首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 241 毫秒
1.
We have determined the solution NMR structure of a recombinant peptide that consists of the first 156 residues of erythroid alpha-spectrin. The first 20 residues preceding the first helix (helix C') are in a disordered conformation. The subsequent three helices (helices A1, B1, and C1) form a triple helical bundle structural domain that is similar, but not identical, to previously published structures for spectrin from Drosophila and chicken brain. Paramagnetic spin label-induced NMR resonance broadening shows that helix C', the partial domain involved in alpha- and beta-spectrin association, exhibits little interaction with the structural domain. Surprisingly, helix C' is connected to helix A1 of the structural domain by a segment of 7 residues (the junction region) that exhibits a flexible disordered conformation, in contrast to the predicted rigid helical structure. We suggest that the flexibility of this particular junction region may play an important role in modulating the association affinity of alpha- and beta-spectrin at the tetramerization site of different isoforms, such as erythroid spectrin and brain spectrin. These findings may provide insight for explaining various physiological and pathological conditions that are a consequence of varying alpha- and beta-subunit self-association affinities in their formation of the various spectrin tetramers.  相似文献   

2.
Mehboob S  Luo BH  Patel BM  Fung LW 《Biochemistry》2001,40(41):12457-12464
On the basis of sequence homology studies, it has been suggested that the association of human erythrocytes alpha and beta spectrin at the tetramerization site involves interactions between helices. However, no empirical details are available, presumably due to the experimental difficulties in studying spectrin molecules because of its size and/or its structural flexibility. It has been speculated that erythrocyte tetramerization involves helical bundling rather than coiled coil association. We have used recombinant spectrin peptides to model alpha and beta spectrin to study their association at the tetramerization site. Two alpha peptides, Sp alpha 1-156 and Sp alpha 1-368, and one beta peptide, Sp beta 1898-2083, were used as model peptides to demonstrate the formation of the alpha beta complex. We also found that the replacement of R28 in Sp alpha 1-368 to give Sp alpha 1-368R28C abolished complex formation with the beta peptide. Circular dichroism techniques were used to monitor the secondary structures of the individual peptides and of the complex, and the results showed that both Sp alpha 1-156 and Sp beta 1898-2083 peptides in solution, separately, included helices that were not paired with other helices in the absence of their binding partners. However, in a mixture of Sp alpha 1-156 and Sp beta 1898-2083 and formation of the alpha beta complex, the unpaired helices associated to form coiled coils. Since the sequences of these two peptides that are involved in the coiled coil association are derived from a native protein, the information obtained from this study also provides insight toward a better understanding of naturally occurring coiled coil subunit-subunit association.  相似文献   

3.
Mehboob S  Luo BH  Fu W  Johnson ME  Fung LW 《Biochemistry》2005,44(48):15898-15905
We used cysteine-scanning and spin-labeling methods to prepare singly spin labeled recombinant peptides for electron paramagnetic resonance studies of the partial domain regions at the tetramerization site (N-terminal end of alpha and C-terminal end of beta) of erythroid spectrin. The values of the inverse line width parameter (deltaH0(-1)) from a family of Sp alphaI-1-368delta peptides scanning residues 21-30 exhibited a periodicity of approximately 3.5-4. We used molecular dynamics calculations to show that the asymmetric mobility of this helix is not necessarily due to tertiary contacts, but is likely due to intrinsic properties of helix C', a helix with a heptad pattern sequence. The residues with low deltaH0(-1) values (residues at positions 21, 25, and 28/29) were those on the hydrophobic side of this amphipathic helix. Native gel electrophoresis results showed that these residues were functionally important and are involved in the tetramerization process. Thus, EPR results readily identified functionally important residues in the alpha spectrin partial domain region. Mutations at these positions may lead to clinical symptoms. Similarly, the deltaH0(-1) values from a family of spin-labeled Sp betaI-1898-2083delta peptides also exhibited a periodicity of approximately 3.5-4, indicating a helical conformation in the two scanned regions (residues 2008-2018 and residues 2060-2070). However, the region consisting of residues 2071-2076 was in a disordered conformation. Both helical regions include a hydrophilic side with high deltaH0(-1) values and a hydrophobic side with low deltaH0(-1) values, demonstrating the amphipathic nature of the helical regions. Residues 2008, 2011, 2014, and 2018 in the first scanned region and residues 2061, 2065, and 2068 in the second scanned region were on the hydrophobic side. These residues were critical in alphabeta spectrin association at the tetramerization site. Mutations at some of these positions have been reported to be detrimental in clinical studies.  相似文献   

