首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Previously, it has been shown that the binding of epidermal growth factor (EGF) by a wide range of cells decreases as cell density increases. In this report, we demonstrate that KB cells treated chronically with phorbol esters continue to exhibit decreases in EGF receptor binding as cell density increases. This finding suggests that protein kinase-C may not be essential for density-induced down regulation of EGF receptors, since phorbol esters are known to down regulate protein kinase-C. We also report that short-term and long-term effects of phorbol esters on the binding of EGF are affected by density. As shown previously for several cell lines, the phorbol ester 12-0-tetradecanoylphorbol-13-acetate transiently reduces EGF binding. We now show that the magnitude of this reduction diminishes as cell density increases. In addition, we determined that long-term treatment of KB cells with phorbol ester increases EGF binding. Again, this effect is diminished at high cell densities. Finally, we report that the increases in EGF binding induced by long-term treatment with phorbol esters are due to increases in the number of EGF receptors.Abbreviations EGF epidermal growth factor - FGF fibroblast growth factor - PBS phosphate buffered saline - PDBu 4-phorbol-12,13-dibutyrate - PDGF platelet-derived growth factor - PK-C protein kinase-C - TGF- transforming growth factor- - TPA 12-0-tetradecanoylphorbol-13-acetate  相似文献   

2.
Platelet-derived growth factor (PDGF) increases the mitogenic activity of epidermal growth factor (EGF) in several cells lines, including BALB/C-3T3. PDGF-treated BALB/C-3T3 cells manifest a reduced capacity to bind 125I-labeled EGF due to a loss of high affinity EGF receptors. Cholera toxin potentiates the ability of PDGF to both decrease EGF binding and initiate mitogenesis. Whether PDGF increases EGF sensitivity via its effects on EGF receptors is not known and requires a more complete understanding of the mechanism by which PDGF decreases EGF binding. 12-O-tetradecanoylphorbol 13-acetate (TPA) also reduces EGF binding in BALB/C-3T3 and other cells, presumably by activating protein kinase C and, consequently, inducing the phosphorylation of EGF receptors at threonine-654. PDGF indirectly activates protein kinase C, and EGF receptors in PDGF-treated WI-38 cells are phosphorylated at threonine-654. Thus, the effects of PDGF on EGF binding may also be mediated by protein kinase C. We investigated this hypothesis by comparing the actions of PDGF and TPA on EGF binding in density-arrested BALB/C-3T3 cells. Both PDGF and TPA caused a rapid, transient, cycloheximide-independent loss of 125I-EGF binding capacity. The actions of both agents were potentiated by cholera toxin. However, whereas TPA allowed EGF binding to recover, PDGF induced a secondary and cycloheximide-dependent loss of binding capacity. Most importantly, PDGF effectively reduced binding in cells refractory to TPA and devoid of detectable protein kinase C activity. These findings indicate that PDGF decreases EGF binding by a mechanism that involves protein synthesis and is distinct from that of TPA.  相似文献   

3.
Summary Transforming growth factors (TGFs) are a relatively new category of factors that induce the anchorage-independent growth of non-transformed cells. These factors are usually detected by their ability to induce normal rat kidney (NRK) fibroblasts to grow in soft agar. Until now, this assay has been performed in serum-containing medium (SCM). Unfortunately, the background activity of this assay is variable and dependent on several factors, including passage number of the cells and the serum lot used. Furthermore, the addition of either EGF or TGF-β alone results in the appearance of additional colonies, which decreases the sensitivity of the assay. To circumvent these problems, serum-free media have been developed that support the growth of the NRK cells at low density in both monolayer culture and soft agar. Long-term growth in monolayer cultures occurs in serum-free medium supplemented with laminin, insulin, transferrin, epidermal growth factor (EGF), fibroblast growth factor (FGF) and high density lipoprotein (HDL). Growth in soft agar occurs when TGFs are added to a serum-free medium, AIG medium, that contains insulin, transferrin, FGF and HDL. In contrast to the background activity observed when the assay is performed in SCM, no colonies form in the AIG medium unless TGFs are added and few, if any, colonies form if EGF or TGF-β are added alone. Thus, the AIG medium provides an improved assay for TGFs. In addition, the AIG medium should prove useful for examining other factors, including serum factors, for TGF activity. Editor's Statement This communication describes a modification of the standard assay for transforming growth factors. The techniques employed make use of advantages provided by recent advances in serum-free cell culture to provide a well-defined detection system that is more sensitive than conventional procedures. Experimental approaches described in this article also should be helpful in unraveling differences in cellular behavior encountered under anchorage-dependent vs. anchorage-independent conditions. D. W. Barnes  相似文献   

