共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factor-α (TGF-α) and epidermal growth factor (EGF) are members of the EGF family of growth factors. They have a common receptor, the EGF receptor. This belongs to the tyrosine kinase group of receptors called the ErbB receptor family. Other members are ErbB-2, ErbB-3, and ErbB-4. Binding of either ligand to the receptor elicits an increase in tyrosine kinase activity, resulting in the autophosphorylation of the receptor followed by a phosphorylation cascade of other tyrosine kinase substrates including mitogen-activated protein kinase (MAPK). TGF-α and EGF have been shown to stimulate cell division in the olfactory epithelium in vitro and may regulate cell division in vivo. To investigate whether exogenous TGF-α or EGF has a functional effect on the olfactory mucosa in vivo, 12.5–50 μg of each growth factor was administered to rats via the carotid artery. After 2 min, olfactory mucosa and liver samples were collected, homogenized, and immunoprecipitated with antibodies to the ErbB receptors. The immunoprecipitates were subjected to sodium dodecyl sulfate–polyacrylamide gel electrophoresis and Western immunoblotting. Using phosphotyrosine antibody, the receptors were probed for phosphorylation. Activation of MAPK was also investigated using MAPK antibody. Exogenous TGF-α activated EGFR, ErbB-2 and MAPK, whereas EGF activated only the EGFR. TGF-α was a more potent activator of EGFR than EGF. Neither ligand had an effect on ErbB-3 and ErbB-4 receptors. These effects were absent in the control animals which received the same solution without the growth factor. These results are consistent with the notion that binding of TGF-α to EGFR may play a role in olfactory cell division in vivo. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 199–210, 1998 相似文献
2.
Previously, it has been shown that the binding of epidermal growth factor (EGF) by a wide range of cells decreases as cell density increases. In this report, we demonstrate that KB cells treated chronically with phorbol esters continue to exhibit decreases in EGF receptor binding as cell density increases. This finding suggests that protein kinase-C may not be essential for density-induced down regulation of EGF receptors, since phorbol esters are known to down regulate protein kinase-C. We also report that short-term and long-term effects of phorbol esters on the binding of EGF are affected by density. As shown previously for several cell lines, the phorbol ester 12-0-tetradecanoylphorbol-13-acetate transiently reduces EGF binding. We now show that the magnitude of this reduction diminishes as cell density increases. In addition, we determined that long-term treatment of KB cells with phorbol ester increases EGF binding. Again, this effect is diminished at high cell densities. Finally, we report that the increases in EGF binding induced by long-term treatment with phorbol esters are due to increases in the number of EGF receptors.Abbreviations EGF
epidermal growth factor
- FGF
fibroblast growth factor
- PBS
phosphate buffered saline
- PDBu
4-phorbol-12,13-dibutyrate
- PDGF
platelet-derived growth factor
- PK-C
protein kinase-C
- TGF-
transforming growth factor-
- TPA
12-0-tetradecanoylphorbol-13-acetate 相似文献
3.
Yuji Hiraki Hiroyuki Inoue Yukio Kato Michiko Fukuya Fujio Suzuki Ph.D 《Molecular and cellular biochemistry》1987,76(2):185-193
Summary The somatomedin-like growth factors cartilage-derived factor (CDF) and multiplication-stimulating activity (MSA) stimulate DNA synthesis and proliferation of rabbit costal chondrocytes under serum-free conditions. Previously, we suggeted that CDF and MSA act on chondrocytes in an early G1 phase to stimulate DNA synthesis. CDF and MSA have synergistic effects with epidermal growth factor (EGF) or fibroblast growth factor (FGF) in stimulating DNA synthesis of the cells. The mode of combined action of CDF or MSA with EGF or FGF in chondrocytes was studied by sequential treatments with these agents. EGF or FGF had synergistic effects with CDF or MSA in stimulating DNA synthesis, even when added 10 h after the latter. Synergism was also observed in cells pretreated with CDF or MSA; That is, the cultures were treated for 5 h with CDF or MSA and then washed, and treated with FGF or EGF. However, when CDF or MSA was added more than 5 h after EGF or FGF, no synergism of effects was observed. These findings suggest that the cultured chondrocytes become activated to interact with FGF or EGF for commitment to DNA synthesis when they are exposed to somatomedin-like growth factors at an early stage in the G1 phase. Thus chondrocytes are under a different mechanism of growth control from fibroblastic cells.Abbreviations CDF
cartilage-derived factor
- MSA
multiplication-stimulating activity
- EGF
epidermal growth factor
- FGF
fibroblast growth factor 相似文献
4.