4.
Human erythrocyte spectrin dimers associate at the N-terminal region of alpha spectrin (alpha N) and the C-terminal region of beta-spectrin (beta C) to form tetramers. We have prepared model peptides to study the tetramerization region. Based on phasing information obtained from enzyme digests, we prepared spectrin fragments consisting of the first 156 amino-acid residues and the first 368 amino-acid residues of alpha-spectrin (Sp alpha 1-156 and Sp alpha 1-368, respectively), and found that both peptides associate with a beta-spectrin model peptide, with an affinity similar to that found in alpha beta dimer tetramerization. Spin label EPR studies show that the region consisting of residues 21-46 in alpha-spectrin is helical even in the absence of its beta-partner. Multi-dimensional nuclear magnetic resonance studies of samples with and without a spin label attached to residue 154 show that Sp alpha 1-156 consists of four helices, with the first helix unassociated with the remaining three helices, which bundle to form a triple helical coiled coil bundle. A comparison of the structures of erythrocyte spectrin with other published structures of Drosophila and chicken brain spectrin is discussed. Circular dichroism studies show that the lone helix in Sp alpha-156 associates with helices in the beta peptide to form a coiled coil bundle. Based on NMR and CD results, we suggest that the helices in Sp alpha 1-156 exhibit a looser (frayed) conformation, and that the helices convert to a tighter conformation upon association with its beta-partner. This suggestion does not rule out possible conversion of a non-structured conformation to a structured conformation in various parts of the molecule upon association. Spectrin mutations at residues 28 and 45 of alpha-spectrin have been found in patients with hereditary elliptocytosis. NMR studies were also carried out on Sp alpha 1-156R28S, Sp alpha 1-156R45S and Sp alpha 1-156R45T. A comparison of the structures of Sp alpha 1-156 and Sp alpha 1-156R28S, Sp alpha 1-156R45S and Sp alpha 1-156R45T is discussed.  相似文献   

5.
An X  Zhang X  Salomao M  Guo X  Yang Y  Wu Y  Gratzer W  Baines AJ  Mohandas N 《Biochemistry》2006,45(45):13670-13676
The different genes that encode mammalian spectrins give rise to proteins differing in their apparent stiffness. To explore this, we have compared the thermal stabilities of the structural repeats of brain spectrin subunits (alphaII and betaII) with those of erythrocyte spectrin (alphaI and betaI). The unfolding transition midpoints (T(m)) of the 36 alphaII- and betaII-spectrin repeats extend between 24 and 82 degrees C, with an average higher by some 10 degrees C than that of the alphaI- and betaI-spectrin repeats. This difference is reflected in the T(m) values of the intact brain and erythrocyte spectrins. Two of three tandem-repeat constructs from brain spectrin exhibited strong cooperative coupling, with elevation of the T(m) of the less stable partner corresponding to coupling free energies of approximately -4.4 and -3.5 kcal/mol. The third tandem-repeat construct, by contrast, exhibited negligible cooperativity. Tandem-repeat mutants, in which a part of the "linker" helix that connects the two domains was replaced with a corresponding helical segment from erythroid spectrin, showed only minor perturbation of the thermal melting profiles, without breakdown of cooperativity. Thus, the linker regions, which tolerate few point mutations without loss of cooperative function, have evidently evolved to permit conformational coupling in specified regions. The greater structural stability of the repeats in alphaII- and betaII-spectrin may account, at least in part, for the higher rigidity of brain compared to erythrocyte spectrin.  相似文献   