4.
Summary Tumor necrosis factor-α (TNF) and various interferons (IFN) have potent cytostatic or cytotoxic effects on a variety of human tumor-derived cell lines. Their effects on normal cells are more controversial. We have examined the effects of TNF and IFN-β on the proliferation of WI-38 cells in a serum-free, growth factor-supplemented medium and in serum-containing medium. These cells respond to the combination of epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I), and dexamethasone by DNA synthesis at a rate and extent equivalent to serum-stimulated cells. TNF has no effect on this growth factor-stimulated proliferation. However, it is stimulatory in serum-containing medium. IFN-β inhibits DNA synthesis 60 to 70% in both young and senescent cells. TNF and IFN-β together have a synergistic effect and completely inhibit growth factor-stimulated DNA synthesis in young cells. No synergism was observed with senescent cells. TNF stimulated an increase in the number of EGF specific binding sites two- to threefold in 24 h in both young and senescent cells. This seems to result from a proportional increase in a very high affinity binding site. IFN-β has little or no effect on EGF binding either alone or in combination with TNF.  相似文献   

5.
Summary The stimulatory effects of transforming growth factor β (TGF-β) on epidermal growth factor (EGF)-dependent growth of adult and newborn human fibroblasts were investigated. EGF-stimulated growth in low serum of dermal fibroblasts from a 41 year-old adult (HSF-41) was less than half that of newborn foreskin fibroblasts (HFF). The EGF-stimulated growth of HFF after 55 population doublings (HFF-55) was similarly reduced. The decreased growth response to EGF of fibroblasts, agedin vivo andin vitro appeared to result principally from a decreased sensitivity to EGF due to a decreased number and affinity of high affinity EGF receptors (H-EGFR). Pre-incubation of HSF-41 and HFF-55 with 25 pM TGF-β enhanced the growth responses of these cells to EGF and increased the levels of high affinity EGF-binding by these cells Thus, the stimulation by TGF-β of EGF-dependent growth of human fibroblasts agedin vivo orin vitro is mediated by increased levels of high affinity EGF binding. This research was supported in part by a grant-in-aid for scientific research (61480388) and a special project research grant to Okayama University from the Japanese Ministry of Education, Science and Culture. Editor's statement TGF beta interaction with its receptor is known to affect EGF receptors. In this paper a functional biological association is established.  相似文献   

6.
Swiss 3T3 and C3H-M2 cells have a greater mitogenic response to epidermal growth factor (EGF) than do C3H-10T1/2 cells. The latter cell line, however, has a number of EGF receptors per cell intermediate between the two cell lines that have a more vigorous response to EGF. Scatchard analysis of binding data indicate that all three cell lines have one class of EGF receptor, with indistinguishable affinity for the ligand. When exposed to 10-nM EGF all three cell lines “down-regulate” their EGF receptors with the same time course, and to the same precentage of initial receptors.  相似文献   

7.
Summary Three related mouse mammary cell lines were cultured in collagen gels and assayed for growth factor responsiveness and interaction via soluble factors. The CL-S1 cell line is nontumorigenic and grows poorly in collagen gel culture. The +SA and −SA cell lines exhibit different degrees of malignant behavior in vivo and have different growth properties in vitro. In collagen gel culture, +SA growth was stimulated by serum but not by epidermal growth factor (EGF), whereas both serum and EGF were required for optimal growth of −SA cells of early passage number as well as CL-S1 cells. −SA cells of later passage repeatedly exhibited a change so as to no longer require serum while retaining EGF responsiveness. [125I]EGF binding analyses indicated that CL-S1 cells bound EGF with less affinity than did −SA cells whereas +SA cells bound almost to ligand. When cell lines were maintained in separate collagen gels but shared the same culture medium, growth of +SA or −SA cells was slightly enhanced in the presence of CL-S1 cells and −SA cell growth was enhanced by the presence of +SA cells. Using the normal rat kidney fibroblast line NRK (clone 49F) as an indicator, serum-containing conditioned media from each cell line and from each pair of cell lines cultured in collagen gels were tested for transforming growth factor (TGF) activity. Both the −SA and CL-S1 lines tested positive for TGF-α production and possibly released a TGF-β activity. These results suggest mechanisms by which cell populations in and around tumors can modify one another’s growth characteristics. The work was supported by a grant from the American Institute for Cancer Research, by American Cancer Society Institutional grant IN-119, by funds from the Poncin Trust (Seattle-First National Bank), and by grants CA-39611 and CA46885 from the National Institutes of Health, Bethesda, MD.  相似文献   

