首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A temperature-sensitive (TS) plasmid was generated from the endogenous streptomycin resistance plasmid of Mannheimia hemolytica and used to engineer in-frame aroA deletion mutants of Mannheimia hemolytica, Pasteurella multocida, and Haemophilus somnus. TS replacement plasmids carrying in-frame aroA deletions were constructed for each target species and introduced into host cells by electroporation. After recovery in broth, cells were spread onto plates containing antibiotic and incubated at 30 degrees C, the permissive temperature for autonomous plasmid replication. Transfer of transformants to selective plates cultured at a nonpermissive temperature for plasmid replication selected for single-crossover mutants consisting of replacement plasmids that had integrated into host chromosomes by homologous recombination. Transfer of the single-crossover mutants back to a permissive temperature without antibiotic selection drove plasmid resolution, and, depending on where plasmid excision occurred, either deletion mutants or wild-type cells were generated. The system used here represents a broadly applicable means for generating unmarked mutants of Pasteurellaceae species.  相似文献   

2.
3.
Temperature-sensitive (TS) plasmids were generated through chemical mutagenesis of a derivative of the streptomycin resistance parent plasmid pD70, isolated from Mannheimia hemolytica serotype 1. Three TS plasmids which failed to replicate at or above 42 degrees C in M. hemolytica but which were fully functional below 31 degrees C were selected for further analysis. Two of the TS plasmids were shown by sequencing to possess unique single-base-pair mutations. The third TS plasmid contained a unique base pair substitution and a second mutation that had been previously identified. These mutations were clustered within a 200-bp region of the presumed plasmid origin of replication. Site-directed single-nucleotide substitutions were introduced into the wild-type pD70 origin of replication to confirm that mutations identified by sequencing had conferred thermoregulated replication. Deletion analysis on the wild-type pD70 plasmid replicon revealed that approximately 720 bp are necessary for plasmid maintenance. Replication of the TS plasmids was thermoregulated in Pasteurella multocida and Haemophilus somnus as well. To consistently transform H. somnus with TS plasmid, in vitro DNA methylation with commercially available HhaI methyltransferase was necessary to protect against the organism's restriction enzyme HsoI (recognition sequence 5'-GCGC-3') characterized herein.  相似文献   

4.
Due to the difficulty of multiple deletions using the Cre/loxP system, a simple, markerless multiple-deletion method based on a Cre/mutant lox system combining a right-element (RE) mutant lox site with a left-element (LE) mutant lox site was employed for large-scale genome rearrangements in Corynebacterium glutamicum. Eight distinct genomic regions that had been identified previously by comparative analysis of C. glutamicum R and C. glutamicum 13032 genomes were targeted for deletion. By homologous recombination, LE and RE mutant lox sites were integrated at each end of a target region. Highly efficient and accurate deletions between the two chromosomal mutant lox sites in the presence of Cre recombinase were realized. A deletion mutant lacking 190 kb of chromosomal regions, encoding a total of 188 open reading frames (ORFs), was obtained. These deletions represent the largest genomic excisions in C. glutamicum reported to date. Despite the loss of numerous predicted ORFs, the mutant exhibited normal growth under standard laboratory conditions. The Cre/loxP system using a pair of mutant lox sites provides a new, efficient genome rearrangement technique for C. glutamicum. It should facilitate the understanding of genome functions of microorganisms.  相似文献   

5.
Summary Replication of plasmid R1162 DNA does not require the product of the dnaA gene. An integrated copy of the plasmid can suppress the temperature-sensitive dnaA46 allele when (1) additional plasmid copies are present in the cytoplasm and (2) an inactive replication origin, generated by deletion, is also present in the chromosome. We propose that the inactive origin sets the rate of initiation of chromosome replication at a level compatible with cell viability, possibly by providing additional binding sites for an R1162-encoded protein that is rate-limiting for plasmid replication.  相似文献   

6.
B E Uhlin  V Schweickart  A J Clark 《Gene》1983,22(2-3):255-265
Two new cloning vectors (pBEU28 and pBEU50) with temperature-controlled runaway-replication properties are described. pBEU28 is similar to aphA+ (KanR) plasmid pBEU2 but lacks a 1.8-kb duplication which is responsible for plasmid instability. pBEU50 is an analog of pBR313 and pBR322 in that it carries bla+(AmpR), which can be used for selection, and tet+(TetR) which can be inactivated by cloning at HindIII and BamHI restriction sites. Sublethal concentrations of novobiocin were exploited to suppress runaway replication and to restore the viability of the plasmid carriers. By this method copB deletion mutants of two temperature-controlled, conditional runaway-replication plasmids were detected and isolated. The unconditional runaway-replication property of these plasmids leads us to hypothesize that there are at least two controls of plasmid R1 copy number and that the copB-dependent control is temperature-sensitive in the conditional runaway replication mutants. The novobiocin suppression of the runaway replication permitted us to clone dnaN+ on pBEU28 and to identify its presence at 42 degrees C with a dnaN59 transformation recipient which was temperature-sensitive due to a defect in the dnaN gene.  相似文献   

