首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, cellular requirements for rejection are examined by the use of adoptive transfer assays in the ACI to Lewis cardiac allograft model. The findings show that adoptive transfer of 1 x 10(8) spleen cells (SpL), 5 x 10(7) T-cells, and 2 x 10(7) helper T-cells (W3/25+) obtained from normal, nonsensitized donors restores acute ACI graft rejection in sublethally irradiated (750 rad) Lewis recipients. In contrast, reconstitution with 2 x 10(7) cytotoxic T-cells (0X8+) does not restore first-set graft rejection. Reconstitution of the irradiated recipients with either W3/25+ or 0X8+ T-cells obtained from specifically sensitized syngeneic donors resulted in acute rejection. The W3/25+ T-cell subset was significantly more potent (P less than 0.01) in effecting rejection on a per-cell basis. Adoptive transfer of SpL, T-cells, and 0X8+ T-cells obtained from sensitized rats led to accelerated cardiac allograft rejection in the naive secondary recipients while W3/25+ T-cells did not. This study suggests that although the W3/25+ T-cells alone have the capacity to initiate first-set graft rejection, both W3/25+ and 0X8+ subsets appear to be critical to the completion of rejection of heart allografts. We also examined the capacity of adoptively transferred B-cells from sensitized donors to influence graft rejection. Our findings suggest that while B-cells fail to restore the capacity for graft rejection in irradiated recipients, they can, however, present MHC antigens to the secondary naive host thus causing allosensitization which results in accelerated rejection of a subsequent graft.  相似文献   

2.
Elderly organ transplant recipients represent a fast growing segment of patients on the waiting list. We examined age-dependent CD4+ T-cell functions in a wild-type (WT) and a transgenic mouse transplant model and analyzed the suppressive function of old regulatory T-cells. We found that splenocytes of naïve old B6 mice contained significantly higher frequencies of T-cells with an effector/memory phenotype (CD4+CD44highCD62Llow). However, in-vitro proliferation (MLR) and IFNγ-production (ELISPOT) were markedly reduced with increasing age. Likewise, skin graft rejection was significantly delayed in older recipients and fewer graft infiltrating CD4+T-cells were observed. Old CD4+ T-cells demonstrated a significant impaired responsiveness as indicated by diminished proliferation and activation. In contrast, old alloantigen-specific CD4+CD25+FoxP3+ T-cells demonstrated a dose-dependent well-preserved suppressor function. Next, we examined characteristics of 18-month old alloreactive T-cells in a transgenic adoptive transfer model. Adoptively transferred old T-cells proliferated significantly less in response to antigen. Skin graft rejection was significantly delayed in older recipients, and graft infiltrating cells were reduced. In summary, advanced recipient age was associated with delayed acute rejection and impaired CD4+ T-cell function and proliferation while CD4+CD25+FoxP3+ T-cells (Tregs) showed a well-preserved function.  相似文献   

3.
Induction of tolerance for skin allotransplantation requires selective suppression of the host response to foreign histocompatibility antigens. This report describes a new approach which employs pre-treatment with 8-methoxypsoralen (8-MOP) and ultraviolet A light (UVA) to render the effector cells of graft rejection immunogenic for the syngeneic recipient. Eight days after BALB/c mice received CBA/j skin grafts, their splenocytes were treated with 100 ng/ml 8-MOP and 1 J/cm2 UVA prior to reinfusion into naive BALB/c recipients. Recipient mice were tested for tolerance to alloantigens in mixed leukocyte culture (MLC), cytotoxicity (CTL), delayed-type hypersensitivity assays (DTH), and challenge with a fresh CBA/j graft. Splenocytes from BALB/c recipients of photoinactivated splenocytes containing the effector cells of CBA/j alloantigen rejection proliferated poorly in MLC and generated lower cytotoxic T-cell responses to CBA/j alloantigens in comparison with sensitized and naive controls and suppressed the MLC and CTL response to alloantigen from sensitized and naive BALB/c mice. In vivo, the DTH response was specifically suppressed to the relevant alloantigen in comparison with controls. BALB/c mice treated in this fashion retained a CBA/j skin graft for up to 42 days post-transplantation without visual evidence of rejection. These results showed that reinfusion of photoinactivated effector cells resulted in an immunosuppressive host response which specifically inhibited in vitro and in vivo responses that correlate with allograft rejection and permitted prolonged retention of histoincompatible skin grafts.  相似文献   