8.
The control of cell proliferation involves the complex interaction between growth factors and growth inhibitors. We have examined this interaction with the mitogen epidermal growth factor (EGF) and a recently purified 18 kD, pI 3, sialoglycopeptide that reversibly inhibits cellular metabolism of a variety of cells. The sialoglycopeptide was a very potent inhibitor of EGF action; 0.22 nM of the inhibitor completely blocked the mitogenic effect of 1.60 nM of EGF. The sialoglycopeptide, however, did not affect the binding of EGF to 3T3 cells. Neither the mixed affinities (0.11-1.9 nM) of binding nor the total number of receptors (50,000 receptors/cell) for EGF were altered by the addition of the sialoglycopeptide. In addition, competitive binding experiments demonstrated the specificity of inhibitor binding to 3T3 cells and also showed that EGF and the sialoglycopeptide did not share the same receptor, suggesting that the inhibitor blocked EGF action at a postreceptor, intracellular event in the signal cascade. We further demonstrated that the sialoglycopeptide had to be added within 2.5 hr after EGF to block effectively the stimulation of DNA synthesis by the growth factor, suggesting that the inhibitor blocked EGF stimulation at a relatively early step in the signal transduction mechanism.  相似文献   

9.
A radioimmunoassay for human epidermal growth factor receptor   总被引:4,自引:0,他引:4  
The development of a radioimmunoassay (RIA) for the human epidermal growth factor receptor solubilized with nonionic detergents which employs iodinated epidermal growth factor (125I-EGF) as the specific ligand is described. A monoclonal antibody (R1) that binds specifically to human EGF receptors [Waterfield, M. D., et al. (1982) J. Cell Biochem. 20, 149-161] was used to separate solubilized receptors saturated with 125I-EGF from free ligand by absorption to protein A-Sepharose, and the bound radioactivity was determined. The RIA was linear when increasing amounts of solubilized membrane protein were added and, when compared to the standard polyethylene glycol assay, was more reproducible. In addition, the background nonspecific binding obtained in the presence of a hundred-fold excess of unlabeled EGF was less in the RIA. Substitution of normal mouse serum for the monoclonal antibody gave very low nonspecific background ligand binding and avoided the use of large amounts of unlabeled EGF in the assay. Two major classes of binding sites for EGF were observed in membrane preparations from the cervical carcinoma cell line A431 or from normal human placental tissue. These were present in approximately equal amounts, with apparent dissociation constants of 4 X 10(-10) and 4 X 10(-9) M. Upon solubilization with the nonionic detergent Triton X-100, only one class of EGF binding sites was detected in both cases, with a dissociation constant of 3 X 10(-8) M. The RIA can be used to monitor receptor purification and for quantitation of receptor number and affinity in various cell types.  相似文献   

10.
Summary Exposure of squamous carcinoma cell (SCC) lines, exhibiting high levels of epidermal growth factor (EGF) receptors, to EGF for 6 d caused a dose-dependent inhibition of cell proliferation. This EGF-induced inhibition of cell proliferation occurred under both low (0.06 mM) and normal (1.6 mM) Ca2+ concentrations. Furthermore, the extent of EGF-induced inhibition of cell proliferation seemed to be independent of the number of EGF-receptors. This conclusion is based on the notion that the various SCC lines exhibited an increasing number of EGF receptors accompanied by a decreasing ability to differentiate, whereas no relationship was observed with the EGF-induced inhibition of cell proliferation in these cell lines. Retinoids caused also a dose-dependent inhibition of cell proliferation. The effects of EGF and retinoids were additive, indicating that different regulatory mechanisms are involved. On the other hand, hydrocortisone caused a stimulation of SCC-proliferation, also independent of EGF. In contrast to SCC cells, EGF did not affect significantly the rate of proliferation of normal keratinocytes. However, the simultaneous addition of EGF and hydrocortisone resulted in a significant increase in the rate of keratinocyte proliferation only in cells grown under normal calcium conditions. Differentiation capacity of normal keratinocytes and SCC lines was not affected by EGF. Furthermore, the retinoid-induced decrease and hydrocortisone-induced increase of competence of cells to form cornified envelopes was not affected by EGF. These observations suggest that the action of retinoids and hydrocortisone on both cell proliferation and cell differentiation occurs independently of EGF receptors. This work was partly supported by The Netherlands Cancer Foundation (Koningin Wilhelmina Fonds), grant IKW 85–71.  相似文献   

