From this strain, a mutant Aspergillus niger ORS-4.410 having remarkable increase in gluconic acid production was isolated and compared for fermentation properties. Among the various substrates used, glucose resulted into maximum production of gluconic acid (78.04 g/L). 12% concentration led to maximum production. Effect of spore age and inoculum level on fermentation indicated an inoculum level of 2% of the 4-7 days old spores were best suited for gluconic acid production. Maximum gluconate production could be achieved after 10-12 days of the fermentation at 30 degrees C and at a pH of 5.5. Kinetic analysis of production indicated that growth of the mutant was favoured during initial stages of the fermentation (4-8 days) and production increased during the subsequent 8-12 days of the fermentation. CaCO3 and varying concentrations of different nutrients affected the production of gluconic acid. Analysis of variance for the factors evaluated the significant difference in the production levels.  相似文献   

6.
The objective of this study was to investigate the occurrence of sublethal injury after the pulsed-electric-field (PEF) treatment of two yeasts, Dekkera bruxellensis and Saccharomyces cerevisiae, as well as the relation of sublethal injury to the inactivating effect of the combination of PEF and sorbic acid. PEF caused sublethal injury in both yeasts: more than 90% of surviving D. bruxellensis cells and 99% of surviving S. cerevisiae cells were sublethally injured after 50 pulses at 12 kV/cm in buffer at pHs of both 7.0 and 4.0. The proportion of sublethally injured cells reached a maximum after 50 pulses at 12.0 kV/cm (S. cerevisiae) or 16.5 kV/cm (D. bruxellensis), and it kept constant or progressively decreased at greater electric field strengths and with longer PEF treatments. Sublethally PEF-injured cells showed sensitivity to the presence of sorbic acid at a concentration of 2,000 ppm. A synergistic inactivating effect of the combination of PEF and sorbic acid was observed. Survivors of the PEF treatment were progressively inactivated in the presence of 2,000 ppm of sorbic acid at pH 3.8, with the combined treatments achieving more than log10 5 cycles of dead cells under the conditions investigated. This study has demonstrated the occurrence of sublethal injury after exposure to PEF, so yeast inactivation by PEF is not an all-or-nothing event. The combination of PEF and sorbic acid has proven to be an effective method to achieve a higher level of yeast inactivation. This work contributes to the knowledge of the mechanism of microbial inactivation by PEF, and it may be useful for improving food preservation by PEF technology.  相似文献   

7.
Sorbic hydroxamic acid was prepared from sorbic acid by esterification and treatment with hydroxylamine (mp 133 to 135 C, pK(a) 8.8). Its ultraviolet spectrum in acid solution had a single absorption maximum at 262 mmu; in alkaline solution the maximal absorption shifted to 255 mmu and significant absorption appeared at 280 to 300 mmu. At concentrations of 0.1% (w/v), sorbic hydroxamic acid prevented the growth of Aspergillus niger, Penicillium notatum, Botrytis cinerea, Cladosporium herbarum, and a Rhizopus species in grape juice over the pH range 3.6 to 9.2, although sorbic acid was not effective at pH 5.7 and above.  相似文献   

8.
Aims: To facilitate a cost‐effective preparation of spore inoculum with good capacity for gamma‐linolenic acid (GLA) production from Mucor rouxii. Methods and Results: Sporangiospore production, mycelial growth ability and fatty acid composition of M. rouxii were determined. Compared with fungal cultivation on solid semi‐synthetic media, high spore production was achieved from M. rouxii grown on rice grains, particularly polished rice (30·7 g kg?1 initial substrate). Variations in the fatty acid profiles were found in the spores grown on different types of solid media, whereas the spores obtained at different ages from cultivated polished rice showed a similar fatty acid profile. Using the inocula from different spore‐forming media and culture ages, and low temperature storage, not much change in the vegetative growth of submerged cultures or fatty acid composition of mycelia was observed. Conclusion: The spores generated on polished rice exhibited a high performance for GLA production. Age of spore and timing of spore storage at low temperature did not affect on fatty acid profile of the mycelial cultures. Significance and Impact of the Study: The simple, low cost method of inoculum preparation can be applied for large‐scale production of GLA‐rich oils, which reduce a time constraint and variation in fatty acid composition.  相似文献   

9.
The effect of acetic and trans-aconitic acids on citric acid production by A. niger at different pH values was studied. The presence of acetic acid at pH 2 prevented spore germination, while it decreased the fungal growth and citric acid production at other pH values. In the presence of trans-aconitic acid the inhibition was less marked at lower than at higher pH values.  相似文献   

