首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mononuclear copper complexes with the quinolone antibacterial drug enrofloxacin (=Herx) in the presence or not of a nitrogen donor heterocyclic ligand 1,10-phenanthroline (=phen) and 2,2'-bipyridine (=bipy) have been prepared and characterized. Interaction of copper(II) with deprotonated enrofloxacin leads to the formation of the neutral complex Cu(erx)2(H2O), 1, while the presence of phen or bipy leads to the formation of a neutral or a cationic mononuclear complex, respectively. The crystal structures of (chloro)(1,10-phenanthroline)(enrofloxacinato)copper(II), 2, and (aqua)(2,2'-bipyridine)(enrofloxacinato)copper(II) chloride, 3, have been determined with X-ray crystallography. The complexes have been studied with X-band electron paramagnetic resonance in aqueous solutions at liquid helium temperature. The study of the interaction of the complexes with calf-thymus DNA has been performed with diverse spectroscopic techniques and has showed that all complexes are bound to DNA by the intercalative mode. The antimicrobial efficiency of the complexes has been tested on three different microorganisms and the available evidence supports that the best inhibition is provided by Cu(erx)2(H2O) (minimum inhibitory concentration=0.125 microg mL(-1)) against Escherichia coli and Pseudomonas aeruginosa.  相似文献   

2.
The iron complexes with the phenoxyalkanoic acids 2,3-D = 2,3-dichlorophenoxyacetic acid, 3,4-D = 3,4-dichlorophenoxyacetic acid, 2,4,5-T = 2,4,5-trichlorophenoxyacetic acid, and mcpa = 2-chloro-4-methyl-phenoxyacetic acid, in the presence or not of a nitrogen donor heterocyclic ligand, py = pyridine, bipy = 2,2′ bipyridine, phen = 1,10-phenanthroline, were prepared and characterized.The interaction of Fe(III) with phenoxyalkanoic acids and bipy or phen leads to dinuclear neutral complexes, while the presence of py favors tetranuclear neutral forms. The crystal structures of [Fe2OCl2(mcpa)2(bipy)2] · 0.25(bipy) · 0.8MeCN (1a), and {[Fe4O2(mcpa)6Cl2(py)4] · 2MeCN} (3a), have been determined. DNA-Fe(III) complex interaction studies suggest that iron complexes promote the hydrolytic cleavage of double stranded DNA that seems to be oxygen independent, while pDNA shows cross-linking with many molecules of the iron clusters. Antibacterial screening data showed that the presence of chelating agents, bipy or phen, increased the efficiency of iron complexes.  相似文献   

3.
A novel ternary copper(II) complex, [Cu(phen)(L-Thr)(H2O)](ClO4) (phen=1,10-phenanthroline, L-Thr=L-threonine), has been synthesized and structurally characterized. The complex crystallized in a triclinic system with space group P1 , a=7.526(15) A, b=11.651(2) A, c=12.127(2) A, alpha=115.41(3) degrees , beta=102.34(3) degrees and gamma=91.33(3) degrees . The copper(II) center is situated in a distorted square-pyramidal geometry. At a concentration of 10(-6) mol L(-1), the complex exhibited potent cytotoxic effects against human leukemia cell line HL-60 and human stomach cancer cell line SGC-7901 with inhibition rates of over 90%, however, less pronounced effects were observed for human liver carcinoma cell line BEL-7402 and human non-small-cell lung cancer cell line A-549. The complex was shown to bind DNA by intercalation and cleave pBR322 DNA in the presence of ascorbate.  相似文献   

