首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Polymorphic microsatellites are widely considered more powerful for resolving population structure than mitochondrial DNA (mtDNA) markers, particularly for recently diverged lineages or geographically proximate populations. Weaker population subdivision for biparentally inherited nuclear markers than maternally inherited mtDNA may signal male-biased dispersal but can also be attributed to marker-specific evolutionary characteristics and sampling properties. We discriminated between these competing explanations with a population genetic study on olive sea snakes, Aipysurus laevis. A previous mtDNA study revealed strong regional population structure for A. laevis around northern Australia, where Pleistocene sea-level fluctuations have influenced the genetic signatures of shallow-water marine species. Divergences among phylogroups dated to the Late Pleistocene, suggesting recent range expansions by previously isolated matrilines. Fine-scale population structure within regions was, however, poorly resolved for mtDNA. In order to improve estimates of fine-scale genetic divergence and to compare population structure between nuclear and mtDNA, 354 olive sea snakes (previously sequenced for mtDNA) were genotyped for five microsatellite loci. F statistics and Bayesian multilocus genotype clustering analyses found similar regional population structure as mtDNA and, after standardizing microsatellite F statistics for high heterozygosities, regional divergence estimates were quantitatively congruent between marker classes. Over small spatial scales, however, microsatellites recovered almost no genetic structure and standardized F statistics were orders of magnitude smaller than for mtDNA. Three tests for male-biased dispersal were not significant, suggesting that recent demographic expansions to the typically large population sizes of A. laevis have prevented microsatellites from reaching mutation-drift equilibrium and local populations may still be diverging.  相似文献   

2.
The genetic structure of green turtle (Chelonia mydas) rookeries located around the Australian coast was assessed by (1) comparing the structure found within and among geographic regions, (2) comparing microsatellite loci vs. restriction fragment length polymorphism analyses of anonymous single copy nuclear DNA (ascnDNA) loci, and (3) comparing the structure found at nuclear DNA markers to that of previously analyzed mitochondrial (mtDNA) control region sequences. Significant genetic structure was observed over all regions at both sets of nuclear markers, though the microsatellite data provided greater resolution in identifying significant genetic differences in pairwise tests between regions. Inferences about population structure and migration rates from the microsatellite data varied depending on whether statistics were based on the stepwise mutation or infinite allele model, with the latter being more congruent with geography. Estimated rates of gene flow were generally higher than expected for nuclear DNA (nDNA) in comparison to mtDNA, and this difference was most pronounced in comparisons between the northern and southern Great Barrier Reef (GBR). The genetic data combined with results from physical tagging studies indicate that the lack of nuclear gene divergence through the GBR is likely due to the migration of sGBR turtles through the courtship area of the nGBR population, rather than male-biased dispersal. This example highlights the value of combining comparative studies of molecular variation with ecological data to infer population processes.  相似文献   

3.
Conservation strategies for African elephants would be advanced by resolution of conflicting claims that they comprise one, two, three or four taxonomic groups, and by development of genetic markers that establish more incisively the provenance of confiscated ivory. We addressed these related issues by genotyping 555 elephants from across Africa with microsatellite markers, developing a method to identify those loci most effective at geographic assignment of elephants (or their ivory), and conducting novel analyses of continent-wide datasets of mitochondrial DNA. Results showed that nuclear genetic diversity was partitioned into two clusters, corresponding to African forest elephants (99.5% Cluster-1) and African savanna elephants (99.4% Cluster-2). Hybrid individuals were rare. In a comparison of basal forest "F" and savanna "S" mtDNA clade distributions to nuclear DNA partitions, forest elephant nuclear genotypes occurred only in populations in which S clade mtDNA was absent, suggesting that nuclear partitioning corresponds to the presence or absence of S clade mtDNA. We reanalyzed African elephant mtDNA sequences from 81 locales spanning the continent and discovered that S clade mtDNA was completely absent among elephants at all 30 sampled tropical forest locales. The distribution of savanna nuclear DNA and S clade mtDNA corresponded closely to range boundaries traditionally ascribed to the savanna elephant species based on habitat and morphology. Further, a reanalysis of nuclear genetic assignment results suggested that West African elephants do not comprise a distinct third species. Finally, we show that some DNA markers will be more useful than others for determining the geographic origins of illegal ivory. These findings resolve the apparent incongruence between mtDNA and nuclear genetic patterns that has confounded the taxonomy of African elephants, affirm the limitations of using mtDNA patterns to infer elephant systematics or population structure, and strongly support the existence of two elephant species in Africa.  相似文献   