6.
Spectrin tetramerization is important for the erythrocyte to maintain its unique shape, elasticity and deformability. We used recombinant model proteins to show the importance of one residue (G46) in the erythroid α-spectrin junction region that affects spectrin tetramer formation. The G46 residue in the erythroid spectrin N-terminal junction region is the only residue that differs from that in non-erythroid spectrin. The corresponding residue is R37. We believe that this difference may be, at least in part, responsible for the 15-fold difference in the equilibrium constants of erythroid and non-erythroid tetramer formation. In this study, we replaced the Gly residue with Ala, Arg or Glu residues in an erythroid α-spectrin model protein to give G46A, G46R or G46E, respectively. We found that their association affinities with a β-spectrin model protein were quite different from each other. G46R exhibited a 10-fold increase and G46E exhibited a 16-fold decrease, whereas G46A showed little difference, when compared with the wild type. The thermal and urea denaturation experiments showed insignificant structural change in G46R. Thus, the differences in affinity were due to differences in local, specific interactions, rather than conformational differences in these variants. An intra-helical salt bridge in G46R may stabilize the partial domain single helix in α-spectrin, Helix C’, to allow a more stable helical bundling in the αβ complex in spectrin tetramers. These results not only showed the importance of residue G46 in erythroid α-spectrin, but also provided insights toward the differences in association affinity between erythroid and non-erythroid spectrin to form spectrin tetramers.  相似文献   

7.
We previously determined the solution structures of the first 156 residues of human erythroid alpha-spectrin (SpalphaI-1-156, or simply Spalpha). Spalpha consists of the tetramerization site of alpha-spectrin and associates with a model beta-spectrin protein (Spbeta) with an affinity similar to that of native alpha- and beta-spectrin. Upon alphabeta-complex formation, our previous results indicate that there is an increase in helicity in the complex, suggesting conformational change in either Spalpha or Spbeta or in both. We have now used isothermal titration calorimetry, circular dichroism, static and dynamic light scattering, and solution NMR methods to investigate properties of the complex as well as the conformation of Spalpha in the complex. The results reveal a highly asymmetric complex, with a Perrin shape parameter of 1.23, which could correspond to a prolate ellipsoid with a major axis of about five and a minor axis of about one. We identified 12 residues, five prior to and seven following the partial domain helix in Spalpha that moved freely relative to the structural domain in the absence of Spbeta but when in the complex moved with a mobility similar to that of the structural domain. Thus, it appears that the association with Spbeta induced an unstructured-to-helical conformational transition in these residues to produce a rigid and asymmetric complex. Our findings may provide insight toward understanding different association affinities of alphabeta-spectrin at the tetramerization site for erythroid and non-erythroid spectrin and a possible mechanism to understand some of the clinical mutations, such as L49F of alpha-spectrin, which occur outside the functional partial domain region.  相似文献   

8.
Spectrin is a ubiquitous heterodimeric scaffolding protein that stabilizes membranes and organizes protein and lipid microdomains on both the plasma membrane and intracellular organelles. Phosphorylation of beta-spectrin on Ser/Thr is well recognized. Less clear is whether alpha-spectrin is phosphorylated in vivo and whether spectrin is phosphorylated on tyrosine (pTyr). We affirmatively answer both questions. In cultured Madin-Darby canine kidney cells, alphaII spectrin undergoes in vivo tyrosine phosphorylation. Enhancement of the steady state level of pTyr-modified alphaII spectrin by vanadate, a phosphatase inhibitor, implies a dynamic balance between alphaII spectrin phosphorylation and dephosphorylation. Recombinant peptides containing the Src homology 3 domain of alphaII spectrin (but not the Src homology 3 domain of alphaI spectrin) bind specifically to phosphorylated c-Src in Madin-Darby canine kidney cell lysates, suggesting that this kinase is responsible for its in vivo phosphorylation. pTyr-modified alphaII spectrin is resistant to maitotoxin-induced cleavage by mu-calpain in vivo. In vitro studies of recombinant alphaII spectrin peptides representing repeats 9-12 identify two sites of pTyr modification. The first site is at Tyr(1073), a residue immediately adjacent to a region encoded by alternative exon usage (insert 1). The second site is at Tyr(1176). This residue flanks the major site of cleavage by the calcium-dependent protease calpain, and phosphorylation of Tyr(1176) by c-Src reduces the susceptibility of alphaII spectrin to cleavage by mu-calpain. Calpain cleavage of spectrin, activated by Ca(2+) and calmodulin, contributes to diverse cellular processes including synaptic remodeling, receptor-mediated endocytosis, apoptosis, and the response of the renal epithelial cell to ischemic injury. Tyrosine phosphorylation of alphaII spectrin now would appear to also mediate these events. The spectrin skeleton thus forms a point of convergence between kinase/phosphatase and Ca(2+)-mediated signaling cascades.  相似文献   