4.
We determined whether distinct subclasses of dendritic cells (DC) could polarize cytokine production and regulate the pattern of xenograft rejection. C57BL/6 recipients, transplanted with Lewis rat hearts, exhibited a predominantly CD11c(+)CD8alpha(+) splenic DC population and an intragraft cytokine profile characteristic of a Th1-dominant response. In contrast, BALB/c recipients of Lewis rat heart xenografts displayed a predominantly CD11c(+)CD8alpha(-) splenic DC population and IL-4 intragraft expression characteristic of a Th2 response. In addition, the CD11c(+)IL-12(+) splenic DC population in C57BL/6 recipients was significantly higher than that in BALB/c recipients. Adoptive transfer of syngeneic CD8alpha(-) bone marrow-derived DC shifted a Th1-dominant, slow cell-mediated rejection to a Th2-dominant, aggressive acute vascular rejection (AVR) in C57BL/6 mice. This was associated with a cytokine shift from Th1 to Th2 in these mice. In contrast, transfer of CD8alpha(+) bone marrow-derived DC shifted AVR to cell-mediated rejection in BALB/c mice and significantly prolonged graft survival time from 6.0 +/- 0.6 days to 14.2 +/- 0.8 days. CD8alpha(+) DC transfer rendered BALB/c mice susceptible to cyclosporine therapy, thereby facilitating long-term graft survival. Furthermore, CD8alpha(+) DC transfer in IL-12-deficient mice reconstituted IL-12 expression, induced Th1 response, and attenuated AVR. Our data suggest that the pattern of acute xenogeneic rejection can be regulated by distinct DC subsets.  相似文献   

5.

Background

Adiponectin regulates glucose and fatty-acid metabolism but its role in chronic graft rejection mediated by Th2 cytokines remains ill-defined.

Methodology/Principal Findings

Wild type and adiponectin-null mice were used as graft recipients in mouse MHC class II disparate cardiac transplantation (bm12 toB6) and the graft rejection was monitored. In adiponectin-null mice we observed that the cellular infiltrate of eosinophils, CD4+ and CD8+ T cells was reduced in grafts compared to the controls as was collagen deposition and vessel occlusion. A similar outcome was observed for skin transplants except that neutrophil infiltration was increased. Low levels of IL-4 were detected in the grafts and serum. The effect of adiponectin signaling on IL-4 expression was further investigated. Treatment with AMPK and p38 MAPK inhibitors blocked adiponectin enhanced T cell proliferation in mixed lymphocyte reactions. Inhibition of AMPK reduced eosinophil infiltration in skin grafts in wild type recipients and in contrast AMPK activation increased eosinophils in adiponectin-null recipients. The addition of adiponectin increased IL-4 production by the T cell line EL4 with augmented nuclear GATA-3 and phospho-STAT6 expression which were suppressed by knockdown of adiponectin receptor 1 and 2.