5.
Platelet-derived growth factor (PDGF) increases the mitogenic activity of epidermal growth factor (EGF) in several cells lines, including BALB/C-3T3. PDGF-treated BALB/C-3T3 cells manifest a reduced capacity to bind 125I-labeled EGF due to a loss of high affinity EGF receptors. Cholera toxin potentiates the ability of PDGF to both decrease EGF binding and initiate mitogenesis. Whether PDGF increases EGF sensitivity via its effects on EGF receptors is not known and requires a more complete understanding of the mechanism by which PDGF decreases EGF binding. 12-O-tetradecanoylphorbol 13-acetate (TPA) also reduces EGF binding in BALB/C-3T3 and other cells, presumably by activating protein kinase C and, consequently, inducing the phosphorylation of EGF receptors at threonine-654. PDGF indirectly activates protein kinase C, and EGF receptors in PDGF-treated WI-38 cells are phosphorylated at threonine-654. Thus, the effects of PDGF on EGF binding may also be mediated by protein kinase C. We investigated this hypothesis by comparing the actions of PDGF and TPA on EGF binding in density-arrested BALB/C-3T3 cells. Both PDGF and TPA caused a rapid, transient, cycloheximide-independent loss of 125I-EGF binding capacity. The actions of both agents were potentiated by cholera toxin. However, whereas TPA allowed EGF binding to recover, PDGF induced a secondary and cycloheximide-dependent loss of binding capacity. Most importantly, PDGF effectively reduced binding in cells refractory to TPA and devoid of detectable protein kinase C activity. These findings indicate that PDGF decreases EGF binding by a mechanism that involves protein synthesis and is distinct from that of TPA. 相似文献
6.
7.
Charles A. Kuszynski Keith A. Miller Angie Rizzino 《In vitro cellular & developmental biology. Animal》1993,29(9):708-713
Summary Previous studies have shown that cell density influences the expression of receptors for at least four growth factors. The
data presented in this report demonstrate that epidermal growth factor receptors are regulated differently on cells expressing
over a million receptors as opposed to cells expressing approximately fivefold fewer receptors. Specifically, we show that
BT-20, MDA-468, and A-431-R1 cells, which exhibit a large number of epidermal growth factor receptors, preferentially down-regulate
the high affinity class of these receptors as cell density increases. In addition, we show that these cells express cell surface
epidermal growth factor receptors that are localized predominately to the periphery of the cells. In contrast, A-549 and BSC-1
cells, which exhibit fewer cell surface epidermal growth factor receptors and which reduce all affinity classes of epidermal
growth factor receptors as cell density increases, exhibit a diffuse cell surface distribution of these receptors at both
low and high densities. 相似文献
8.
9.
Leah S. Royce Bruce J. Baum 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1991,1092(3):401-403
An established line of human oral epithelial cells exhibits chemotaxis to epidermal growth factor (EGF). The directed migration of these cells is time dependent with an approximate 10-fold increase in the number of cells responding to the chemoattractant by 6 h. Cell migration occurs in a concentration dependent manner with maximal response at ≈ 1 ng/ml. This maximal chemotactic response occurs within the physiologic concentration range for EGF found in human saliva. These data suggest that EGF may be important for the maintenance of an intact oral epithelial (mucosal) barrier, and may play a vital role in oral mucosal wound healing. 相似文献
10.