4.
In order to assess the short-term impact of habitat loss after disturbance, we studied Arhopala epimuta (Lepidoptera: Lycaenidae) populations in 5 landscapes in Borneo that were differentially affected by the 1997/1998 El Ni?o Southern Oscillation-induced drought and fire. Sampling was conducted before (1997) and after (1998 and 2000) disturbance. This study combined demographic and genetic data inferred from the analysis of 5 microsatellite loci and mitochondrial DNA (mtDNA) control region sequences. Over all 5 landscapes, a total of 313 A. epimuta were sampled over the 3-year survey. Butterfly abundance varied greatly both spatially and temporally (within disturbed landscapes). After the disturbance, a 4-fold population expansion was observed in a small unburned isolate, whereas population extinction was observed in one of the severely burned areas. The analysis of mtDNA sequences in a subsample of 106 A. epimuta revealed no significant spatial or temporal genetic structure. The analysis of 5 microsatellite loci revealed high frequencies of null alleles. Genetic evidence of recent change in population size was found in all 3 unburned landscapes using microsatellites. Congruent to mtDNA, microsatellites failed to detect significant genetic structure according to sampling year or landscapes. Our results suggest that, for mobile species within recently fragmented habitat, habitat loss after disturbance may lead to local population extinction but may augment genetic diversity in remnant local populations because of increased gene flow.  相似文献   

5.
African wild dogs are large, highly mobile carnivores that are known to disperse over considerable distances and are rare throughout much of their geographical range. Consequently, genetic variation within and differentiation between geographically separated populations is predicted to be minimal. We determined the genetic diversity of mitochondrial DNA (mtDNA) control region sequences and microsatellite loci in seven populations of African wild dogs. Analysis of mtDNA nucleotide diversity suggests that, historically, wild dog populations have been small relative to other large carnivores. However, population declines due to recent habitat loss have not caused a dramatic reduction in genetic diversity. We found one historical and eight recent mtDNA genotypes in 280 individuals that defined two highly divergent clades. In contrast to a previous, more limited, mtDNA analysis, sequences from these clades are not geographically restricted to eastern or southern African populations. Rather, we found a large admixture zone spanning populations from Botswana, Zimbabwe and south-eastern Tanzania. Mitochondrial and microsatellite differentiation between populations was significant and unique mtDNA genotypes and alleles characterized the populations. However, gene flow estimates (Nm) based on microsatellite data were generally greater than one migrant per generation. In contrast, gene flow estimates based on the mtDNA control region were lower than expected given differences in the mode of inheritance of mitochondrial and nuclear markers which suggests a male bias in long-distance dispersal.  相似文献   

6.
The pattern and scale of the genetic structure of populations provides valuable information for the understanding of the spatial ecology of populations, including the spatial aspects of density fluctuations. In the present paper, the genetic structure of periodically fluctuating lemmings (Dicrostonyx groenlandicus) in the Canadian Arctic was analysed using mitochondrial DNA (mtDNA) control region sequences and four nuclear microsatellite loci. Low genetic variability was found in mtDNA, while microsatellite loci were highly variable in all localities, including localities on isolated small islands. For both genetic markers the genetic differentiation was clear among geographical regions but weaker among localities within regions. Such a pattern implies gene flow within regions. Based on theoretical calculations and population census data from a snap-trapping survey, we argue that the observed genetic variability on small islands and the low level of differentiation among these islands cannot be explained without invoking long distance dispersal of lemmings over the sea ice. Such dispersal is unlikely to occur only during population density peaks.  相似文献   

7.
We explored the effects of recent forest fragmentation on fine-scale patterns of population structuring and genetic diversity in populations of White-ruffed Manakins (Corapipo altera) inhabiting premontane forest fragments of varying size in southwestern Costa Rica. Habitat fragmentation is a major conservation concern for avian populations worldwide, but studies of the genetic effects of fragmentation on Neotropical birds are limited. We sampled 159 manakins from nine forest fragments of varying size within an 18 km radius, and genotyped these birds at 13 microsatellite loci. Bayesian clustering methods revealed that birds from all fragments comprised a single genetic population, and an MCMC approach showed that the fragments were likely to be at migration-drift equilibrium. F-statistics showed only modest levels of differentiation between forest fragments. We calculated allelic diversity indices for each fragment but found no correlation between genetic diversity and fragment size. These results suggest that manakins may retain substantial connectivity via inter-fragment dispersal despite habitat fragmentation.  相似文献   