9.
10.
11.
The conformational conversion of the nonpathogenic "cellular" prion isoform into a pathogenic "scrapie" protease-resistant isoform is a fundamental event in the onset of transmissible spongiform encephalopathies (TSE). During this pathogenic conversion, helix H1 and its two flanking loops of the normal prion protein are thought to undergo a conformational transition into a beta-like structure. A peptide spanning helix H1 and beta-strand S2 (residues 142-166 in human numbering) was studied by circular dichroism and nuclear magnetic resonance spectroscopies. This peptide in aqueous solution, in contrast to many prion fragments studied earlier (1) is highly soluble and (2) does not aggregate until the millimolar concentration range, and (3) exhibits an intrinsic propensity to a beta-hairpin-like conformation at neutral pH. We found that this peptide can also fold into a helix H1 conformation when dissolved in a TFE/PB mixture. The structures of the peptide calculated by MD showed solvent-dependent internal stabilizing forces of the structures and evidenced a higher mobility of the residues following the end of helix H1. These data suggest that the molecular rearrangement of this peptide in region 152-156, particularly in position 155, could be associated with the pathogenic conversion of the prion protein.  相似文献   

12.
Helix formation and stability in a signal sequence   总被引:4,自引:0,他引:4  
  相似文献   

13.
Polar residues play important roles in the association of transmembrane helices and the stabilities of membrane proteins. Although a single Ser residue in a transmembrane helix is unable to mediate a strong association of the helices, the cooperative interactions of two or more appropriately placed serine hydroxyl groups per helix has been hypothesized to allow formation of a "serine zipper" that can stabilize transmembrane helix association. In particular, a heptad repeat Sera Xxx Xxx Leud Xxx Xxx Xxx (Xxx is a hydrophobic amino acid) appears in both antiparallel helical pairs of polytopic membrane proteins as well as the parallel helical dimerization motif found in the murine erythropoietin receptor. To examine the intrinsic conformational preferences of this motif independent of its context within a larger protein, we synthesized a peptide containing three copies of a SeraLeud heptad motif. Computational results are consistent with the designed peptide adopting either a parallel or antiparallel structure, and conformational search calculations yield the parallel dimer as the lowest energy configuration, which is also significantly more stable than the parallel trimer. Analytical ultracentrifugation indicated that the peptide exists in a monomer-dimer equilibrium in dodecylphosphocholine micelles. Thiol disulfide interchange studies showed a preference for forming parallel dimers in micelles. In phospholipid vesicles, only the parallel dimer was formed. The stability of the SerZip peptide was studied in vesicles prepared from phosphatidylcholine (PC) lipids of different chain length: POPC (C16:0C18:1 PC) and DLPC (C12:0PC). The stability was greater in POPC, which has a good match between the length of the hydrophobic region of the peptide and the bilayer length. Finally, mutation to Ala of the Ser residues in the SerZip motif gave rise to a relatively small decrease in the stability of the dimer, indicating that packing interactions rather than hydrogen-bonding provided the primary driving force for association.  相似文献   

14.
Folding propensities of peptide fragments of myoglobin.   总被引:8,自引:5,他引:3       下载免费PDF全文
Myoglobin has been studied extensively as a paradigm for protein folding. As part of an ongoing study of potential folding initiation sites in myoglobin, we have synthetized a series of peptides covering the entire sequence of sperm whale myoglobin. We report here on the conformation preferences of a series of peptides that cover the region from the A helix to the FG turn. Structural propensities were determined using circular dichroism and nuclear magnetic resonance spectroscopy in aqueous solution, trifluoroethanol, and methanol. Peptides corresponding to helical regions in the native protein, namely the B, C, D, and E helices, populate the alpha region of (phi, psi) space in water solution but show no measurable helix formation except in the presence of trifluoroethanol. The F-helix sequence has a much lower propensity to populate helical conformations even in TFE. Despite several attempts, we were not successful in synthesizing a peptide corresponding to the A-helix region that was soluble in water. A peptide termed the AB domain was constructed spanning the A- and B-helix sequences. The AB domain is not soluble in water, but shows extensive helix formation throughout the peptide when dissolved in methanol, with a break in the helix at a site close to the A-B helix junction in the intact folded myoglobin protein. With the exception of one local preference for a turn conformation stabilized by hydrophobic interactions, the peptides corresponding to turns in the folded protein do not measurably populate beta-turn conformations in water, and the addition of trifluoroethanol does not enhance the formation of either helical or turn structure. In contrast to the series of peptides described here, either studies of peptides from the GH region of myoglobin show a marked tendency to populate helical structures (H), nascent helical structures (G), or turn conformations (GH peptide) in water solution. This region, together with the A-helix and part of the B-helix, has been shown to participate in an early folding intermediate. The complete analysis of conformational properties of isolated myoglobin peptides supports the hypothesis that spontaneous secondary structure formation in local regions of the polypeptide may play an important role in the initiation of protein folding.  相似文献   