Addition of tumor promoting phorbol esters, such as phorbol 12-myristate 13-acetate (PMA), to many cell lines results in a decrease of 125I-epidermal growth factor (EGF) binding and increased serine/threonine phosphorylation of the EGF receptor in a process termed transmodulation. It is, however, unclear whether or not receptor phosphorylation is causally related to the inhibition of high affinity EGF binding. We have investigated the significance of phosphorylation/dephosphorylation events in the mechanism of PMA-induced transmodulation using the adenylate cyclase activator cholera toxin and the serine/threonine protein phosphatase inhibitor okadaic acid. In Rat-1 fibroblasts treated at 37 degrees C, PMA induced a rapid decrease in EGF binding which persisted for 3 hours. In contrast, cells exposed to PMA in the presence of cholera toxin exhibited a marked recovery of binding within 60 minutes. The PMA-stimulated decrease in binding correlated with a rapid increase in the phosphorylation state of the EGF receptor. While phosphorylation of the receptor was sustained at an elevated level for at least three hours in cells receiving PMA alone, EGF receptor phosphorylation decreased between 1 and 3 hours in cells treated with PMA and cholera toxin. Furthermore, the cholera toxin-stimulated return of EGF binding was inhibited by treatment with the phosphatase inhibitor okadaic acid. These results suggest that a cholera toxin-activated phosphatase can increase binding capacity of the transmodulated EGF receptor in Rat-1 cells. Cholera toxin treatment elicited a qualitatively similar response in cells transmodulated by platelet-derived growth factor (PDGF). Okadaic acid antagonized the natural return of binding observed in cells stimulated with PDGF alone, indicating that a dephosphorylation event may be required for the recovery of normal EGF binding after receptor transmodulation. 相似文献
11.
The rat pheochromocytoma clone PC12 responds to nerve growth factor through the expression of a number of differentiated neuronal properties. One of the most rapid changes is a large, transient increase in the activity of ornithine decarboxylase. These cells also show an increase in ornithine decarboxylase activity in response to the mitogen, epidermal growth factor, but do not respond morphologically as they do to nerve growth factor. Specific, high-affinity epidermal growth factor receptors are present on the cells. When the cells are differentiated with nerve growth factor, the response to epidermal growth factor is markedly diminished and there is a marked reduction in the binding of epidermal growth factor to the cells. 相似文献
12.
Olwin BB 《Cytotechnology》1989,2(4):351-365
Heparin-binding growth factors modulate diverse biological activities including cellular proliferation, cellular differentiation, morphogenesis, and angiogenesis. Biochemical characterization for two members of the heparin-binding growth factor family, acidic and basic fibroblast growth factors, is extensive, while characterization of the remaining five members is forthcoming. Cell surface receptors have been identified for acidic and basic fibroblast growth factors, but little is known concerning their sites of action in vivo or the mechanisms involved in transducing the energy of growth factor binding to a biological response. An understanding of the biological basis for the diversity of the heparin binding growth factor family and the in vivo actions of these factors will prove a major challenge to future research efforts. 相似文献
13.
Apoptosis, or programmed cell death, plays an important role in the pathogenesis of a number of human diseases, including cancers, autoimmune diseases, and neurodegenerative disorders. Recent evidence suggests that EGF induced signal transduction pathways which govern cell proliferation and cell cycle progression also mediate antiproliferative effects leading to increased apoptosis in cells that express high levels of epidermal growth factor receptors. Treatments designed to increase apoptosis have potential to change the natural progression of cancer and eventually lead to its successful control. 相似文献
14.