Conclusions

Our results demonstrate a direct effect of adiponectin on IL-4 expression which contributes to Th2 cytokine mediated rejection in mouse MHC class II histoincompatible transplants. These results add to our understanding of the interrelationship of metabolism and immune regulation and raise the possibility that AMPK inhibitors may be beneficial in selected types of rejection.  相似文献   

6.
Treatment with a 2-week course of anti-CD154 antibody and a single transfusion of donor leukocytes (a donor-specific transfusion or DST) permits skin allografts to survive for >100 days in thymectomized mice. As clinical trials of this methodology in humans are contemplated, concern has been expressed that viral infection of graft recipients may disrupt tolerance to the allograft. We report that acute infection with lymphocytic choriomeningitis virus (LCMV) induced allograft rejection in mice treated with DST and anti-CD154 antibody if inoculated shortly after transplantation. Isografts resisted LCMV-induced rejection, and the interferon-inducing agent polyinosinic:polycytidylic acid did not induce allograft rejection, suggesting that the effect of LCMV is not simply a consequence of nonspecific inflammation. Administration of anti-CD8 antibody to engrafted mice delayed LCMV-induced allograft rejection. Pichinde virus also induced acute allograft rejection, but murine cytomegalovirus and vaccinia virus (VV) did not. Injection of LCMV approximately 50 days after tolerance induction and transplantation had minimal effect on subsequent allograft survival. Treatment with DST and anti-CD154 antibody did not interfere with clearance of LCMV, but a normally nonlethal high dose of VV during tolerance induction and transplantation killed graft recipients. We conclude that DST and anti-CD154 antibody induce a tolerant state that can be broken shortly after transplantation by certain viral infections. Clinical application of transplantation tolerance protocols may require patient isolation to facilitate the procedure and to protect recipients.  相似文献   

7.
We have provided evidence that both major T cell subsets, T4-positive (helper/inducer) and T8-positive (cytotoxic/suppressor), infiltrate human skin allografts. Overall, and in the graft dermis and graft bed, T4-positive cells were predominant (1.5 to 3 times more numerous than T8-positive cells). In contrast, T8-positive cells were relatively more numerous in the epidermis and hair follicles. Rejection probably proceeded by two apparently independent pathways: 1) direct contact killing of graft epithelial cells, presumably by immunologically specific T8-positive cytotoxic cells, and 2) injury of microvascular endothelium of both the graft and graft bed with secondary graft infarction. Although important in first set skin allograft rejection, the mechanism of the second type of killing is uncertain. T4-positive cells were probably involved, as evidenced by their greater numbers; furthermore, studies in mice have shown that transfused helper/inducer cells are able to effect first-set skin graft rejection. It remains to be determined whether T4-positive cells act alone or cooperate with other cells to destroy vessels and bring about graft rejection. Langerhans cells were recognized in epithelial and dermal compartments of both allografts and autografts by their reactivity with anti-T6 and anti-Ia antibodies. We could not determine whether such cells in allografts were of host or donor origin.  相似文献   

8.
STAT4(-/-) mice have impaired type 1 T cell differentiation, whereas STAT6(-/-) mice fail to generate type 2 responses. The role of type 1 and type 2 T cell differentiation in acute cardiac allograft rejection and in the induction of tolerance was examined in wild-type, STAT4(-/-), and STAT6(-/-) recipients. All recipients rejected the grafts promptly. Analysis of in situ cytokine gene expression in the allografts confirmed decreased levels of IFN-gamma in STAT4(-/-) recipients and undetectable levels of IL-4 and IL-5 in STAT6(-/-) mice. Blockade of the CD28/B7 costimulatory pathway prolonged cardiac graft survival for >100 days in 100% of wild-type and STAT4(-/-) mice. However, 14% of CTLA4-Ig-treated STAT6(-/-) mice rejected their grafts between 20 and 100 days. Moreover, of those animals followed past 100 days, 60% of the STAT6(-/-) mice rejected their grafts. Splenocytes harvested on day 145 posttransplant from CTLA4-Ig-treated rejecting STAT6(-/-) recipients were transfused into syngeneic SCID mice transplanted with donor or third party cardiac allografts. Both donor and third party grafts were rejected, indicating that the initial graft loss may be due to an immunological rejection. In contrast, when splenocytes from CTLA4-Ig-treated wild-type or nonrejecting STAT6(-/-) mice were transferred into SCID recipients, donor allografts were accepted, but third party hearts were rejected. Thus, long-term prolongation of cardiac allograft survival by CTLA4-Ig is STAT4-independent but, at least in part, STAT6-dependent. These data suggest that the balance of type 1 and type 2 T lymphocyte differentiation is not critical for acute rejection but influences the robust tolerance induced by CD28/B7 blockade in this model.  相似文献   