11.
Summary Insulinlike growth factors (IGF) and epidermal growth factor (EGF) are produced in renal tissue, as are specific receptors for these hormones. To evaluate the significance of these observations to regulation of renal tubular cell proliferation, we have examined the interaction of IGF and EGF with cultured human proximal tubular epithelial cells (HPT). HPT cells showed specific binding of IGF-1, insulin, and EGF. IGF-1 binding was inhibited by antibody to the type 1 IGF receptor (α-IR3). Insulin receptors and type 1 IGF receptors were identified by bifunctional cross-linking. IGF-1, insulin, and EGF stimulated [3H]thymidine incorporation by 77, 73, and 87%, respectively. Haft maximal stimulation by IGF-1, insulin, and EGF was produced with 4×10−9 M, 2.5×10−8 M, and 8×10−10 M concentrations of these hormones. α-IR3 inhibited stimulation of thymidine incorporation by IGF-1 and insulin but had no effect in EGF-stimulated thymidine incorporation. EGF and high concentrations of insulin both stimulated cell proliferation by 83 and 79%, respectively. These data are consistent with regulation of tubular epithelial proliferation by IGF-1, insulin, and EGF and suggest that the mitogenic activity of both insulin and IGF-1 is mediated by the type 1 IGF receptor. Supported by grants CA37887 and DK32889 from the National Institutes of Health, Bethesda, MD, and by a Medical University of South Carolina institutional grant.  相似文献   

12.
Summary The mitogenic and differentiation-inducing activities of epidermal growth factor (EGF) in epithelial tissues have been well described. Since non-mitogenic effects of EGF, especially in mesenchymal tissues such as smooth muscle are not well-known (Nanney et al. 1984), we have examined EGF-binding and receptors in smooth muscle from many sites. Specific EGF binding sites were detected by incubating small pieces of tissue with 125I-EGF; immunoreactive EGF receptors were detected by immunohistochemistry. In-situ localization of 125I-EGF binding sites and immunoreactive EGF receptors of smooth muscle cells in intact mammalian tissues were identical using either 125I-EGF autoradiography or anti-EGF receptor antibody in an immunoperoxidase method. Cultured rat aortic smooth muscle also contained specific EGF receptors as detected by their biological response to EGF-binding and internalization of 125I-EGF, as well as EGF-stimulated phosphorylation of a 170K protein. The presence of EGF receptors in a well-differentiated smooth muscle cell indicates that EGF may play a physiological, but non-mitogenic role in mammalian tissues in vivo.  相似文献   

13.
Summary Previous studies have shown that cell density influences the expression of receptors for at least four growth factors. The data presented in this report demonstrate that epidermal growth factor receptors are regulated differently on cells expressing over a million receptors as opposed to cells expressing approximately fivefold fewer receptors. Specifically, we show that BT-20, MDA-468, and A-431-R1 cells, which exhibit a large number of epidermal growth factor receptors, preferentially down-regulate the high affinity class of these receptors as cell density increases. In addition, we show that these cells express cell surface epidermal growth factor receptors that are localized predominately to the periphery of the cells. In contrast, A-549 and BSC-1 cells, which exhibit fewer cell surface epidermal growth factor receptors and which reduce all affinity classes of epidermal growth factor receptors as cell density increases, exhibit a diffuse cell surface distribution of these receptors at both low and high densities.  相似文献   