8.
To investigate the role of habitat fragmentation, fragment age and local environment in shaping the genetics of plant populations, we examined the genetic structure of the self-compatible forest herb Geum urbanum using microsatellite markers. A historical land-use reconstruction assigned the studied populations to two age classes: populations in primary forest fragments, and populations in secondary fragments. Local environmental conditions were quantified on the basis of the herb-layer community composition. A stepwise general linear model revealed that levels of within-population genetic diversity were best explained by population size, landscape connectivity and the interaction between both. Connectivity was positively correlated with the genetic diversity of small populations, but did not significantly affect the diversity of large populations. Contrary to what we expected, secondary-forest populations showed lower divergence relative to populations located in primary patches. Small populations were genetically more diverged compared to large populations. Mantel tests showed no significant isolation by distance and no significant correlation between habitat similarity and genetic differentiation. We conclude that gene flow has probably prevented founder events from being reflected in the present genetic structure of G. urbanum. Gene flow towards low-connectivity populations, however, seemed to be insufficient to counteract the effects of drift in small populations.  相似文献   

9.
Mediterranean Sea common dolphins have recently been listed as ‘endangered’ in the IUCN Red list, due to their reported decline since the middle of the 20th century. However, little is know about the number or distribution of populations in this region. We analysed 118 samples from the Black Sea, Mediterranean Sea and eastern North Atlantic at nine microsatellite nuclear loci and for 428 bps of the mtDNA control region. We found small but significant population differentiation across the basin between the eastern and the western Mediterranean populations at both nuclear and mtDNA markers (microsatellite F ST = 0.052, mtDNA F ST = 0.107, P values ≤ 0.001). This matched the differential distribution and habitat use patterns exhibited by this species in the eastern and the western parts of the Mediterranean Sea. The assignment test of a small number of samples from the central Mediterranean could not exclude further population structure in the central area of the basin. No significant genetic differentiation at either marker was observed among the eastern north Atlantic populations, though the Alboran population (inhabiting the Mediterranean waters immediately adjacent the Atlantic ocean) showed significant mtDNA genetic differentiation compared to the Atlantic populations. Directional estimates of gene flow suggested movement of females out of the Mediterranean, which may be relevant to the population decline. Phylogenetic analysis suggested that the observed population structure evolved recently.  相似文献   

10.
Hu Y  Guo Y  Qi D  Zhan X  Wu H  Bruford MW  Wei F 《Molecular ecology》2011,20(13):2662-2675
Clarification of the genetic structure and population history of a species can shed light on the impacts of landscapes, historical climate change and contemporary human activities and thus enables evidence‐based conservation decisions for endangered organisms. The red panda (Ailurus fulgens) is an endangered species distributing at the edge of the Qinghai‐Tibetan Plateau and is currently subject to habitat loss, fragmentation and population decline, thus representing a good model to test the influences of the above‐mentioned factors on a plateau edge species. We combined nine microsatellite loci and 551 bp of mitochondrial control region (mtDNA CR) to explore the genetic structure and demographic history of this species. A total of 123 individuals were sampled from 23 locations across five populations. High levels of genetic variation were identified for both mtDNA and microsatellites. Phylogeographic analyses indicated little geographic structure, suggesting historically wide gene flow. However, microsatellite‐based Bayesian clustering clearly identified three groups (Qionglai‐Liangshan, Xiaoxiangling and Gaoligong‐Tibet). A significant isolation‐by‐distance pattern was detected only after removing Xiaoxiangling. For mtDNA data, there was no statistical support for a historical population expansion or contraction for the whole sample or any population except Xiaoxiangling where a signal of contraction was detected. However, Bayesian simulations of population history using microsatellite data did pinpoint population declines for Qionglai, Xiaoxiangling and Gaoligong, demonstrating significant influences of human activity on demography. The unique history of the Xiaoxiangling population plays a critical role in shaping the genetic structure of this species, and large‐scale habitat loss and fragmentation is hampering gene flow among populations. The implications of our findings for the biogeography of the Qinghai‐Tibetan Plateau, subspecies classification and conservation of red pandas are discussed.  相似文献   