4.
The coordination geometry around copper(II) in [Cu(imda)(phen)(H2O)] (1) (H2imda = iminodiacetic acid, phen = 1,10-phenanthroline) is described as distorted octahedral while those in [Cu(imda)(5,6-dmp)] (2) (5,6-dmp = 5,6-dimethyl-1,10-phenanthroline) and [Cu(imda)(dpq)] (3) (dpq = dipyrido-[3,2-d:2',3'-f]-quinoxaline) as trigonal bipyramidal distorted square-based pyramidal with the imda anion facially coordinated to copper(II). Absorption spectral (Kb: 1, 0.60+/-0.04x10(3); 2, 3.9+/-0.3x10(3); 3, 1.7+/-0.5x10(4) M(-1)) and thermal denaturation studies (deltaTm: 1, 5.70+/-0.05; 2, 5.5+/-10; 3, 10.6+/-10 degrees C) and viscosity measurements indicate that 3 interacts with calf thymus DNA more strongly than 1 and 2. The relative viscosities of DNA bound to 1 and 3 increase while that of DNA bound to 2 decreases indicating formation of kinks or bends and/or conversion of B to A conformation as revealed by the decrease in intensity of the helicity band in the circular dichroism spectrum of DNA. While 1 and 3 are bound to DNA through partial intercalation, respectively, of phen ring and the extended planar ring of dpq with DNA base stack, the complex 2 is involved in groove binding. All the complexes show cleavage of pBR322 supercoiled DNA in the presence of ascorbic acid with the cleavage efficiency varying in the order 3 > 1 > 2. The highest oxidative DNA cleavage of dpq complex is ascribed to its highest Cu(II)/Cu(I) redox potential. Oxidative cleavage studies using distamycin reveal minor groove binding for the dpq complex but a major groove binding for the phen and 5,6-dmp complexes. Also, all the complexes show hydrolytic DNA cleavage activity in the absence of light or a reducing agent with cleavage efficiency varying in the order 1 > 3 > 2.  相似文献   

5.
Reaction of Mn(II) with phenoxyalkanoic acids and di-2-pyridyl ketone oxime (Hpko) leads to neutral tetranuclear complexes of the general formula Mn(4)(O)(pko)(4)(phenoxyalkanoato)(4) (phenoxyalkanoic acids: H-mcpa=2-methyl-4-chloro-phenoxy-acetic acid, H-2,4,5-T=2,4,5-trichloro-phenoxy-acetic acid or H3,4-D=3,4-dichloro-phenoxy-acetic acid). The compounds were synthesized by adding di-2-pyridyl ketone oxime to MnCl(2) in the presence of the sodium salts of the alkanoic acids in methanol. The crystal structure of Mn(4)(II/II/II/IV)(O)(pko)(4)(2,4,5-T)(4).2.5CH(3)OH.0.25H(2)O 1 shows that the complex consists of a [Mn(4)(mu(4)-O)](8+) core with a Mn(IV) and 3 Mn(II) ions in octahedral environment and a mu(4)-O atom bridging the four manganese ions. Spectroscopic studies of the interaction of these tetranuclear clusters with DNA showed that these compounds bind to dsDNA. The binding strength of the Mn(4)(II/II/II/IV)(O)(pko)(4)(2,4,5-T)(4) complex for calf thymus DNA is equal to 1.1x10(4)M(-1). Among the deoxyribonucleotides they bind preferentially to deoxyguanylic acid (dGMP). Competitive studies with ethidium bromide (EthBr) showed that the Mn(4)(II/II/II/IV)(O)(pko)(4)(2,4,5-T)(4) complex exhibited the ability to displace the DNA-bound EthBr indicating that the complex binds to DNA via intercalation in strong competition with EthBr for the intercalative binding site. Additionally, DNA electrophoretic mobility experiments showed that all three complexes, at low cluster concentration, are obviously capable of binding to pDNA causing its cleavage (relaxation) at physiological pH and temperature. At higher cluster concentration, catenated dimer forms of pDNA was formed.  相似文献   

6.
Stability constants of iron(III), copper(II), nickel(II) and zinc(II) complexes of salicylhydroxamic acid (H2Sha), anthranilic hydroxamic acid (HAha) and benzohydroxamic acid (HBha) have been determined at 25.0 degrees C, I=0.2 mol dm(-3) KCl in aqueous solution. The complex stability order, iron(III) > copper(II) > nickel(II) approximately = zinc(II) was observed whilst complexes of H2Sha were found to be more stable than those of the other two ligands. In the preparation of ternary metal ion complexes of these ligands and 1,10-phenanthroline (phen) the crystalline complex [Cu(phen)2(Cl)]Cl x H2Sha was obtained and its crystal structure determined. This complex is a model for hydroxamate-peroxidase inhibitor interactions.  相似文献   