Noriko Koyama Toru Hayashi Kenji Ohno Larry Siu Edward W. Gresik Masanori Kashimata 《Development, growth & differentiation》2008,50(7):565-576
Although growth factor signaling is required for embryonic development of organs, individual signaling mechanisms regulating these organotypic processes are just beginning to be defined. We compared signaling activated in fetal mouse submandibular glands (SMGs) by three growth factors, epidermal growth factor (EGF), fibroblast growth factor (FGF) 7, or FGF10, and correlated it with specific events of branching morphogenesis. Immunoblotting showed that EGF strongly stimulated phosphorylation of extracellular signal-regulated kinase-1/2 (ERK-1/2) and weakly stimulated phosphorylation of phospholipase C γ 1 (PLC γ 1) and phosphatidylinositol-3 kinase (PI3K) in cultured E14 SMG. However, FGF7 and FGF10 stimulated phosphorylation of both PLC γ 1 and PI3K, but elicited only minimal phosphorylation of ERK-1/2. Morphological study of mesenchyme-free SMG epithelium cultured in Matrigel revealed that EGF induced cleft formation of endpieces, that FGF7 stimulated both cleft formation and stalk elongation, but that FGF10 induced only stalk elongation. In mesenchyme-free SMG epithelium cultured with EGF, FGF7 and FGF10, U0126 (MEK inhibitor) completely blocked cleft formation, whereas U73122 (PLC γ 1 inhibitor) suppressed stalk elongation. These finding suggest that EGF stimulates cleft formation and drives branch formation via ERK-1/2, and that FGF7 stimulates both cleft formation and stalk elongation via PLC γ 1 and partly via ERK-1/2, but that FGF10 stimulates stalk elongation mainly via PLC γ 1. 相似文献
15.
16.
J A Fernandez-Pol 《Journal of cellular biochemistry》1982,19(3):205-222
We have reported previously [6] that epidermal growth factor (EGF)-induced down regulation of EGF receptors in normal rat kidney (NRK) cells results in a selective decrease in the in vitro EGF-dependent 32P-phosphorylation of two membrane phosphoproteins of Mr I70K and Mr I50K. In this report, we further characterized the modulation of 32P-phosphorylation of the 170K- and 150K-dalton proteins by down regulation with EGF in NRK cells. While EGF binding to its receptors was a necessary condition to induce loss of EGF-dependent phosphorylation of the 170K- and 150K-dalton proteins, it was not sufficient. Thus, reduction in the temperature of the incubation of cells with EGF from 37°C to 4°C abolished the loss of EGF-dependent phosphorylation of the 170K- and 150K-dalton membrane proteins. When EGF was removed from the medium the EGF-dependent phosphorylation of the 170K- and l50K-dalton proteins was quickly replenished; by 3 hr one-half of the “down regulated” phosphorylation was restored. All EGF-dependent phosphorylating capacity of the 170K- and l50K-dalton protein bands returned by 6 hr after removal of the growth factor. The loss of EGF-dependent phosphorylation of the 170K- and I50K-dalton proteins occurred at physiological EGF concentrations (0.25–25 ng/ml) that span the concentration range which is mitogenic for NRK cells. Exposure of confluent nondividing NRK cells to 1 ng/ml EGF, followed by incubation for 5 hr at 37°C. led to a 50% reduction in the EGF-dependent phosphorylation of the 170K- and 150K-dalton proteins. Maximal reduction (~95%) in the EGF-dependent phosphorylation of the 170K- and 150K-dalton proteins was noted with 10 ng/ml EGF for 5 hr. The EGF-induced loss of EGF-dependent phosphorylation was specific: several other growth factors did not produce phosphorylation loss of the 170K- 相似文献
17.
18.
A radioimmunoassay for human epidermal growth factor receptor 总被引:4,自引:0,他引:4
The development of a radioimmunoassay (RIA) for the human epidermal growth factor receptor solubilized with nonionic detergents which employs iodinated epidermal growth factor (125I-EGF) as the specific ligand is described. A monoclonal antibody (R1) that binds specifically to human EGF receptors [Waterfield, M. D., et al. (1982) J. Cell Biochem. 20, 149-161] was used to separate solubilized receptors saturated with 125I-EGF from free ligand by absorption to protein A-Sepharose, and the bound radioactivity was determined. The RIA was linear when increasing amounts of solubilized membrane protein were added and, when compared to the standard polyethylene glycol assay, was more reproducible. In addition, the background nonspecific binding obtained in the presence of a hundred-fold excess of unlabeled EGF was less in the RIA. Substitution of normal mouse serum for the monoclonal antibody gave very low nonspecific background ligand binding and avoided the use of large amounts of unlabeled EGF in the assay. Two major classes of binding sites for EGF were observed in membrane preparations from the cervical carcinoma cell line A431 or from normal human placental tissue. These were present in approximately equal amounts, with apparent dissociation constants of 4 X 10(-10) and 4 X 10(-9) M. Upon solubilization with the nonionic detergent Triton X-100, only one class of EGF binding sites was detected in both cases, with a dissociation constant of 3 X 10(-8) M. The RIA can be used to monitor receptor purification and for quantitation of receptor number and affinity in various cell types. 相似文献
19.