7.
8.
A temperature-sensitive (TS) plasmid was generated from the endogenous streptomycin resistance plasmid of Mannheimia hemolytica and used to engineer in-frame aroA deletion mutants of Mannheimia hemolytica, Pasteurella multocida, and Haemophilus somnus. TS replacement plasmids carrying in-frame aroA deletions were constructed for each target species and introduced into host cells by electroporation. After recovery in broth, cells were spread onto plates containing antibiotic and incubated at 30°C, the permissive temperature for autonomous plasmid replication. Transfer of transformants to selective plates cultured at a nonpermissive temperature for plasmid replication selected for single-crossover mutants consisting of replacement plasmids that had integrated into host chromosomes by homologous recombination. Transfer of the single-crossover mutants back to a permissive temperature without antibiotic selection drove plasmid resolution, and, depending on where plasmid excision occurred, either deletion mutants or wild-type cells were generated. The system used here represents a broadly applicable means for generating unmarked mutants of Pasteurellaceae species.  相似文献   

9.
We report the isolation and characterization of a previously unidentified Escherichia coli gene that suppresses the temperature-sensitive growth and filamentation of a dnaK deletion mutant strain. Introduction of a multicopy plasmid carrying this wild-type gene into a dnaK deletion mutant strain rescued the temperature-sensitive growth of the dnaK deletion mutant strain at 40.5 degrees C and the filamentation, fully at 37 degrees C and partially at 40.5 degrees C. However, the inability of dnaK mutant cells to support bacteriophage lambda growth was not suppressed. This gene was also able to suppress the temperature-sensitive growth of a grpE280 mutant strain at 41 degrees C. Filamentation of the grpE280 mutant strain was suppressed at 37 degrees C but not at 41 degrees C. The dnaK suppressor gene, designated dksA, maps near the mrcB gene (3.7 min on the E. coli chromosome). DNA sequence analysis and in vivo experiments showed that dksA encodes a 17,500-Mr polypeptide. Gene disruption experiments indicated that dksA is not an essential gene.  相似文献   

10.
The three replication origins of the antibiotic resistance plasmid R6K require for their activity in Escherichia coli a DNA segment containing seven 22 base-pair direct repeats and a plasmid-encoded initiation protein (pi). The pi protein functions in the negative control of R6K replication, in addition to its requirement for the initiation of replication. Construction of a plasmid containing the pi structural gene (pir) downstream from the inducible pR promoter of bacteriophage lambda provided high levels of production of pi protein in E. coli. The pi protein was purified and shown to possess general DNA binding properties with a preference for DNA fragments containing the gamma origin of replication, the operator region of the pir gene and the R6K beta-origin region. Velocity sedimentation analysis indicates that the pi protein exists as a dimer in its native form. Agarose gel electrophoresis analysis of pi-gamma-origin complexes suggests that one pi dimer binds to each copy of the 22 base-pair direct repeats in the gamma origin region. Purified mutant pi protein obtained from a temperature-sensitive initiation mutant (pir 105-ts) exhibited temperature-sensitive binding activity to the gamma-origin region, whereas two mutant proteins exhibiting a high copy number phenotype were unaltered (pir104-cop) or slightly reduced (pir1-cop) in binding activity. The patterns of DNase I protection and enhancement were similar for the wild-type and mutant proteins examined.  相似文献   

11.
The RepA protein of the Rts1 plasmid, consisting of 288 amino acids, is a trans-acting protein essential for replication. A mutant repA gene, repA delta C143, carrying a deletion that removed the 143 C-terminal amino acids of RepA, could transform, but at a low frequency, an Escherichia coli polA strain, JG112, when repA delta C143 was cloned into pBR322 with Rts1 ori in the natural configuration. The transformation was less efficient without the dyad DnaA box in the ori region, and no transformation occurred at 42 degrees C, characteristic of Rts1 replication. A fusion of the 3'-terminal half of repA of the P1 plasmid to repA delta C143 yielded a pBR322 chimeric plasmid that contained Rts1 ori through hybrid (Rts1-P1) repA. This plasmid was maintained much more stably in JG112 at 37 degrees C. At 42 degrees C, however, it was quite unstable. The overproduced hybrid RepA protein showed interference with mini-Rts1 replication in trans and also exhibited an autorepressor function, although both activities were decreased. These findings suggest that the N-terminal half of the RepA molecule of Rts1 is involved in the activation of the replication origin.  相似文献   