7.
The nature of binding of Ru(phen) 2+ (I), Ru(bipy) 2+ (II), Ru(terpy) 2+ (III) (phen = 1,10-phenanthroline, bipy 3 = 2,2'-bipyridyl, 3 terpy = 2,2'2," - 2 terpyridyl) to DNA, poly[d(G-C)] and poly[d(A-T)] has been compared by absorption, fluorescence, DNA melting and DNA unwinding techniques. I binds intercalatively to DNA in low ionic strength solutions. Topoisomerisation shows that it unwinds DNA by 22 degrees +/- 1 per residue and that it thermally stabilizes poly[d(A-T)] in a manner closely resembling ethidium. Poly[d(A-T)] induces greater spectral changes on I than poly[d(G-C)] and a preference for A-T rich regions is indicated. I binding is very sensitive to Mg2+ concentration. In contrast to I the binding of II and III appears to be mainly electrostatic in nature, and causes no unwinding. There is no evidence for the binding of the neutral Ru(phen)2 (CN)2 or Ru(bipy)2 (CN)2 complexes. DNA is cleaved, upon visible irradiation of aerated solutions, in the presence of either I or II.  相似文献   

8.
A series of mononuclear copper(II) complexes having a 1:1 molar ratio of copper and the planar heterocyclic base like 1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz) are prepared from a reaction of copper(II) nitrate.trihydrate and the base (L) in ethanol or aqueous ethanol at different temperatures. The complexes [Cu(dpq)(NO(3))(2)] (2), [Cu(dpq)(NO(3))(H(2)O)(2)](NO(3)) (3), [Cu(dpq)(NO(3))(2)(H(2)O)(2)].2H(2)O (4.2H(2)O) and [Cu(dppz)(NO(3))(2)(H(2)O)].H(2)O (5.H(2)O) have been characterized by X-ray crystallography. The crystal structures show the presence of the heterocyclic base in the basal plane. The coordination geometries of the copper(II) centers are axially elongated square-pyramidal (4+1) in 2, 3 and 5, and octahedral (4+2) in 4. The nitrate anion in the coordination sphere displays unidentate and bidentate chelating bonding modes. The axial ligand is either H(2)O or NO(3) in these structures giving a Cu-L(ax) distance of approximately 2.4 A. The one-electron paramagnetic complexes (mu approximately 1.8 mu(B)) exhibit axial EPR spectra in DMF glass at 77 K giving g(parallel)>g( perpendicular ) with an A(parallel) value of approximately 170G indicating a [d(x)2(-y)2](1) ground state. The complexes are redox active and display a quasireversible cyclic voltammetric response for the Cu(II)/Cu(I) couple near 0.0 V vs. SCE giving an order of the E(1/2) values as 5(dppz)>2-4 (dpq)>[Cu(phen)(2)(H(2)O)](2+)>1 (phen). The complexes bind to calf thymus DNA giving an order 5 (dppz)>2 (dpq)>[Cu(phen)(2)(H(2)O)](2+)>1 (phen). An effect of the extended planar ring in dpq and dppz is observed in the DNA binding. The complexes show nuclease activity with pUC19 supercoiled DNA in DMF/Tris-HCl buffer containing NaCl in presence of mercaptopropanoic acid as a reducing agent. The extent of cleavage follows the order: [Cu(phen)(2)(H(2)O)](ClO(4))(2)>5>2 approximately 3 approximately 4>1. The bis-phen complex is a better cleaver of SC DNA than 1-5 having mono-heterocyclic base. Mechanistic investigations using distamycin reveal minor groove biding for the phen, dpq complexes, and a major groove binding for the dppz complex 5. The cleavage reactions are found to be inhibited in the presence of hydroxyl radical scavenger DMSO and the reactions are proposed to proceed via sugar hydrogen abstraction pathway. The ancillary ligand is found to have less effect in DNA binding but are of importance in DNA cleavage reactions.  相似文献   

