首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To elucidate the function of protein disulfide isomerase (PDI), we screened for PDI-binding proteins in a bovine liver extract using affinity column chromatography. One of the binding proteins was identified by SDS-PAGE and N-terminal amino acid sequence analysis to be cyclophilin B (Cyp B). Use of the BIACORE system revealed that purified bovine Cyp B bound specifically to bovine PDI with a K(D) value of 1.19 x 10(-5) M. Interestingly, the binding affinity between PDI and Cyp B was strengthened by preincubation of the Cyp B with cyclosporin A (CsA), yielding a K(D) value of 3.67 x 10(-6) M. Although the interaction between PDI and Cyp B affected neither the isomerase activity of PDI nor the peptidyl-prolyl cis-trans isomerase activity of Cyp B, Cyp B increased the chaperone activity of PDI. However, the complex of Cyp B and CsA completely inhibited the chaperone activity of PDI. Thus, PDI and Cyp B appear to cooperate with each other to regulate the functional expression of proteins in vivo.  相似文献   

2.
Bisphenol A (BPA) is an endocrine disrupting chemical and several biological effects have been reported. Previously, protein disulphide isomerase (PDI) was isolated as a target molecule of bisphenol A. In this study, to clarify the effects of BPA on PDI functions, we investigated the relationship between the chemical structure of BPA derivatives and the effects on PDI-mediated isomerase and chaperone activity. We also investigated the effects of changes in the isomerase domain of PDI on the binding of chemicals, using PDI mutants and oxidized or reduced PDI. Among six chemicals, only chemicals, which have a phenol group, can bind to PDI and these chemicals also have an inhibitory effect on PDI-mediated isomerase activity. Changes in the structure of the PDI isomerase domain did not affect chemical-binding activity. On the other hand, the chemicals used in this study have low effects on chaperone activity of PDI. Substitutions in Cys residues (Cys398 and Cys401) of the isomerase active site changed chaperone activity. The present study indicates that phenolic compounds specifically bind to PDI and inhibit isomerase activity. This study provides useful information to predict the biological effects of chemicals and structural studies of PDI containing the function of chemical binding.  相似文献   

3.
In this study, we screened for protein disulfide isomerase (PDI)-binding proteins in bovine liver microsomes under strict salt concentrations, using affinity column chromatography. One main band observed using SDS-PAGE was identified as ERp57 (one of the PDI family proteins) by LC-MS/MS analysis. The K(D) value of PDI binding to ERp57 was calculated as 5.46x10(-6)M with the BIACORE system. The interactions between PDI and ERp57 occurred specifically at their a and b domains, respectively. Interestingly, low concentrations of ERp57 enhanced the chaperone activity of PDI, while high concentrations interfered with chaperone activity. On the other hand, ERp57 did not affect the isomerase activity of PDI. Additionally, following pre-incubation of ERp57 with calreticulin (CRT), decreased interactions were observed between ERp57 and PDI, and vice versa. Based on the data, we propose that once ERp57 binds to PDI or CRT, the resultant complex inhibits further interactions. Therefore, ERp57 selectively forms a protein-folding complex with PDI or CRT in ER.  相似文献   

4.
Protein disulfide isomerase (PDI) is a folding assistant of the eukaryotic endoplasmic reticulum, but it also binds the hormones, estradiol, and 3,3',5-triiodo-l-thyronine (T(3)). Hormone binding could be at discrete hormone binding sites, or it could be a nonphysiological consequence of binding site(s) that are involved in the interaction PDI with its peptide and protein substrates. Equilibrium dialysis, fluorescent hydrophobic probe binding (4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS)), competition binding, and enzyme activity assays reveal that the hormone binding sites are distinct from the peptide/protein binding sites. PDI has one estradiol binding site with modest affinity (2.1 +/- 0.5 microm). There are two binding sites with comparable affinity for T(3) (4.3 +/- 1.4 microm). One of these overlaps the estradiol site, whereas the other binds the hydrophobic probe, bis-ANS. Neither estradiol nor T(3) inhibit the catalytic or chaperone activity of PDI. Although the affinity of PDI for the hormones estradiol and T(3) is modest, the high local concentration of PDI in the endoplasmic reticulum (>200 microm) would drive hormone binding and result in the association of a substantial fraction (>90%) of the hormones in the cell with PDI. High capacity, low affinity hormone sites may function to buffer hormone concentration in the cell and allow tight, specific binding to the true receptor while preserving a reasonable number of hormone molecules in the very small volume of the cellular environment.  相似文献   