9.
10.
Although immune responses leading to rejection of transplantable tumours have been well studied, requirements for epithelial tumour rejection are unclear. Here, we use human growth hormone (hGH) expressed in epithelial cells (skin keratinocytes) as a model neo-self antigen to investigate the consequences of antigen presentation from epithelial cells. Mice transgenic for hGH driven from the keratin 14 promoter express hGH in skin keratinocytes. This hGH-transgenic skin is not rejected by syngeneic non-transgenic recipients, although an antibody response to hGH develops in grafted animals. Systemic immunization of graft recipients with hGH peptides, or local administration of stimulatory anti-CD40 antibody, induces temporary macroscopic graft inflammation, and an obvious dermal infiltrate of inflammatory cells, but not graft rejection. These results suggest that a neo-self antigen expressed in somatic cells in skin can induce an immune response that can be enhanced further by induction of specific immunity systemically or non-specific immunity locally. However, immune responses do not always lead to rejection, despite induction of local inflammatory changes. Therefore, in vitro immune responses and in vivo delayed type hypersensitivity are not surrogate markers for immune responses effective against epithelial cells expressing neoantigens.  相似文献   

11.
Allograft rejection is initiated by an immune response to donor MHC proteins. We recently reported that this response can result in breakdown of immune tolerance to a recipient self Ag. However, the contribution of this autoimmune response to graft rejection has yet to be determined. Here, we found that after mouse allogeneic heart transplantation, de novo CD4+ T cell and B cell autoimmune response to cardiac myosin (CM), a major contractile protein of cardiac muscle, is elicited in recipients. Importantly, CM is the autoantigen that causes autoimmune myocarditis, a heart autoimmune disease whose histopathological features resemble those observed in rejected cardiac transplants. Furthermore, T cell responses directed to CM peptide myhcalpha 334-352, a known myocarditogenic determinant, were detected in heart-transplanted mice. No responses to CM were observed in mice that had received an allogeneic skin graft or a syngeneic heart transplant, demonstrating that this response is tissue specific and that allogeneic response is necessary to break tolerance to CM. Next, we showed that sensitization of recipient mice with CM markedly accelerates the rejection of allogeneic heart. Therefore, posttransplant autoimmune response to CM is relevant to the rejection process. We conclude that transplantation-induced autoimmune response to CM represents a new mechanism that may play a significant role in cardiac transplant rejection.  相似文献   

12.
Allograft rejection in sensitized recipients remains the major problem in clinical organ transplantation. We have developed a donor-type skin-sensitized mouse cardiac allograft model (BALB/c-->C57BL/6) in which both rejection (<5 days) and alloreactive CD8 activation are resistant to CD154 blockade. First, we attempted to elucidate why CD154 blockade fails to protect cardiac grafts in sensitized recipients. The gene array analysis has revealed that treatment with anti-CD154 mAb (MR1) had distinctive impact on host immunity in naive vs sensitized animals. Unlike in naive counterparts, host sensitization mitigated the impact of CD154 blockade on critical immune signaling pathways. Indeed, we identified 3234 genes in cardiac grafts that were down-regulated by MR1 in naive (at least 5-fold), but remained unaffected in sensitized hosts. Moreover, MR1 treatment failed to prevent accumulation of CD4 T cells in cardiac allografts of sensitized recipients. Then, to determine the role of CD4 help in CD154 blockade-resistant immune response, we used CD4-depleting and CD4-blocking Ab, in conjunction with MR1 treatment. Our data revealed that CD154 blockade-resistant CD8 activation in sensitized mice was dependent on CD4 T cells. In the absence of CD4 help, CD154 blockade prevented differentiation of alloreactive CD8 T cells into CTL effector/memory cells and abrogated acute rejection (cardiac graft survival for >30 days), paralleled by selective target gene depression at the graft site. These results provide the rationale to probe potential synergy of adjunctive therapy targeting CD4 and CD154 to overcome graft rejection in sensitized recipients.  相似文献   