10.
The acid phosphate activity (APA) associated with the isolated brush border membrane of the tapeworm, Hymenolepis diminuta, hydrolyzed p-nitrophenyl phosphate (PNPP), pyrophosphate (PPi), and beta-glycerophosphate (beta GP). Inhibition of PNPP hydrolysis at pH 4.0 was inhibited in a competitive manner by the following compounds (listed in order of decreasing affinity with their apparent inhibitor constants (Ki')): molybdate (0.031 mM); PPi (0.147 mM); NaF (0.150 mM); o-carboxyphenyl phosphate (0.261 mM); inorganic phosphate (0.770)); arsenate (3.45 mM); tartrate (22.1 mM); and beta GP (29.8 mM). Cu2+, formaldehyde, and arsenite at 10:1, 80:1, and 200:1 inhibitor to substrate ratios did not inhibit APA. The maximal rate of hydrolysis (Vmax) of each substrate was greater at pH 4.0 than 5.0. The apparent Michaelis constant (Km') for PNPP increased from 0.233 to 0.351 mM when the pH was raised from 4.0 to 5.0. The Km' for PPi decreased from 0.101 to 0.046 mM, while the Km' for beta GP changed from 2.04 to 2.22 mM under similar circumstances. APA and alkaline phosphatase activity increased as a function of temperature up to 45 degrees C.  相似文献   

11.
AIMS: Analysis of regulators for modulated gluconic acid production under surface fermentation (SF) condition using grape must as the cheap carbohydrate source, by mutant Aspergillus niger ORS-4.410. Replacement of conventional fermentation condition by solid-state surface fermentation (SSF) for semi-continuous production of gluconic acid by pseudo-immobilization of A. niger ORS-4.410. METHODS AND RESULTS: Grape must after rectification was utilized for gluconic acid production in batch fermentation in SF and SSF processes using mutant strain of A. niger ORS-4.410. Use of rectified grape must led to the improved levels of gluconic acid production (80-85 g l(-1)) in the fermentation medium containing 0.075% (NH4)2HPO4; 0.1% KH2PO4 and 0.015% MgSO4.7H2O at an initial pH 6.6 (+/-0.1) under surface fermentation. Gluconic acid production was modulated by incorporating the 2% soybean oil, 2% starch and 1% H2O2 in fermentation medium at continuously high aeration rate (2.0 l min(-1)). Interestingly, 95.8% yield of gluconic acid was obtained when A. niger ORS-4.410 was pseudo-immobilized on cellulose fibres (bagasse) under SSF. Four consecutive fermentation cycles were achieved with a conversion rate of 0.752-0.804 g g(-1) of substrate into gluconic acid under SSF. CONCLUSIONS: Use of additives modulated the gluconic acid production under SF condition. Semi-continuous production of gluconic acid was achieved with pseudo-immobilized mycelia of A. niger ORS-4.410 having a promising yield (95.8%) under SSF condition. SIGNIFICANCE AND IMPACT OF THE STUDY: The bioconversion of grape must into modulated gluconic acid production under SSF conditions can further be employed in fermentation industries by replacing the conventional carbohydrate sources and expensive, energy consuming fermentation processes.  相似文献   

12.
Membrane association of cytochrome c (cyt c) was monitored by the efficiency of resonance energy transfer from a pyrene-fatty acid containing phospholipid derivative (1-palmitoyl-2[6-(pyren-1-yl)]hexanoyl-sn-glycero-3-phosphocholine (PPHPC)) to the heme of cyt c. Liposomes consisted of 85 mol% egg phosphatidylcholine (egg PC), 10 mol% cardiolipin, and 5 mol% PPHPC. Cardiolipin was necessary for the membrane binding of cyt c over the pH range studied, from 4 to 7. In accordance with the electrostatic nature of the membrane association of cyt c at neutral pH both 2 mM MgCl2 and 80 mM NaCl dissociated cyt c from the vesicles completely. At neutral pH also adenine nucleotides in millimolar concentrations were able to displace cyt c from liposomes, their efficiency decreasing in the sequence ATP > ADP > AMP. In addition, both CTP and GTP were equally effective as ATP. The detachment of cyt c from liposomes by nucleotides is likely to result from a competition between cardiolipin and the nucleotides for a common binding site in cyt c. When pH was decreased to 4 there was a small yet significant increase in the apparent affinity of cyt c to cardiolipin containing liposomes. Notably, at pH 4 the above nucleotides as well as NaCl and MgCl2 were no longer able to dissociate cyt c and, on the contrary, they slightly enhanced the quenching of pyrene fluorescence by cyt c. The above results do suggest that the membrane association of cyt c at acidic pH was non-ionic and presumably due to hydrogen bonding. The pH-dependent binding of cyt c to membranes was fully reversible. Accordingly, in the presence of sufficient concentrations of either nucleotides or salts rapid detachment and membrane association of cyt c could be induced by varying pH between neutral and acidic values, respectively.  相似文献   