5.
Recently, it became clear that aminoglycoside antibiotics affect protein-protein interactions involving protein disulfide isomerase as well as protein synthesis in the endoplasmic reticulum. In this study, we used affinity column chromatography to screen gentamicin-binding proteins in microsomes derived from bovine kidney in order to learn about the possible mechanisms of gentamicin-associated nephrotoxicity. One of the gentamicin-binding proteins was identified as calreticulin (CRT) by N-terminal amino acid sequence analysis. Interestingly, gentamicin inhibited the chaperone and oxidative refolding activities of CRT when N-glycosylated substrates such as alpha1-antitrypsin and alpha-mannosidase were used as substrates, but it did not inhibit the chaperone activity of CRT when unglycosylated citrate synthase was used. Moreover, CRT suppressed the aggregation of deglycosylated and denatured alpha-mannosidase, but gentamicin did not inhibit its chaperone activity. Experiments with domain mutants suggest that the lectin site of CRT is the main target for gentamicin binding and that binding of gentamicin to this site inhibits the chaperone activity of CRT.  相似文献   

6.
Chaperone activity of DsbC.   总被引:7,自引:0,他引:7  
DsbC, a periplasmic disulfide isomerase of Gram-negative bacteria, displays about 30% of the activities of eukaryotic protein disulfide isomerase (PDI) as isomerase and as thiol-protein oxidoreductase. However, DsbC shows more pronounced chaperone activity than does PDI in promoting the in vitro reactivation and suppressing aggregation of denatured D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) during refolding. Carboxymethylation of DsbC at Cys98 decreases its intrinsic fluorescence, deprives of its enzyme activities, but lowers only partly its chaperone activity in assisting GAPDH reactivation. Simultaneous presence of DsbC and PDI in the refolding buffer shows an additive effect on the reactivation of GAPDH. The assisted reactivation of GAPDH and the protein disulfide oxidoreductase activity of DsbC can both be inhibited by scrambled and S-carboxymethylated RNases, but not by shorter peptides, including synthetic 10- and 14-mer peptides and S-carboxymethylated insulin A chain. In contrast, all the three peptides and the two nonnative RNases inhibit PDI-assisted GAPDH reactivation and the reductase activity of PDI. DsbC assists refolding of denatured and reduced lysozyme to a higher level than does PDI in phosphate buffer and does not show anti-chaperone activity in HEPES buffer. Like PDI, DsbC is also a disulfide isomerase with chaperone activity but may recognize different folding intermediates as does PDI.  相似文献   

7.
Human P5 (hP5) was expressed in the Escherichia coli pET system and purified by sequential Ni(2+)-chelating resin column chromatography. Characterization of purified hP5 indicated that it has both isomerase and chaperone activities, but both activities are lower than those of human protein disulfide isomerase (PDI). Moreover, hP5 was observed to have peptide-binding ability, and its chaperone activity was confirmed with rhodanese and citrate synthase as substrates, but not with D-glyceraldehyde-3-phosphate dehydrogenase, showing that hP5 has substrate specificity with respect to chaperone activity. Mutation of two thioredoxin-related motifs in hP5 revealed that the first motif is more important than the second for isomerase activity and that the first cysteine in each motif is necessary for isomerase activity. Since thioredoxin motif mutants lacking isomerase activity retain chaperone activity with the substrate citrate synthase, the isomerase and chaperone activities of hP5 are probably independent, as was shown for PDI.  相似文献   

8.
Protein-disulfide isomerase (PDI) catalyzes the formation, rearrangement, and breakage of disulfide bonds and is capable of binding peptides and unfolded proteins in a chaperone-like manner. In this study we examined which of these functions are required to facilitate efficient refolding of denatured and reduced proinsulin. In our model system, PDI and also a PDI mutant having only one active site increased the rate of oxidative folding when present in catalytic amounts. PDI variants that are completely devoid of isomerase activity are not able to accelerate proinsulin folding, but can increase the yield of refolding, indicating that they act as a chaperone. Maximum refolding yields, however, are only achieved with wild-type PDI. Using genistein, an inhibitor for the peptide-binding site, the ability of PDI to prevent aggregation of folding proinsulin was significantly suppressed. The present results suggest that PDI is acting both as an isomerase and as a chaperone during folding and disulfide bond formation of proinsulin.  相似文献   