9.
The relative activities of neutral, cationic, and anionic chromium ascorbate complexes toward isolated human mitochondrial and genomic DNA were investigated at physiologically relevant conditions by agarose gel electrophoresis. A direct relationship between the charge of the Cr(III) species and their DNA-damaging properties was found. The cationic species were found to be fully capable of DNA-cleavage, even in short incubation periods. Incubations were also performed in the presence of amino acids. No apparent effect was observed under the applied experimental conditions to facilitate or prevent damage through the ternary amino acid-Cr-DNA adduct formation or binary chromium-amino acid complex formation.  相似文献   

10.
A series of ternary copper(II)-1,10-phenanthroline complexes with glycine and methylated glycine derivatives, [Cu(phen)(aa)(H(2)O)]NO(3)·xH(2)O 1-4 (amino acid (aa): glycine (gly), 1; DL: -alanine (DL: -ala), 2; 2,2-dimethylglycine (C-dmg), 3; sarcosine (sar), 4), were synthesized and characterized by FTIR, elemental analysis, electrospray ionization-mass spectra (ESI-MS), UV-visible spectroscopy and molar conductivity measurement. The determined X-ray crystallographic structures of 2 and 3 show each to consist of distorted square pyramidal [Cu(phen)(aa)(H(2)O)](+) cation, a nitrate counter anion, and with or without lattice water, similar to previously reported structure of [Cu(phen)(gly)(H(2)O)]NO(3)·1?H(2)O. It is found that 1-4 exist as 1:1 electrolytes in aqueous solution, and the cationic copper(II) complexes are at least stable up to 24?h. Positive-ion ESI-MS spectra show existence of only undissociated [Cu(phen)(aa)](+) species. Electron paramagnetic resonance, gel electrophoresis, fluorescence quenching, and restriction enzyme inhibition assay were used to study the binding interaction, binding affinity and selectivity of these complexes for various types of B-form DNA duplexes and G-quadruplex. All complexes can bind selectively to DNA by intercalation and electrostatic forces, and inhibit topoisomerase I. The effect of the methyl substituents of the coordinated amino acid in the above complexes on these biological properties are presented and discussed. The IC(50) values (24?h) of 1-4 for nasopharyngeal cancer cell line HK1 are in the range 2.2-5.2?μM while the corresponding values for normal cell line NP69 are greater than 13.0?μM. All complexes, at 5?μM, induced 41-60?% apoptotic cell death in HK1 cells but no significant cell death in NP69 cells.  相似文献   

11.
A new quinolone-metal complex was prepared by a hydrothermal reaction in the presence of L-histidine that served as a reducing agent for a metal. The title compound [Cu(II)(cfH)(2)(Cu(I)Cl(2))(2)] (1) is a mixed-valence Cu(II)-Cu(I) complex, which contains two ciprofloxacin (cfH) molecules bonded to the central copper(II) atom and two almost planar [Cu(I)Cl(2)](-) moieties. Both metal centers are connected through two bridging atoms (chloride and quinolone oxygen). The electrochemical methods (differential-pulse polarography and cyclovoltammetric measurements) confirmed the presence of various copper-ciprofloxacin complex species in aqueous solution at low concentrations used in biological activity tests and also indicated that the equilibria in this system are very complex. The biological properties of the title compound and some previously isolated copper-ciprofloxacin complexes ([Cu(cfH)(2)Cl(2)].6H(2)O (2) and [CuCl(cfH)(phen)]Cl.2H(2)O (3)) (phen=1, 10-phenantroline) were determined and compared. The DNA gyrase inhibition tests and antibacterial activity tests have shown that the effect of copper complexes is comparable to that of free quinolone. Additionally, an interesting DNA cleavage activity of the title compound was also discovered.  相似文献   