Retroviruses expressing different levels of the normal epidermal growth factor receptor: biological properties and new bioassay 总被引:6,自引:0,他引:6
T J Velu L Beguinot W C Vass K Zhang I Pastan D R Lowy 《Journal of cellular biochemistry》1989,39(2):153-166
Two retroviral DNAs that encode the normal human epidermal growth factor (EGF) receptor hEGFR have been generated by inserting a hEGFR cDNA into two different retroviral vectors. One DNA (pCO11-EGFR-neo) also contained a linked selectable marker gene (neoR). The other (pCO12-EGFR) only expresses hEGFR. When introduced into NIH3T3 cells, the two DNAs and the viruses derived from them induced a fully transformed phenotype, including focal transformation and growth in agar or low serum, but transformation depended entirely upon EGF being present in the growth medium. Compared with pCO11-EGFR-neo, pCO12-EGFR induced EGF-dependent transformation 2-5 times more efficiently and expressed higher numbers of receptors (4 x 10(5) vs. 1 x 10(5) EGF receptors per cell). The results indicate that transforming potential is directly related to the number of EGF receptors. In defined, serum-free medium that contained only very low concentrations of insulin (0.6 microgram/ml) and transferrin (0.6 micrograms/ml), hEGFR-virus infected cells were able to grow with EGF as the only growth factor. Moreover, daily incubation of the cells with EGF for only 30 min was sufficient to induce growth. NR6 cells, which lack endogenous EGF receptors, were transformed as efficiently as NIH3T3 cells by the hEGFR virus. The dose-dependent growth response to EGF of infected NR6 cells grown in serum-free medium can be used as a highly sensitive bioassay for the quantitative assessment of EGF and transforming growth factor type alpha (TGF alpha). This bioassay is at least as sensitive as previously reported radioimmunoassays and can measure a much wider concentration range (10 pg-100 ng/ml). Uninfected NR6 cells or NR6 cells infected by helper virus alone can be used as controls for the EGF specificity of growth stimulation. 相似文献
20.
Hepatocyte growth factor induces epithelial cell motility through transactivation of the epidermal growth factor receptor 总被引:3,自引:0,他引:3
Hepatocyte growth factor (HGF) is a potent inducer of motility in epithelial cells. Since we have previously found that activation of the epidermal growth factor receptor (EGFR) is an absolute prerequisite for induction of motility of corneal epithelial cells after wounding, we investigated whether induction of motility in response to HGF is also dependent on activation of the EGFR. We now report that HGF induces transactivation of the EGFR in an immortalized line of corneal epithelial cells, in human skin keratinocytes, and in Madin-Darby canine kidney cells. EGFR activation is unconditionally required for induction of motility in corneal epithelial cells, and for induction of a fully motile phenotype in Madin-Darby canine kidney cells. Activation of the EGFR occurs through amphiregulin and heparin-binding epidermal growth factor-like growth factor. Early after HGF stimulation, blocking EGFR activation does not inhibit extracellular-signal regulated kinase 1/2 (ERK1/2) activation by HGF, but the converse is seen after approximately 1 h, indicating the existence of EGFR-dependent and -independent routes of ERK1/2 activation. In summary, HGF induces transactivation of the EGFR in epithelial cells, and this is a prerequisite for induction of full motility. 相似文献