13.
Beta(2)-microglobulin (beta(2)m)-derived peptides are minor transplantation Ags in mice as beta(2)m-positive skin grafts (beta(2)m(+/+)) are rejected by genetically beta(2)m-deficient recipient mice (beta(2)m(-/-)). We studied the effector pathways responsible for the rejection induced by beta(2)-microglobulin-derived minor transplantation Ags. The rejection of beta(2)m(+/+) skin grafts by naive beta(2)m(-/-) mice was dependent on both CD4 and CD8 T cells as shown by administration of depleting mAbs. Experiments performed with beta(2)m(-/-)CD8(-/-) double knockout mice grafted with a beta(2)m(+/+) MHC class I-deficient skin showed that sensitized CD4 T cells directed at beta(2)m peptides-MHC class II complexes are sufficient to trigger rapid rejection. Rejection of beta(2)m(+/+) grafts was associated with the production of IL-5 in vitro, the expression of IL-4 and IL-5 mRNAs in the grafted tissue, and the presence within rejected grafts of a considerable eosinophil infiltrate. Blocking IL-4 and IL-5 in vivo and depleting eosinophils with an anti-CCR3 mAb prevented graft eosinophil infiltration and prolonged beta(2)m(+/+) skin graft survival. Lymphocytes from rejecting beta(2)m(-/-) mice also displayed an increased production of IFN-gamma after culture with beta(2)m(+/+) minor alloantigens. In vivo neutralization of IFN-gamma inhibited skin graft rejection. Finally, beta(2)m(+/+) skin grafts harvested from B6(lpr/lpr) donor mice, which lack a functional Fas molecule, survived longer than wild-type beta(2)m(+/+) skin grafts, showing that Fas-Fas ligand interactions are involved in the rejection process. We conclude that IL-4- and IL-5-dependent eosinophilic rejection, IFN-gamma-dependent mechanisms, and Fas-Fas ligand interactions are effector pathways in the acute rejection of minor transplantation Ags.  相似文献   

14.
Several evidences suggest that regulatory T cells (Treg) promote Th17 differentiation. Based on this hypothesis, we tested the effect of IL-17A neutralization in a model of skin transplantation in which long-term graft survival depends on a strong in vivo Treg expansion induced by transient exogenous IL-2 administration. As expected, IL-2 supplementation prevented rejection of MHC class II disparate skin allografts but, surprisingly, not in IL-17A-deficient recipients. We attested that IL-17A was not required for IL-2-mediated Treg expansion, intragraft recruitment or suppressive capacities. Instead, IL-17A prevented allograft rejection by inhibiting Th1 alloreactivity independently of Tregs. Indeed, T-bet expression of naive alloreactive CD4+ T cells and the subsequent Th1 immune response was significantly enhanced in IL-17A deficient mice. Our results illustrate for the first time a protective role of IL-17A in CD4+-mediated allograft rejection process.  相似文献   