13.
宋毅  李松  王正祥 《生物技术》2009,19(6):69-72
目的:缩短糖化酶工业生产菌株黑曲霉A.nigerCICIM GB0506的种子制备周期。方法:对该菌的活化培养基配方及种子制备方式进行改良,并通过L9(3^4)正交试验对其液体培养方法进行优化。结果:在固体活化培养基中添加0.2%的酵母粉及1%的玉米淀粉,有利于加速菌体生长;加入40粒,粒径3-4mm的玻璃珠130r/min,摇床培养可以获得更为分散、均一的种子液;液体种子制备的较优条件为初始pH4.5,装液量90mL,琼脂加量0.1%,培养天数5d。结论:新的制备工艺使糖化酶种子制备时间较现在工业生产上使用的工艺缩短了4d,进行后续糖化酶摇瓶发酵产酶水平是原工艺的1.18倍。  相似文献   

14.
Samples of (i) a control or of (ii) sodium nitrite-containing or (iii) sorbic acid-containing, mechanically deboned chicken meat frankfurter-type emulsions inoculated with Clostridium botulinum spores, or a combination of ii and iii, were temperature abuse at 27 degrees C. Spore germination and total microbial growth were followed and examined at specified times and until toxic samples were detected. The spores germinated within 3 days in both control and nitrite (20, 40 and 156 micrograms/g) treatments. Sorbic acid (0.2%) alone or in combination with nitrite (20, 40, and 156 micrograms/g) significantly (P less than 0.05) inhibited spore germinations. No significant germination was recorded until toxic samples were detected. A much longer incubation period was necessary for toxin to be formed in nitrite-sorbic acid combination treatments as contrasted with controls or nitrite and sorbic acid used individually. Total growth was not affected by the presence of nitrite, whereas sorbic acid appeared to depress it. Possible mechanisms explaining the effects of nitrite and sorbic acid on spore germination and growth are postulated.  相似文献   

15.
In strictly anaerobic conditions in a culture medium adjusted to pH 5.2 with HCl and incubated at 30 degrees C, inocula containing less than 10 vegetative bacteria of Clostridium botulinum ZK3 (type A) multiplied to give greater than 10(8) bacteria per ml in 3 d. Growth from an inoculum of between 10 and 100 spores occurred after a delay of 10-20 weeks. Citric acid concentrations of 10-50 mmol/l at pH 5.2 inhibited growth from both vegetative bacteria and spore inocula, a concentration of 50 mmol/l increasing the number of vegetative bacteria or of spores required to produce growth by a factor of approximately 10(6). The citric acid also reduced the concentration of free Ca2+ in the medium. The inhibitory effect of citric acid on vegetative bacteria at pH 5.2 could be prevented by the addition of Ca2+ or Mg2+ and greatly reduced by Fe2+ and Mn2+. The addition of Ca2+, but not of the remaining divalent metal ions, restored the concentration of free Ca2+ in the medium to that in the citrate-free medium. The inhibitory effect of citric acid on growth from a spore inoculum was only partially prevented by Ca2+. Citric acid (50 mmol/l) did not inhibit growth of strain ZK3 at pH 6 despite the greater chelating activity of citrate at pH 6 than at pH 5.2. The effect of citric acid and Ca2+ at pH 5.2 on vegetative bacteria of strains VL1 (type A) and 2346 and B6 (proteolytic type B) was similar to that on strain ZK3.  相似文献   

16.
Samples of (i) a control or of (ii) sodium nitrite-containing or (iii) sorbic acid-containing, mechanically deboned chicken meat frankfurter-type emulsions inoculated with Clostridium botulinum spores, or a combination of ii and iii, were temperature abuse at 27 degrees C. Spore germination and total microbial growth were followed and examined at specified times and until toxic samples were detected. The spores germinated within 3 days in both control and nitrite (20, 40 and 156 micrograms/g) treatments. Sorbic acid (0.2%) alone or in combination with nitrite (20, 40, and 156 micrograms/g) significantly (P less than 0.05) inhibited spore germinations. No significant germination was recorded until toxic samples were detected. A much longer incubation period was necessary for toxin to be formed in nitrite-sorbic acid combination treatments as contrasted with controls or nitrite and sorbic acid used individually. Total growth was not affected by the presence of nitrite, whereas sorbic acid appeared to depress it. Possible mechanisms explaining the effects of nitrite and sorbic acid on spore germination and growth are postulated.  相似文献   