12.
Avian pathogenic Escherichia coli (APEC) are bacteria associated with extraintestinal diseases in poultry. A method to generate markerless deletions of APEC genome is described. Lambda Red recombination is used to introduce a LoxP cassette (loxP-rpsL-neo-loxP) containing the rpsL gene for streptomycin sensitivity and the neo gene for kanamycin/neomycin resistance into the APEC genome, with attendant deletion of a desired chromosomal gene. The loxP sites are incorporated into primers used to amplify the rpsL-neo marker during the construction of the LoxP cassette, making the method rapid and efficient. The cassette is specifically integrated into the fiu gene or intergenic region 2051-52, and the Cre/lox system is used to remove the marker, hence deletion of the drug-resistance genes. The results demonstrate that the Cre/lox system can successfully be used to generate markerless deletions in APEC, and rpsL counter-selection can be used to select the deletions so that one does not have to pick and test to find the desired product.  相似文献   

13.
A set of plasmid cloning vectors has been constructed, allowing the integration of any DNA fragment into the bacteriophage lambda attachment site attB of the Escherichia coli chromosome. The system is based upon two components: (i) a number of cloning vectors containing the lambda attachment site attP and (ii) a helper plasmid, bearing the lambda int gene, transcribed from the lambda PR promoter under the control of the temperature-sensitive repressor cI857. The DNA fragment of interest is cloned into the multicloning site of one of the attP-harboring plasmids. Subsequently, the origin of the plasmid, located on a cloning cassette, is cut out and the DNA becomes newly ligated, resulting in a circular DNA molecule without replication ability. The strain of choice, containing the int gene carrying helper plasmid, is transformed with this DNA molecule and incubated at 42 degrees C to induce int gene expression. Additionally, the temperature shift leads to the loss of the helper plasmid after a few cell generations, because the replication ability of its replicon is blocked at 42 degrees C. These vectors have been successfully used for integration of several promoter-lacZ fusions into the chromosome. The ratio between integration due to homologous recombination and Int protein-mediated integration has been determined.  相似文献   

14.
A set of plasmid vectors conferring chloramphenicol resistance (Cm(R)), 3064bp in size, or kanamycin resistance (Km(R)), 2972bp in size, were developed, having multiple cloning sites in lacZ' genes for alpha-complementation. pTH18cs1, pTH19cs1, pTH18ks1 and pTH19ks1 are temperature-sensitive (ts) in DNA replication (ts-Rep); pTH18cs5, pTH19cs5, pTH18ks5 and pTH19ks5 are ts in plasmid segregation (ts-Seg); and pTH18cr, pTH19cr, pTH18kr and pTH19kr are temperature resistant (tr) in both. They are based on the pSC101 replicon consisting merely of the replication origin and repA gene, compatible with ColE1/pMB1/p15-derived plasmids, and thus do not require polA function of host cells. The copy numbers of the ts-Rep, tr and ts-Seg plasmids were 14, 5 and 1 per chromosome at 30 degrees C, respectively. These plasmids are fairly stable when inherited at 30 degrees C, but not above 37 degrees C or 41.5 degrees C, depending on the repA mutations and host strains. They are isogenic apart from the ts mutations in the repA gene, and thus provide with useful tools for having appropriate controls in various experiments including bacterial gene-targeting, transposon mutagenesis, toxic gene expression, differential substitution on host functions, gene dosage analysis and so on.  相似文献   

15.
Functional analysis of Bifidobacterium genes is essential for understanding host-Bifidobacterium interactions with beneficial effects on human health; however, the lack of an effective targeted gene inactivation system in bifidobacteria has prevented the development of functional genomics in this bacterium. Here, we report the development of a markerless gene deletion system involving a double crossover in Bifidobacterium longum. Incompatible plasmid vectors were used to facilitate a second crossover step. The conditional replication vector pBS423-ΔrepA, which lacks the plasmid replication gene repA, was integrated into the target gene by a first crossover event. Subsequently, the replicative plasmid pTBR101-CM, which harbors repA, was introduced into this integrant to facilitate the second crossover step and subsequent elimination of the excised conditional replication vector from the cells by plasmid incompatibility. The proposed system was confirmed to work as expected in B. longum 105-A using the chromosomal full-length β-galactosidase gene as a target. Markerless gene deletion was tested using the aga gene, which encodes α-galactosidase, whose substrates include raffinose. Almost all the pTBR101-CM-transformed strains became double-crossover recombinants after subculture, and 4 out of the 270 double-crossover recombinants had lost the ability to assimilate raffinose. Genotype analysis of these strains revealed markerless gene deletion of aga. Carbohydrate assimilation analysis and α-galactosidase activity measurement were conducted using both the representative mutant and a plasmid-based aga-complemented strain. These functional analyses revealed that aga is the only gene encoding a functional α-galactosidase enzyme in B. longum 105-A.  相似文献   