14.
Summary In this work a new monoclonal antibody (mAb), designated MGR1, which recognizes the epidermal growth factor receptor (EGF-R) binding site, is described. The main characteristic of this mAb is its ability to discriminate between cells that express normal levels of EGF-R from cells with overexpression, the detectability threshold by immunocytochemical tests being 5 × 104 receptors/cell of 10 µm diameter. MGR1 was found to inhibit EGF binding on the relevant target cells, and vice versa its binding was inhibited by EGF, which indicated that MGR1 recognizes the EGF receptor binding site. MGR1 exerted an inhibitory effect on both the in vitro and in vivo growth of cells with EGF-R overexpression, but had no effect on cells with a normal expression of the receptor. Tumour growth inhibition in athymic mice was also obtained on already implanted tumours. MGR1 therefore seems to be an adequate reagent for the development of immunotherapeutical approaches suitable for the treatment of tumours with EGF-R overexpression.  相似文献   

15.
The addition of the glucocorticoid analog dexamethasone (DX) to serum-free cultures of human fibroblasts caused a twofold enhancement of the mitogenic response to epidermal growth factor (EGF), although DX by itself was not mitogenic. A basis for this effect was suggested by studies showing that DX also increased the cellular binding of 125I-EGF. DX increased the ability of the cells to bind 125I-EGF only at low physiological concentrations of this polypeptide. Thus, data from 125I-EGF binding to cells incubated without DX produced a linear Scatchard plot, whereas the data from 125I-EGF binding to DX-treated cells led to an upwardly curvilinear Scatchard plot. Measurements of 125I-EGF association with the cell surface and cytoplasm indicated that this binding change involved an alteration of cell surface EGF receptors. The binding change appeared not to involve negatively cooperative interactions between EGF receptors, nor a change in the number of receptors. The binding alteration could be explained by a model in which DX converted 25–30% of the cell surface EGF receptors to a form having a fourfold increased affinity.  相似文献   

16.
Epidermal growth factor (EGF), which stimulates tyrosine-specific protein kinase activity both in vivo and in vitro, inhibits proliferation of A431 human epidermoid carcinoma cells. After mutagenesis clonal cell lines that were resistant to the growth inhibitory effects of EGF were selected. All six variants examined contained decreased EGF-stimulated protein kinase. The number of EGF receptors in variant cells decreased in parallel with EGF-stimulated protein kinase activity so that the specific activity of EGF-stimulated protein kinase per EGF receptor remained constant in variant cell lines with up to tenfold reductions in both activities. This result suggests that both EGF binding and kinase activities reside in the same or closely coupled molecules. The effect of EGF on growth of two resistant variants was examined in detail. Clone 29 contains approximately 50% and clone 4 contains approximately 20% of the EGF-stimulated protein kinase activity of the parental A431 cell line. In serum-supplemented medium, EGF stimulated proliferation of clone 29 but did not affect growth of clone 4. In a 1:1 mixture of DME and F-12 medium without serum, EGF caused both clone 29 and clone 4 to grow as well as in 10% serum. These variants, which were selected for resistance to the growth inhibitory effects of EGF, thus exhibit a strong mitogenic response to EGF. This result suggests that resistance to the growth inhibitory effect of EGF may involve both a decrease in EGF-stimulated protein kinase and an alteration in the response pathway.  相似文献   

17.
Summary Cloned mouse keratinocytes (MK-1 cells) display density-dependent growth arrest when reaching confluency in a serum-free medium with a calcium concentration <0.1 mM, supplemented only with insulin and transferrin. In this quiescent state, greater than 95% of the cell population is in the G0/1 phase of the cell cycle. Treatment of quiescent MK-1 cells with 1 to 10 ng/ml epidermal growth factor (EGF) resulted in a sharp burst of DNA synthetic activity. Both insulin and cholera toxin potentiated the mitogenic effect of EGF, but neither agent was necessary or sufficient to induce thymidine incorporation into DNA. Dexamethasone abolished the effect of insulin, but not the mitogenic effect of EGF alone. In contrast, retinoic acid (RA) did not possess any mitogenic effect for quiescent MK-1 cells, nor did it modulate the actions of EGF or dexamethasone. A number of commercially available crude extracts of bovine brain and pituitary were also capable of initiating DNA synthesis in resting MK-1 cells. Finally, transforming growth factor type beta (TGFβ) proved to be a potent inhibitor of the mitogen-induced DNA synthesis in MK-1 cells (IC50∶10pM). This defined culture system is eminently suited to study the regulation of DNA synthesis of epidermal cells. In addition, it can be used as a sensitive bioassay for the detection of epidermal mitogens, as well as inhibitors of DNA synthesis such as TGFβ. Supported by PHS Award CA-41556 from the National Cancer Institute, Bethesda, MD.  相似文献   