9.
Oxidative refolding of the dimeric alkaline protease inhibitor (API) from Streptomyces sp. NCIM 5127 has been investigated. We demonstrate here that both isomerase and chaperone functions of the protein folding catalyst, protein disulfide isomerase (PDI), are essential for efficient refolding of denatured-reduced API (dr-API). Although the role of PDI as an isomerase and a chaperone has been reported for a few monomeric proteins, its role as a foldase in refolding of oligomeric proteins has not been demonstrated hitherto. Spontaneous refolding and reactivation of dr-API in redox buffer resulted in 45% to 50% reactivation. At concentrations <0.25 microM, reactivation rates and yields of dr-API are accelerated by catalytic amounts of PDI through its isomerase activity, which promotes disulfide bond formation and rearrangement. dr-API is susceptible to aggregation at concentrations >25 microM, and a large molar excess of PDI is required to enhance reactivation yields. PDI functions as a chaperone by suppressing aggregation and maintains the partially unfolded monomers in a folding-competent state, thereby assisting dimerization. Simultaneously, isomerase function of PDI brings about regeneration of native disulfides. 5-Iodoacetamidofluorescein-labeled PDI devoid of isomerase activity failed to enhance the reactivation of dr-API despite its intact chaperone activity. Our results on the requirement of a stoichiometric excess of PDI and of presence of PDI in redox buffer right from the initiation of refolding corroborate that both the functions of PDI are essential for efficient reassociation, refolding, and reactivation of dr-API.  相似文献   

10.
Previously, it has been reported that a mammalian protein disulfide isomerase (PDI), when expressed on a single copy number plasmid, can rescue growth of a PDI1-disrupted yeast. However, here, for the first time we demonstrated by tetrad analysis that human PDI (hPDI) is unable to replace yeast PDI (yPDI) when hPDI cDNA is integrated into the yeast chromosome. This observation indicates that hPDI is not functionally equivalent to yPDI. Estimation of the actual copy number of the plasmid, as well as comparison of isomerase and chaperone activities between human and yeast PDI homologues, indicates that one copy of hPDI cDNA is not sufficient to rescue the PDI1-disrupted strain. Notably, the isomerase activities of yPDI family proteins, Mpd1p, Mpd2p, and Eug1p, were extremely low, although yPDI itself exhibited twice as much isomerase activity as hPDI in vitro. Moreover, with the exception of Mpd1p, all hPDI and yPDI family proteins had chaperone activity, this being particularly strong in the case of yPDI and Mpd2p. These observations indicate that the growth of Saccharomyces cerevisiae is completely dependent on the isomerase activity of yPDI.  相似文献   

11.
Protein-disulfide isomerase (PDI) switches tissue factor (TF) from coagulation to signaling by targeting the allosteric Cys186-Cys209 disulfide. Here, we further characterize the interaction of purified PDI with TF. We find that PDI enhances factor VIIa-dependent substrate factor X activation 5-10-fold in the presence of wild-type, oxidized soluble TF but not TF mutants that contain an unpaired Cys186 or Cys209. PDI-accelerated factor Xa generation was blocked by bacitracin but not influenced by inhibition of vicinal thiols, reduction of PDI, changes in redox gradients, or covalent thiol modification of reduced PDI by N-ethylmaleimide or methyl-methanethiosulfonate, which abolished PDI oxidoreductase but not chaperone activity. PDI had no effect on fully active TF on either negatively charged phospholipids or in activating detergent, indicating that PDI selectively acts upon cryptic TF to facilitate ternary complex formation and macromolecular substrate turnover. PDI activation was reduced upon mutation of TF residues in proximity to the macromolecular substrate binding site, consistent with a primary interaction of PDI with TF. PDI enhanced TF coagulant activity on microvesicles shed from cells, suggesting that PDI plays a role as an activating chaperone for circulating cryptic TF.  相似文献   