11.
Red‐cockaded woodpeckers (RCW; Dryobates borealis) declined after human activities reduced their fire‐maintained pine ecosystem to <3% of its historical range in the southeastern United States and degraded remaining habitat. An estimated 1.6 million RCW cooperative breeding groups declined to about 3,500 groups with no more than 10,000 birds by 1978. Management has increased RCW population abundances since they were at their lowest in the 1990s. However, no range‐wide study has been undertaken since then to investigate the impacts of this massive bottleneck or infer the effects of conservation management and recent demographic recoveries. We used mitochondrial DNA sequences (mtDNA) and nine nuclear microsatellite loci to determine if range‐wide demographic declines resulted in changes to genetic structure and diversity in RCW by comparing samples collected before 1970 (mtDNA data only), between 1992 and 1995 (mtDNA and microsatellites), and between 2010 and 2014 (mtDNA and microsatellites). We show that genetic diversity has been lost as detected by a reduction in the number of mitochondrial haplotypes. This reduction was apparent in comparisons of pre‐1970 mtDNA data with data from the 1992–1995 and 2010–2014 time points, with no change between the latter two time points in mtDNA and microsatellite analyses. The mtDNA data also revealed increases in range‐wide genetic differentiation, with a genetically panmictic population present throughout the southeastern United States in the pre‐1970s data and subsequent development of genetic structure that has remained unchanged since the 1990s. Genetic structure was also uncovered with the microsatellite data, which like the mtDNA data showed little change between the 1992–1995 and 2010–2014 data sets. Temporal haplotype networks revealed a consistent, star‐like phylogeny, suggesting that despite the overall loss of haplotypes, no phylogenetically distinct mtDNA lineages were lost when the population declined. Our results may suggest that management during the last two decades has prevented additional losses of genetic diversity.  相似文献   

12.
Tonione M  Johnson JR  Routman EJ 《Genetica》2011,139(2):209-219
We investigated genetic diversity of the hellbender (Cryptobranchus alleganiensis) throughout its range in the eastern US using nuclear markers and compared our results to a previously published mitochondrial analysis. A variety of nuclear markers, including protein-coding gene introns and microsatellites were tested but only microsatellites were variable enough for population level analysis. Microsatellite loci showed moderate among population sharing of alleles, in contrast to the reciprocal monophyly exhibited by mitochondrial DNA. However, analyses using F-statistics and Bayesian clustering algorithms showed considerable population subdivision and clustered hellbender populations into the same major groups as the mtDNA. The microsatellites combined with the mtDNA data suggest that gene flow is severely restricted or non-existent among eight major groups, and potentially among populations (rivers) within groups. The combined mtDNA and microsatellite data suggest that the currently recognized hellbender subspecies are paraphyletic. We suggest that the eight independent groups identified in our study should be managed as such, rather than basing conservation decisions on the two named subspecies of hellbender.  相似文献   

13.
Deciphering patterns of genetic variation within a species is essential for understanding population structure, local adaptation and differences in diversity between populations. Whilst neutrally evolving genetic markers can be used to elucidate demographic processes and genetic structure, they are not subject to selection and therefore are not informative about patterns of adaptive variation. As such, assessments of pertinent adaptive loci, such as the immunity genes of the major histocompatibility complex (MHC), are increasingly being incorporated into genetic studies. In this study, we combined neutral (microsatellite, mtDNA) and adaptive (MHC class II DLA‐DRB1 locus) markers to elucidate the factors influencing patterns of genetic variation in the African wild dog (Lycaon pictus); an endangered canid that has suffered extensive declines in distribution and abundance. Our genetic analyses found all extant wild dog populations to be relatively small (Ne < 30). Furthermore, through coalescent modelling, we detected a genetic signature of a recent and substantial demographic decline, which correlates with human expansion, but contrasts with findings in some other African mammals. We found strong structuring of wild dog populations, indicating the negative influence of extensive habitat fragmentation and loss of gene flow between habitat patches. Across populations, we found that the spatial and temporal structure of microsatellite diversity and MHC diversity were correlated and strongly influenced by demographic stability and population size, indicating the effects of genetic drift in these small populations. Despite this correlation, we detected signatures of selection at the MHC, implying that selection has not been completely overwhelmed by genetic drift.  相似文献   