17.
Zygosaccharomyces lentus is a yeast species recently identified from its physiology and 18S ribosomal sequencing (Steels et al. 1999).The physiological characteristics of five strains of this new yeast so far isolated were investigated, particularly those of technical significance for a spoilage yeast, namely temperature range, pH range, osmotolerance, sugar fermentation, resistance to food preservatives such as sorbic acid, benzoic acid and dimethyldicarbonate (DMDC; Velcorin). Adaptation to benzoic acid, and growth in shaking and static culture were also investigated. Zygosaccharomyces lentus strains grew over a wide range of temperature (4-25 degrees C) and pH 2.2-7.0. Growth at 4 degrees C was significant. Zygosaccharomyces lentus strains grew at 25-26 degrees C in static culture but were unable to grow in aerobic culture close to their temperature maximum. All Z. lentus strains grew in 60% w/v sugar and consequently, are osmotolerant. Zygosaccharomyces lentus strains could utilize sucrose, glucose or fructose as a source of fermentable sugar, but not galactose. Zygosaccharomyces lentus strains were resistant to food preservatives, growing in sorbic acid up to 400 mg l-1 and benzoic acid to 900 mg l-1 at pH 4.0. Adaptation to higher preservative concentrations was demonstrated with benzoic acid. Resistance to DMDC was shown to be greater than that of Z. bailii and Saccharomyces cerevisiae. This study confirms that Z. lentus is an important food spoilage organism potentially capable of growth in a wide range of food products, particularly low pH, high sugar foods and drinks. It is likely to be more significant than Z. bailii in the spoilage of chilled products.  相似文献   

18.
Exposure of Saccharomyces cerevisiae to sorbic acid strongly induces two plasma membrane proteins, one of which is identified in this study as the ATP-binding cassette (ABC) transporter Pdr12. In the absence of weak acid stress, yeast cells grown at pH 7.0 express extremely low Pdr12 levels. However, sorbate treatment causes a dramatic induction of Pdr12 in the plasma membrane. Pdr12 is essential for the adaptation of yeast to growth under weak acid stress, since Deltapdr12 mutants are hypersensitive at low pH to the food preservatives sorbic, benzoic and propionic acids, as well as high acetate levels. Moreover, active benzoate efflux is severely impaired in Deltapdr12 cells. Hence, Pdr12 confers weak acid resistance by mediating energy-dependent extrusion of water-soluble carboxylate anions. The normal physiological function of Pdr12 is perhaps to protect against the potential toxicity of weak organic acids secreted by competitor organisms, acids that will accumulate to inhibitory levels in cells at low pH. This is the first demonstration that regulated expression of a eukaryotic ABC transporter mediates weak organic acid resistance development, the cause of widespread food spoilage by yeasts. The data also have important biotechnological implications, as they suggest that the inhibition of this transporter could be a strategy for preventing food spoilage.  相似文献   

19.
4-thiatetradecanoic acid exhibited weak antifungal activities against Candida albicans (ATCC 60193), Cryptococcus neoformans (ATCC 66031), and Aspergillus niger (ATCC 16404) (MIC=4.8-12.7 mM). It has been demonstrated that alpha-methoxylation efficiently blocks beta-oxidation and significantly improve the antifungal activities of fatty acids. We examined whether antifungal activity of 4-thiatetradecanoic acid can be improved by alpha-substitution. The unprecedented (+/-)-2-hydroxy-4-thiatetradecanoic acid was synthesized in four steps (20% overall yield), while the (+/-)-2-methoxy-4-thiatetradecanoic acid was synthesized in five steps (14% overall yield) starting from 1-decanethiol. The key step in the synthesis was the hydrolysis of a trimethylsilyloxynitrile. In general, the novel (+/-)-2-methoxy-4-thiatetradecanoic acid displayed significantly higher antifungal activities against C. albicans (ATCC 60193), C. neoformans (ATCC 66031), and A. niger (ATCC 16404) (MIC=0.8-1.2 mM), when compared with 4-thiatetradecanoic acid. In the case of C. neoformans the (+/-)-2-hydroxy-4-thiatetradecanoic acid was more fungitoxic (MIC=0.17 mM) than the alpha-methoxylated analog, but not as effective against A. niger (MIC=5.5 mM). The enhanced fungitoxicity of the (+/-)-2-methoxy-4-thiatetradecanoic acid, as compared to decylthiopropionic acid, might be the result of a longer half-life in the cells due to a blocked beta-oxidation pathway which results in more time to exert its toxic effects. Thus, these novel fatty acids may have applications as probes to study fatty acid metabolic routes in human cells.  相似文献   

20.
The effect of three food preservatives, sorbic acid and methyl and butyl esters of p-hydroxybenzoic acid, on the protonmotive force in Escherichia coli membrane vesicles was investigated. Radioactive chemical probes were used to determine the two components of the protonmotive force: delta pH (pH difference) and delta psi (membrane potential). Both types of compound selectively eliminated delta pH across the membrane, while leaving delta psi much less disturbed indicating that transport inhibition by neutralization of the protonmotive force cannot be the only mechanism of action for the food preservatives tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号