12.
Protein disulfide isomerase (PDI) supports proinsulin folding as chaperone and isomerase. Here, we focus on how the two PDI functions influence individual steps in the complex folding process of proinsulin. We generated a PDI mutant (PDI-aba'c) where the b' domain was partially deleted, thus abolishing peptide binding but maintaining a PDI-like redox potential. PDI-aba'c catalyzes the folding of human proinsulin by increasing the rate of formation and the final yield of native proinsulin. Importantly, PDI-aba'c isomerizes non-native disulfide bonds in completely oxidized folding intermediates, thereby accelerating the formation of native disulfide bonds. We conclude that peptide binding to PDI is not essential for disulfide isomerization in fully oxidized proinsulin folding intermediates.  相似文献   

13.
Protein disulfide–isomerase (PDI) was the first protein-folding catalyst to be characterized, half a century ago. It plays critical roles in a variety of physiological events by displaying oxidoreductase and redox-regulated chaperone activities. This review provides a brief history of the identification of PDI as both an enzyme and a molecular chaperone and of the recent advances in studies on the structure and dynamics of PDI, the substrate binding and release, and the cooperation with its partners to catalyze oxidative protein folding and maintain ER redox homeostasis. In this review, we highlight the structural features of PDI, including the high interdomain flexibility, the multiple binding sites, the two synergic active sites, and the redox-dependent conformational changes.  相似文献   

14.
Protein disulfide isomerase (PDI) is an endoplasmic reticulum (ER)-localized multifunctional enzyme that can function as a disulfide oxidase, a reductase, an isomerase, and a chaperone. The domain organization of PDI is abb'xa'c, with two catalytic (CxxC) motifs and a KDEL ER retention motif. The members of the PDI family exhibit differences in tissue distribution, specificity, and intracellular localization. We previously identified and characterized the PDI of Bombyx mori (bPDI) as a thioredoxin-like protein that shares primary sequence homology with other PDIs. Here we compare the reactivation of inactivated rRNase and sRNase by bPDI and three bPDI mutants, and show that bPDI has mammalian PDI-like activity. On its own, the N-terminal a domain does not retain this activity, but the a' domain does. This is the first report of chaperone activity only in the a' domain, but not in the a domain.  相似文献   

15.
Protein disulfide isomerase (PDI) is a very efficient catalyst of folding of many disulfide-bonded proteins. A great deal is known about the catalytic functions of PDI, while little is known about its substrate binding. We recently demonstrated by cross-linking that PDI binds peptides and misfolded proteins, with high affinity but broad specificity. To characterize the substrate-binding site of PDI, we investigated the interactions of various recombinant fragments of human PDI, expressed in Escherichia coli, with different radiolabelled model peptides. We observed that the b' domain of human PDI is essential and sufficient for the binding of small peptides. In the case of larger peptides, specifically a 28 amino acid fragment derived from bovine pancreatic trypsin inhibitor, or misfolded proteins, the b' domain is essential but not sufficient for efficient binding, indicating that contributions from additional domains are required. Hence we propose that the different domains of PDI all contribute to the binding site, with the b' domain forming the essential core.  相似文献   

16.
Human protein-disulfide isomerase (hPDI)-related protein (hPDIR), which we previously cloned from a human placental cDNA library (Hayano, T., and Kikuchi, M. (1995) FEBS Lett. 372, 210-214), and its mutants were expressed in the Escherichia coli pET system and purified by sequential nickel affinity resin chromatography. Three thioredoxin motifs (CXXC) of purified hPDIR were found to contribute to its isomerase activity with a rank order of CGHC > CPHC > CSMC, although both the isomerase and chaperone activities of this protein were lower than those of hPDI. Screening for hPDIR-binding proteins using a T7 phage display system revealed that alpha1-antitrypsin binds to hPDIR. Surface plasmon resonance experiments demonstrated that alpha1-antitrypsin interacts with hPDIR, but not with hPDI or human P5 (hP5). Interestingly, the rate of oxidative refolding of alpha1-antitrypsin with hPDIR was much higher than with hPDI or hP5. Thus, the substrate specificity of hPDIR differed from that associated with isomerase activity, and the contribution of the CSMC motif to the oxidative refolding of alpha1-antitrypsin was the most definite of the three (CSMC, CGHC, CPHC). Substitution of SM and PH in the CXXC motifs with GH increased isomerase activity and decreased oxidative refolding. In contrast, substitution of GH and PH with SM decreased isomerase activity and increased oxidative refolding. Because CXXC motif mutants lacking isomerase activity retain chaperone activity for the substrate rhodanese, it is clear that, similar to PDI and hP5, the isomerase and chaperone activities of hPDIR are independent. These results suggest that the central dipeptide of the CXXC motif is critical for both redox activity and substrate specificity.  相似文献   