18.
Previous studies have shown that the binding of fibroblast growth factor to several different non-transformed cell lines decreases as cell density increases. However, it was not determined whether this is due to a reduction in receptor number or to a decrease in receptor affinity. In this study, we demonstrate that the reduction in fibroblast growth factor binding is due to a reduction in receptor number. In addition, flow cytometric analysis indicated little or no difference in the cell cycle distribution of the cells at low and high cell densities, yet the binding of fibroblast growth factor was reduced substantially at high cell densities. Thus, the reduction in growth factor binding observed in this study does not appear to result from cell cycle-dependent regulation of growth factor receptors.  相似文献   

19.
Two retroviral DNAs that encode the normal human epidermal growth factor (EGF) receptor hEGFR have been generated by inserting a hEGFR cDNA into two different retroviral vectors. One DNA (pCO11-EGFR-neo) also contained a linked selectable marker gene (neoR). The other (pCO12-EGFR) only expresses hEGFR. When introduced into NIH3T3 cells, the two DNAs and the viruses derived from them induced a fully transformed phenotype, including focal transformation and growth in agar or low serum, but transformation depended entirely upon EGF being present in the growth medium. Compared with pCO11-EGFR-neo, pCO12-EGFR induced EGF-dependent transformation 2-5 times more efficiently and expressed higher numbers of receptors (4 x 10(5) vs. 1 x 10(5) EGF receptors per cell). The results indicate that transforming potential is directly related to the number of EGF receptors. In defined, serum-free medium that contained only very low concentrations of insulin (0.6 microgram/ml) and transferrin (0.6 micrograms/ml), hEGFR-virus infected cells were able to grow with EGF as the only growth factor. Moreover, daily incubation of the cells with EGF for only 30 min was sufficient to induce growth. NR6 cells, which lack endogenous EGF receptors, were transformed as efficiently as NIH3T3 cells by the hEGFR virus. The dose-dependent growth response to EGF of infected NR6 cells grown in serum-free medium can be used as a highly sensitive bioassay for the quantitative assessment of EGF and transforming growth factor type alpha (TGF alpha). This bioassay is at least as sensitive as previously reported radioimmunoassays and can measure a much wider concentration range (10 pg-100 ng/ml). Uninfected NR6 cells or NR6 cells infected by helper virus alone can be used as controls for the EGF specificity of growth stimulation.  相似文献   

20.
PC12 cells possess specific receptors for both nerve growth factor and epidermal growth factor, and by an unknown mechanism, nerve growth factor is able to attenuate the propagation of a mitogenic response to epidermal growth factor. The differentiation response of PC12 cells to nerve growth factor, therefore, predominates over the proliferative response to epidermal growth factor. We have observed that the addition of nerve growth factor to PC12 cells rapidly produces a decrease in surface 125I-epidermal growth factor binding capacity. Unlike previously described nerve growth factor effects on 125I-epidermal growth factor binding capacity, which required several days of nerve growth factor exposure, the decreases we report occur within minutes of nerve growth factor addition: A 50% decrease in 125I-epidermal growth factor binding capacity is evident at 10 min. This rapid nerve growth factor response is concentration dependent; inhibition of 125I-epidermal growth factor binding is detectable at nerve growth factor levels as low as 0.2 ng/ml and is maximal at approximately 50 ng/ml, consistent with known ranges of biological activity. No demonstrable differences in the rate of epidermal growth factor receptor synthesis or degradation were observed in cells acutely exposed to nerve growth factor. Scatchard analysis revealed that acute nerve growth factor treatment decreased the number of both high- and low-affinity 125I-epidermal growth factor binding sites, while the receptor affinity remained unchanged. We have also investigated the involvement of various potential intracellular mediators of nerve growth factor action and of known intracellular modulatory systems of the epidermal growth factor receptor for their capacity to participate in this nerve growth factor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号