15.
Macrophages have been proposed as the major effector cell in T cell-mediated xenograft rejection. To determine their role in this response, NOD-SCID mice were transplanted with fetal pig pancreas (FPP) before reconstitution with CD4(+) T cells from BALB/c mice. Twelve days after CD4(+) T cell reconstitution, purified macrophages (depleted of T cells) were isolated from CD4(+) T cell-reconstituted FPP recipient mice and adoptively transferred to their nonreconstituted counterparts. After adoptive macrophage transfer, FPP recipient mice transferred with macrophages from CD4(+) T cell-reconstituted mice demonstrated xenograft destruction along with massive macrophage infiltration at day 4 and complete graft destruction at day 8 postmacrophage transfer. By contrast, FPP recipients that received macrophages from nonreconstituted mice showed intact FPP xenografts with few infiltrating macrophages at both days 4 and 8 after macrophage transfer. The graft-infiltrating macrophages showed increased expression of their activation markers. Depletion of endogenous macrophages or any remaining CD4(+) T cells did not delay graft rejection in the macrophage-transferred FPP recipients, whereas depletion of transferred macrophages with clodronate liposomes prevented graft rejection. Our results show that macrophages primed by FPP and activated by CD4(+) T cells were attracted from the peripheral circulation and were capable of specific targeting and destruction of FPP xenografts. This suggests that in xenograft rejection, there are macrophage-specific recognition and targeting signals that are independent of those received by T cells.  相似文献   

16.
The mechanisms underlying physiological regulation of alloimmune responses remain poorly defined. We investigated the roles of cytokines, CTLA-4, CD25(+) T cells, and apoptosis in regulating alloimmune responses in vivo. Two murine cardiac transplant models were used, B10.D2 (minor mismatch) and C57BL/6 (major mismatch), into BALB/c recipients. Recipients were wild type, STAT4(-/-) (Th1 deficient), or STAT6(-/-) (Th2 deficient) mice. Minor mismatched allografts were accepted spontaneously in approximately 70% of wild type and STAT4(-/-) mice. By contrast, there was significantly shorter graft survival in minor mismatched STAT6(-/-) mice. Either the adoptive transfer of STAT4(-/-) splenocytes or the administration of IL-4Fc fusion protein into STAT6(-/-) mice resulted in long term graft survival. Blocking CTLA-4 signaling accelerated the rejection in all recipients, but was more pronounced in the minor combination. This was accompanied by an increased frequency of alloreactive T cells. Furthermore, CTLA-4 blockade regulated CD4(+) or CD8(+) as well as Th1 or Th2 alloreactive T cells. Finally, while anti-CD25 treatment prolonged graft survival in the major mismatched combination, the same treatment accelerated graft rejection in the minor mismatched group. The latter was associated with an increased frequency of alloreactive T cells and inhibition of T cell apoptosis. These data demonstrate that cytokine regulation, CTLA-4 negative signaling, and T cell apoptosis play critical roles in regulating alloimmunity, especially under conditions where the alloreactive T cell clone size is relatively small.  相似文献   

17.
CD4 T cell-dependent mechanisms promoting allograft rejection include expression of inflammatory functions within the graft and the provision of help for donor-reactive CD8 T cell and Ab responses. These studies tested CD4 T cell-mediated rejection of MHC-mismatched cardiac allografts in the absence of both CD8 T and B lymphocytes. Whereas wild-type C57BL/6 recipients depleted of CD8 T cells rejected A/J cardiac grafts within 10 days, allografts were not rejected in B cell-deficient B6.muMT(-/-) recipients depleted of CD8 T cells. Isolated wild-type C57BL/6 and B6.muMT(-/-) CD4 T cells had nearly equivalent in vivo alloreactive proliferative responses. CD4 T cell numbers in B6.muMT(-/-) spleens were 10% of that in wild-type mice but were only slightly decreased in peripheral lymph nodes. CD8 T cell depletion did not abrogate B6.muMT(-/-) mice rejection of A/J skin allografts and this rejection rendered these recipients able to reject A/J cardiac allografts. Redirection of the alloimmune response to the lymph nodes by splenectomy conferred the ability of B6.muMT(-/-) CD4 T cells to reject cardiac allografts. These results indicate that the low number of splenic CD4 T cells in B6.muMT(-/-) mice underlies the inability to reject cardiac allografts and this inability is overcome by diverting the CD4 T cell response to the peripheral lymph nodes.  相似文献   