15.
Recently, Presta and Rose proposed that a necessary condition for helix formation is the presence of residues at the N- and C-termini (called NTBs and CTBs) whose side chains can form hydrogen bonds with the initial four amides and the last four carbonyls of the helix, which otherwise lack intrahelical hydrogen bonding partners. We have tested this hypothesis by conformational analysis by circular dichroism (CD) of a synthetic peptide corresponding to a region (171-188) of the protein carboxypeptidase A; in the protein, residues 174 to 186 are helical and are flanked by NTBs and CTBs. Since helix formation in this peptide may also be stabilized by electrostatic interactions, we have compared the helical content of the native peptide with that of several modified peptides designed to enable dissection of different contributions to helix stability. As expected, helix dipole interactions appear to contribute substantially, but we conclude that hydrogen bonding interactions as proposed by Presta and Rose also stabilize helix formation. To assist in comparison of different peptides, we have introduced two concentration-independent CD parameters which are sensitive probes of helix formation.  相似文献   

16.
The action of a synthetic antimicrobial peptide analog of Plantaricin 149 (Pln149a) against Saccharomyces cerevisiae and its interaction with biomembrane model systems were investigated. Pln149a was shown to inhibit S. cerevisiae growth by more than 80% in YPD medium, causing morphological changes in the yeast wall and remaining active and resistant to the yeast proteases even after 24 h of incubation. Different membrane model systems and carbohydrates were employed to better describe the Pln149a interaction with cellular components using circular dichroism and fluorescence spectroscopies, adsorption kinetics and surface elasticity in Langmuir monolayers. These assays showed that Pln149a does not interact with either mono/polysaccharides or zwitterionic LUVs, but is strongly adsorbed to and incorporated into negatively charged surfaces, causing a conformational change in its secondary structure from random-coil to helix upon adsorption. From the concurrent analysis of Pln149a adsorption kinetics and dilatational surface elasticity data, we determined that 2.5 μM is the critical concentration at which Pln149a will disrupt a negative DPPG monolayer. Furthermore, Pln149a exhibited a carpet-like mechanism of action, in which the peptide initially binds to the membrane, covering its surface and acquiring a helical structure that remains associated to the negatively charged phospholipids. After this electrostatic interaction, another peptide region causes a strain in the membrane, promoting its disruption.  相似文献   

17.
Antoniou C  Lam VQ  Fung LW 《Biochemistry》2008,47(40):10765-10772
We used cysteine scanning, isothermal titration calorimetry (ITC) and spin label EPR methods to study the two regions that flank the partial domain Helix C' of the N-terminal end of alpha-spectrin (residues 14-20 and residues 44-54) in the absence and presence of a model protein of the beta-spectrin C-terminal end. In the absence of beta-spectrin, residues 14-20 and 46-52 were known to be unstructured. The EPR spectral values of the inverse line width (Delta H (-1)) and of the width between the low field peak and the central peak ( aZ) of residues in part of the first unstructured region (residues 17-20) and of most residues in the second unstructured junction region (residues 46-52) changed dramatically upon association with beta-spectrin, suggesting that the two regions undergo a conformational change, becoming more rigid and likely becoming helical. ITC results showed that three of the seven residues in the junction region (residues 46-52) were very important in its association with beta-spectrin, in the following order: L49 > G46 > K48. In general, our results suggest that any mutations that affect the propensity of helical formation in the region spanning residues 17-52 in alpha-spectrin, or that affect hydrophobic clustering and/or salt-bridge stabilization of the bundled helices, would affect spectrin tetramer formation, and may lead to blood disorders.  相似文献   