16.
Bacillus subtilis genome editing using ssDNA with short homology regions   总被引:1,自引:0,他引:1  
In this study, we developed a simple and efficient Bacillus subtilis genome editing method in which targeted gene(s) could be inactivated by single-stranded PCR product(s) flanked by short homology regions and in-frame deletion could be achieved by incubating the transformants at 42°C. In this process, homologous recombination (HR) was promoted by the lambda beta protein synthesized under the control of promoter P(RM) in the lambda cI857 P(RM)-P(R) promoter system on a temperature sensitive plasmid pWY121. Promoter P(R) drove the expression of the recombinase gene cre at 42°C for excising the floxed (lox sites flanked) disruption cassette that contained a bleomycin resistance marker and a heat inducible counter-selectable marker (hewl, encoding hen egg white lysozyme). Then, we amplified the single-stranded disruption cassette using the primers that carried 70 nt homology extensions corresponding to the regions flanking the target gene. By transforming the respective PCR products into the B. subtilis that harbored pWY121 and incubating the resultant mutants at 42°C, we knocked out multiple genes in the same genetic background with no marker left. This process is simple and efficient and can be widely applied to large-scale genome analysis of recalcitrant Bacillus species.  相似文献   

17.
In order to facilitate genetic study of the opportunistic bacterial pathogen Pseudomonas aeruginosa, we isolated a conditional, temperature-sensitive plasmid origin of replication. We mutagenized the popular Pseudomonas stabilizing fragment from pRO1610 in vitro using the Taq thermostable DNA polymerase in a polymerase chain reaction (PCR). Out of approximately 23,000 potential clones, 48 temperature-sensitive mutants were isolated. One mutant was further characterized and the origin of replication was designated as mSFts1. The mutations that resulted in a temperature-sensitive phenotype in mSFts1 were localized to the 1.2 kb of minimum sequence required for replication in P. aeruginosa. The DNA sequence analysis revealed two mutations within the coding sequence of the Replication control (Rep) protein. Growth of P. aeruginosa carrying the temperature-sensitive plasmid at the non-permissive temperature of 42 °C resulted in loss of the plasmid by greater than 99.9999% of the cells after 16 h of growth. In order to facilitate its utilization, the mSFts1 was converted into a genetic cassette flanked by mirrored restriction endonuclease digestion sites of a pUC1918 derivative. We demonstrate utilization of the mSFts1 for genetic studies involving complementation and regeneration of a mutant in P. aeruginosa research.  相似文献   

18.
We constructed a 7.9-kilobase-pair recombinant shuttle plasmid, designated pHR106, by combining desired segments of three plasmids: an Escherichia coli plasmid (pSL100) which provides a multiple cloning site, a Clostridium perfringens plasmid (pJU122) which provides a clostridial origin of replication, and an E. coli plasmid (pJIR62) which provides an E. coli origin of replication, an ampicillin resistance gene, and a chloramphenicol resistance gene of clostridial origin. The shuttle plasmid transformed E. coli HB101 with a frequency of 1 transformant per 10(4) viable cells and C. perfringens L-phase strain L-13 with a frequency of approximately 1 transformant per 10(6) viable cells. Because of the set of unique cloning sites and the chloramphenicol resistance marker, this shuttle plasmid should be particularly useful for studies of gene regulation and for enzyme production with C. perfringens.  相似文献   

19.
20.
Shuttle vectors carrying the origins of replication that function in Escherichia coli and two capnophilic rumen bacteria, Mannheimia succiniciproducens and Actinobacillus succinogenes, were constructed. These vectors were found to be present at ca. 10 copies per cell. They were found to be stably maintained in rumen bacteria during the serial subcultures in the absence of antibiotic pressure for 216 generations. By optimizing the electroporation condition, the transformation efficiencies of 3.0 x 10(6) and 7.1 x 10(6) transformants/mug DNA were obtained with M. succiniciproducens and A. succinogenes, respectively. A 1.7-kb minimal replicon was identified that consists of the rep gene, four iterons, A+T-rich regions, and a dnaA box. It was found that the shuttle vector replicates via the theta mode, which was confirmed by sequence analysis and Southern hybridization. These shuttle vectors were found to be suitable as expression vectors as the homologous fumC gene encoding fumarase and the heterologous genes encoding green fluorescence protein and red fluorescence protein could be expressed successfully. Thus, the shuttle vectors developed in this study should be useful for genetic and metabolic engineering of succinic acid-producing rumen bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号