18.
Both wild-type (WT) and IFN-gamma-deficient (IFN-gamma(-/-)) C57BL/6 mice can rapidly reject BALB/c cardiac allografts. When depleted of CD8(+) cells, both WT and IFN-gamma(-/-) mice rejected their allografts, indicating that these mice share a common CD4-mediated, CD8-independent mechanism of rejection. However, when depleted of CD4(+) cells, WT mice accepted their allografts, while IFN-gamma(-/-) recipients rapidly rejected them. Hence, IFN-gamma(-/-), but not WT mice developed an unusual CD8-mediated, CD4-independent, mechanism of allograft rejection. Allograft rejection in IFN-gamma(-/-) mice was associated with intragraft accumulation of IL-4-producing cells, polymorphonuclear leukocytes, and eosinophils. Furthermore, this form of rejection was resistant to treatment with anti-CD40 ligand (CD40L) mAb, which markedly prolonged graft survival in WT mice. T cell depletion studies verified that anti-CD40L treatment failed to prevent CD8-mediated allograft rejection in IFN-gamma(-/-) mice. However, anti-CD40L treatment did prevent CD4-mediated rejection in IFN-gamma(-/-) mice, although grafts were eventually rejected when CD8(+) T cells repopulated the periphery. The IL-4 production and eosinophil influx into the graft that occurred during CD8-mediated rejection were apparently epiphenomenal, since treatment with anti-IL-4 mAb blocked intragraft accumulation of eosinophils, but did not interfere with allograft rejection. These studies demonstrate that a novel, CD8-mediated mechanism of allograft rejection, which is resistant to experimental immunosuppression, can develop when IFN-gamma is limiting. An understanding of this mechanism is confounded by its association with Th2-like immune events, which contribute unique histopathologic features to the graft but are apparently unnecessary for the process of allograft rejection.  相似文献   

19.
Transgenic mice were created in which a sheep keratin promoter directed the expression of IL-2 into the dermis. These KIL-2 transgenic mice were used to investigate the effects of localized IL-2 dysregulation on immune responses. Peripheral tolerance to skin antigens was not broken by in situ IL-2 expression because syngeneic KIL-2 skin grafts were not rejected. However, MHC Class I-disparate skin grafts from KIL-2 donors were rejected faster (median survival time (MST) 12 days) than grafts of non-transgenic littermate skin (MST 18 days). In contrast, the kinetics of KIL-2 H-Y-disparate skin graft rejection (MST 14 days) did not differ significantly from controls (MST 16 days), suggesting that upregulation of IL-2 at the effector site could affect CD4+ T cell- independent, but not CD4+ T cell-dependent, responses. No effect on rejection kinetics was observed when wild type allogeneic skin was grafted onto transgenic mice that expressed bcl2 constitutively in their lymphocytes (MST of 14 days, both sets), indicating that this was not simply due to increased longevity of T cells within the IL-2 expressing graft. We therefore suggest that aberrant expression of IL-2 can accelerate helper-independent CD8+ T cell responses by increasing proliferation and/or differentiation of cytolytic T cells at the effector site.  相似文献   

20.
Pesticides and metals in the aquatic environment can peturb the fish immune system and, consequently, increase their susceptibility to pathogenic agents. Lindane, an insecticide, was tested for its effects on skin graft rejection after daily administration in the food for 1 month (1000 mg lindane kg−1 food). No difference was observed from the control for the first set of graft rejection times (8 days) or for the second set of graft rejection times (5 days), even if the lymphoid organs were highly contaminated with lindane. Atrazine, lindane and manganese were tested for their effect on in vitro phagocytosis of Yersinia ruckeri and zymosan (yeast extract) by pronephric and splenic macrophages. Neither pesticide had any effect on macrophage phagocytosis at concentrations up to their limit of solubility in water. Manganese ions, in the range 6.25–50 ppm, had a strong enhancing effect on phagocytosis of Y. ruckeri , as did zymosan, but only at a concentration of less than 6.25 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号