18.
The exact sites, structures, and molecular mechanisms of interaction between junction organizing zona occludence protein 1 (ZO-1) and the tight junction protein occludin or the adherens junction protein alpha-catenin are unknown. Binding studies by surface plasmon resonance spectroscopy and peptide mapping combined with comparative modeling utilizing crystal structures led for the first time to a molecular model revealing the binding of both occludin and alpha-catenin to the same binding site in ZO-1. Our data support a concept that ZO-1 successively associates with alpha-catenin at the adherens junction and occludin at the tight junction. Strong spatial evidence indicates that the occludin C-terminal coiled-coil domain dimerizes and interacts finally as a four-helix bundle with the identified structural motifs in ZO-1. The helix bundle of occludin406-521 and alpha-catenin509-906 interacts with the hinge region (ZO-1591-632 and ZO-1591-622, respectively) and with (ZO-1726-754 and ZO-1756-781) in the GuK domain of ZO-1 containing coiled-coil and alpha-helical structures, respectively. The selectivity of both protein-protein interactions is defined by complementary shapes and charges between the participating epitopes. In conclusion, a common molecular mechanism of forming an intermolecular helical bundle between the hinge region/GuK domain of ZO-1 and alpha-catenin and occludin is identified as a general molecular principle organizing the association of ZO-1 at adherens and tight junctions.  相似文献   

19.
Parmar AS  Nunes AM  Baum J  Brodsky B 《Biopolymers》2012,97(10):795-806
Type XXV collagen, or collagen‐like amyloidogenic component, is a component of amyloid plaques, and recent studies suggest this collagen affects amyloid fibril elongation and has a genetic association with Alzheimer's disease. The relationship between the collagen triple helix and amyloid fibrils was investigated by studying peptide models, including a very stable triple helical peptide (Pro‐Hyp‐Gly)10, an amyloidogenic peptide GNNQQNY, and a hybrid peptide where the GNNQQNY sequence was incorporated between (GPO)n domains. Circular dichroism and nuclear magnetic resonance (NMR) spectroscopy showed the GNNQQNY peptide formed a random coil structure, whereas the hybrid peptide contained a central disordered GNNQQNY region transitioning to triple‐helical ends. Light scattering confirmed the GNNQQNY peptide had a high propensity to form amyloid fibrils, whereas amyloidogenesis was delayed in the hybrid peptide. NMR data suggested the triple‐helix constraints on the GNNQQNY sequence within the hybrid peptide may disfavor the conformational change necessary for aggregation. Independent addition of a triple‐helical peptide to the GNNQQNY peptide under aggregating conditions delayed nucleation and amyloid fibril growth. The inhibition of amyloid nucleation depended on the Gly‐Xaa‐Yaa sequence and required the triple‐helix conformation. The inhibitory effect of the collagen triple‐helix on an amyloidogenic sequence, when in the same molecule or when added separately, suggests Type XXV collagen, and possibly other collagens, may play a role in regulating amyloid fibril formation. © 2012 Wiley Periodicals, Inc. Biopolymers 97: 795–806, 2012.  相似文献   

20.
1H nuclear magnetic resonance experiments indicate formation of secondary structures in water solutions of a synthetic immunogenic peptide of sequence EVVPHKKMHKDFLEKIGGL corresponding to the C-helix (residues 69 to 87) of myohemerythrin. The conformational ensemble consists of a set of turn-like structures, distributed over the C-terminal half of the peptide and rapidly interconverting by way of unfolded states. These structures, termed nascent helix, are stabilized into helical structure with long-range order in water/trifluorethanol mixtures. Circular dichroism measurements confirm the presence of 50% helix in water/trifluoroethanol but show no evidence of helicity in water solutions of the peptide. It is apparent that no one member of the transient set of helical conformations which constitutes the nascent helix is sufficiently long to be detectable by circular dichroism experiments. No preferred conformations could be detected by nuclear magnetic resonance in the N-terminal half of the peptide, either in water or water/trifluoroethanol mixtures. This region of the peptide is stabilized in helix by long-range interactions in the folded protein. The possible role of nascent secondary structure in induction of antipeptide antibodies and in initiation of protein folding is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号