14.
Although habitat fragmentation is suspected to jeopardize the long-term survival of many species, few data are available on its impact on the genetic variability of invertebrates. We assess the genetic population structure of the flightless ground beetle Carabus violaceus L., 1758 in a Swiss forest, which is divided into several fragments by a highway and two main roads. Eight samples were collected from different forest fragments and analysed at six microsatellite loci. The largest genetic differentiation was observed between samples separated by roads and in particular by the highway. The number of roads between sites explained 44% of the variance in pairwise F(ST) estimates, whereas the age of the road and the geographical distance between locations were not significant factors. Furthermore, a comparison of allelic richness showed that the genetic variability in a small forest fragment isolated by the highway was significantly lower than in the rest of the study area. These findings strongly support the hypothesis that large roads are absolute barriers to gene flow in C. violaceus, which may lead to a loss of genetic variability in fragmented populations.  相似文献   

15.
The crab-eating fox is a medium-sized Neotropical canid with generalist habits and a broad distribution in South America. We have investigated its genetic diversity, population structure and demographic history across most of its geographic range by analysing 512 base pairs (bp) of the mitochondrial DNA (mtDNA) control region, 615 bp of the mtDNA cytochrome b gene and 1573 total nucleotides from three different nuclear fragments. MtDNA data revealed a strong phylogeographic partition between northeastern Brazil and other portions of the species' distribution, with complete separation between southern and northern components of the Atlantic Forest. We estimated that the two groups diverged from each other c. 400,000-600,000 years ago, and have had contrasting population histories. A recent demographic expansion was inferred for the southern group, while northern populations seem to have had a longer history of large population size. Nuclear sequence data did not support this north-south pattern of subdivision, likely due at least in part to secondary male-mediated historical gene flow, inferred from multilocus coalescent-based analyses. We have compared the inferred phylogeographic patterns to those observed for other Neotropical vertebrates, and report evidence for a major north-south demographic discontinuity that seems to have marked the history of the Atlantic Forest biota.  相似文献   

16.
We investigate the influence of previously postulated biogeographic barriers in the Mediterranean Sea on the population genetic structure of a highly dispersive and continuously distributed coastal species. In particular, we examine nuclear and mitochondrial genetic variation in the marbled crab, Pachygrapsus marmoratus, across part of the African Mediterranean coast in order to assess the influence of the Siculo-Tunisian Strait on its population genetic structure. Four polymorphic microsatellite loci were genotyped for 110 individuals, collected from eight locations covering parts of the Algerian, Tunisian and Libyan coasts. In addition, mtDNA corresponding to the Cox1 gene was sequenced for 80 samples. The corresponding results show contrasting patterns of genetic differentiation. While mtDNA results revealed a homogeneous haplotype composition in our study area, microsatellite data depicted genetic differentiation among populations, but not associated with any geographic barrier. This pattern, already recorded for this species from different geographic regions, may hint at the involvement of a complex series of abiotic and biotic factors in determining genetic structure. Demographic history reconstruction, inferred from mtDNA data, supports demographic and spatial expansion for the North African metapopulation dating back to the Mid-Pleistocene and following an historical bottleneck. Comparison of these African mitochondrial sequences with new sequences from a Turkish population and previously published sequences revealed a weak but significant separation of Atlantic and Mediterranean populations across the Gibraltar Strait, which was not recorded in previous studies of this grapsid species.  相似文献   

17.
The number of Asian black bears (Ursus thibetanus) in Japan has been reduced and their habitats fragmented and isolated because of human activities. Our previous study examining microsatellite DNA loci revealed significant genetic differentiation among four local populations in the western part of Honshu. Here, an approximate 700-bp nucleotide sequence of mitochondrial DNA (mtDNA) control region was analysed in 119 bears to infer the evolutionary history of these populations. Thirteen variable sites and variation in the number of Ts at a T-repeat site were observed among the analysed sequences, which defined 20 mtDNA haplotypes with the average sequence divergence of 0.0051 (SD = 0.00001). The observed haplotype frequencies differed significantly among the four populations. Phylogeographic analysis of the haplotypes suggested that black bears in this region have gone through two different colonisation histories, since the observed haplotypes belonged to two major monophyletic lineages and the lineages were distributed with an apparent border. The spatial genetic structure revealed by using mtDNA was different from that observed using microsatellite DNA markers, probably due to female philopatry and male-biased dispersal. Since nuclear genetic diversity will be lost in the three western populations because of the small population size and genetic isolation, their habitats need to be preserved, and these four populations should be linked to each other by corridors to promote gene flow from the easternmost population with higher nuclear genetic diversity.  相似文献   