17.
Protein disulphide isomerase (PDI) has been isolated as a binding protein of bisphenol A (BPA) in the rat brain. In this study, we determined binding sites of BPA to PDI and characterized the binding site. First, we identified the BPA-binding domain with ab, b'a'c, a, b, b' and a'c fragment peptides of PDI by surface plasmon resonance spectroscopy. BPA interacted with ab, b'a 'c, a and b', suggesting that a and b' domains are important in their interaction. Second, ab, b'a'c, a,b,b',a', abb'a', abb', b'a', Δb' and a'c fragment peptides were used for their isomerase activity with RNase as a substrate. BPA could inhibit the activity of peptide fragments including b', suggesting that b' domain contributes to inhibition of catalytic activity of PDI by BPA. Next, we investigated the BPA-binding capacity of PDI by amino acid substitution. PDI lost the BPA-binding activity by the mutation of H258 and mutation of Q245 and N300 also decreased its activity. Furthermore, acidic condition increased the BPA-binding activity of PDI. These results suggest that the charge of these amino acid especially, H258, is important for the BPA to bind to PDI.  相似文献   

18.
Protein-disulfide isomerase (PDI), with domains arranged as abb'xa'c, is a key enzyme and chaperone localized in the endoplasmic reticulum (ER) catalyzing oxidative folding and preventing misfolding/aggregation of proteins. It has been controversial whether the chaperone activity of PDI is redox-regulated, and the molecular basis is unclear. Here, we show that both the chaperone activity and the overall conformation of human PDI are redox-regulated. We further demonstrate that the conformational changes are triggered by the active site of domain a', and the minimum redox-regulated cassette is located in b'xa'. The structure of the reduced bb'xa' reveals for the first time that domain a' packs tightly with both domain b' and linker x to form one compact structural module. Oxidation of domain a' releases the compact conformation and exposes the shielded hydrophobic areas to facilitate its high chaperone activity. Thus, the study unequivocally provides mechanistic insights into the redox-regulated chaperone activity of human PDI.  相似文献   

19.
Peroxiredoxin 4 (Prx4) is the only endoplasmic reticulum localized peroxiredoxin. It functions not only to eliminate peroxide but also to promote oxidative protein folding via oxidizing protein disulfide isomerase (PDI). In Prx4-mediated oxidative protein folding we discovered a new reaction that the sulfenic acid form of Prx4 can directly react with thiols in folding substrates, resulting in non-native disulfide cross-linking and aggregation. We also found that PDI can inhibit this reaction by exerting its reductase and chaperone activities. This discovery discloses an off-pathway reaction in the Prx4-mediated oxidative protein folding and the quality control role of PDI.  相似文献   

20.
Y Yao  Y Zhou    C Wang 《The EMBO journal》1997,16(3):651-658
The spontaneous reactivation yield of acidic phospholipase A2 (APLA2), a protein containing seven disulfide bonds, after reduction and denaturation in guanidine hydrochloride is very low. Protein disulfide isomerase (PDI) markedly increases the reactivation yield and prevents the aggregation of APLA2 during refolding in a redox buffer containing GSH and GSSG. S-methylated PDI (mPDI), with no isomerase but as nearly full chaperone activity as native PDI, has no effect on either the reactivation or aggregation of APLA2. However, the simultaneous presence of PDI and mPDI in molar ratios to APLA2 of 0.1 and 0.9 respectively fully reactivates the denatured enzyme, as does PDI alone at a ratio of 1. At ratios of 0.1 and 0.15 respectively, they completely suppress APLA2 aggregation, as does PDI alone at a ratio of 0.25. Moreover, delayed addition of PDI to the refolding buffer greatly diminished the reactivation yield of APLA2, but this deteriorating effect can be alleviated markedly by the presence of mPDI in the refolding buffer. Without GSSG, mPDI prevents the aggregation of APLA2 during refolding. It is proposed that the in vitro action of PDI as a foldase consists of both isomerase and chaperone activities, and the latter activity can be fully replaced by mPDI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号