18.
Many studies, using various marker systems, have been conducted on the genetic population structure of marine organisms to reveal connectivity among locations and dispersal capabilities. Although mitochondrial sequence markers are widely used, their accuracy is controversially discussed in the context of small scale population genetic discrimination. In the present study, the genetic population structure of the False Clown Anemonefish (Amphiprion ocellaris) in the Indo-Malay Archipelago was revealed by screening six microsatellite loci. Results were congruent to previous mitochondrial control region results, with three major genetic breaks within the Indo-Malay Archipelago. Similar to the mitochondrial DNA (mtDNA) analysis, microsatellite data showed a correlation of genetic structure to historical ocean basin separation during Pleistocene sea level low stands, geographic distance, and dominant current patterns. However, microsatellite divergences are not as deep as the mtDNA divergence, suggesting either that admixture of mtDNA lineages is slower than that of nuclear microsatellites, providing a rather historic picture of separation, or the stronger differentiation signal is due to lower effective population sizes presented by mtDNA. As well, the microsatellite analysis did not give a better resolution on the small scale as expected. This study showed that depending on the genetic markers used, different stages of population separation might be illuminated.  相似文献   

19.
The environmental and/or life history factors affecting genetic exchange in marine species with potential for high dispersal are of great interest, not only from an evolutionary standpoint but also with regard to effective management. Previous genetic studies have demonstrated substantial differentiation among populations of the Patagonian toothfish around the Southern Ocean, indicating breakdown of gene flow across large distances between inhabited shelf areas. The present study examined genetic structuring through analysis of microsatellite loci and restriction fragment length polymorphism (RFLP) of the mitochondrial ND2 gene and control region of the toothfish population in the SW Atlantic, allowing examination of the relative effects of the Antarctic Polar Front (APF), deep-water troughs and distance between sites. Mitochondrial DNA (mtDNA) data indicated a sharp genetic division between the Patagonian Shelf/North Scotia Ridge and the Shag Rocks/South Georgia samples, whereas microsatellite data showed much less distinct structuring and an intermediate position of the North Scotia Ridge samples. We suggest these data indicate that the APF, as a barrier to larval dispersal, is the major inhibitor of genetic exchange between toothfish populations, with deep-water troughs and distance between sites contributing to genetic differentiation by inhibiting migration of relatively sedentary adults. We also suggest that differences between mtDNA and nuclear DNA population patterns may reflect either genome population size effects or (putative) male-biased dispersal.  相似文献   

20.
The decipherment of the meager information provided by short fragments of ancient mitochondrial DNA (mtDNA) is notoriously difficult but is regarded as a most promising way toward reconstructing the past from the genetic perspective. By haplogroup-specific hypervariable segment (HVS) motif search and matching or near-matching with available modern data sets, most of the ancient mtDNAs can be tentatively assigned to haplogroups, which are often subcontinent specific. Further typing for mtDNA haplogroup-diagnostic coding region polymorphisms, however, is indispensable for establishing the geographic/genetic affinities of ancient samples with less ambiguity. In the present study, we sequenced a fragment (approximately 982 bp) of the mtDNA control region in 76 Han individuals from Taian, Shandong, China, and we combined these data with previously reported samples from Zibo and Qingdao, Shandong. The reanalysis of two previously published ancient mtDNA population data sets from Linzi (same province) then indicates that the ancient populations had features in common with the modern populations from south China rather than any specific affinity to the European mtDNA pool. Our results highlight that ancient mtDNA data obtained under different sampling schemes and subject to potential contamination can easily create the impression of drastic spatiotemporal changes in the genetic structure of a regional population during the past few thousand years if inappropriate methods of data analysis are employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号