12.
Cu(BZA)(2)(EtOH)(0.5) (1) was generated by the reaction of copper(II) hydroxide with benzoic acid (BZAH). [Cu(TBZH)(2)(BZA)](BZA).0.5TBZH.H(2)O (2) and [Cu(2-PyBZIMH)(2-PyBZIM)(BZA)].1.66EtOH (3) were obtained when 1 reacted with Thiabendazole (TBZH) and 2-(2-pyridyl)benzimidazole (2-PyBZIMH), respectively. [Cu(BZA)(2)(phen)(H(2)O)] (4) was isolated from the reaction of benzoic acid and 1,10-phenanthroline (phen) with copper(II)acetate dihydrate. Molecular structures of 2, 3 and 4 were determined crystallographically. 2 and 3 are hydrogen bonded dimers and trimers, respectively. The copper centres in complexes 2 and 3 are bis-chelate derivatives that have N(4)O ligation and their geometry is very similar being approximately square-pyramidal. However whereas in complex 2 both TBZH ligands are neutral in 3 one of the 2-PyBZIMH chelators is deprotonated on each copper. The structural results for 4 represent a re-examination of this crystallographically known compound for which no hydrogen atom coordinates have been previously reported. It crystallises as a hydrogen bonded dimmer and is a mono-chelate of phen with each copper centre possessing N(2)O(3) ligation and square pyramidal geometry. The catalase and superoxide dismutase (SOD) activities of the four complexes along with those of the known phenanthroline complexes [Cu(mal)(phen)(2)] and [Cu(phendione)(3)](ClO(4))(2) (malH(2)=malonic acid and phendione=1,10-phenanthroline-5,6-dione) were investigated. Complexes 1-4, the metal free ligands and a simple copper(II) salt were assessed for their cancer chemotherapeutic potential against the hepatocellular carcinoma (Hep-G(2)) and kidney adenocarcinoma (A-498) cell lines. TBZH, 2-PyBZIMH and benzoic acid when uncoordinated to a metal centre offer poor chemotherapeutic potential. copper(II) benzoate is significantly more active than the free acid. The bis-chelate derivatives [Cu(TBZH)(2)(BZA)](BZA).0.5TBZH.H(2)O (2) and [Cu(2-PyBZIMH)(2-PyBZIM)(BZA)].1.66EtOH (3) elicit a significant cytotoxic response to the cancer cell lines tested. Replacing TBZH and 2-PyBZIMH with phen to give [Cu(BZA)(2)(phen)(H(2)O)] (4) does not significantly increase the anti-cancer activity.  相似文献   

13.
Three novel neutral mononuclear copper(II) complexes of the third-generation quinolone antibacterial drug sparfloxacin in the presence of a nitrogen donor heterocyclic ligand 2,2'-bipyridine, 1,10-phenanthroline or 2,2'-dipyridylamine have been prepared and characterized physicochemically and spectroscopically. The resultant complexes are of the type Cu(sparfloxacinato)(N-donor)Cl. Copper(II) is pentacoordinate having a distorted square pyramidal geometry. Molecular modeling calculations have been performed in order to propose the lowest energy model structure of the complexes. The interaction of the complexes with calf-thymus DNA has been investigated with diverse spectroscopic techniques and has shown that the complexes can bind to calf-thymus DNA by the intercalative mode. The antimicrobial activity of the complexes has been tested on three different microorganisms. The Cu(sparfloxacinato)(N-donor)Cl complexes are among the most active ones against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, when compared to the other corresponding copper-quinolone complexes studied by our group and their antimicrobial activity is increased in the order bipyam相似文献   

14.
Summary A 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterial strain, Xanthobacter sp. CP, was isolated after enrichment in aerated soil columns. A limited number of chlorinated phenols and chlorinated phenoxyalkanoic acids with an even number of carbon atoms in the side chain served as substrates for growth, although whole cells exhibited oxygen uptake with a wide range of those compounds. The maximal growth rate with 2,4-D was 0.13·h-1 at a growth yield of 0.1 g biomass/g 2,4-D. Chloride ions were released quantitatively from 2,4-D and related chlorinated aromatic compounds which served as growth substrates. No by-products of 2,4-D metabolism were detected in oxygen-sufficient cultures of Xanthobacter sp. CP and catechols were cleaved exclusively by catechol 1,2-dioxygenase.  相似文献   

15.
Ternary copper(II) complexes [CuLL'](ClO(4)), where HL is NSO-donor Schiff base (2-(methylthio)phenyl)salicylaldimine and L' is NN-donor phenanthroline bases like 1,10-phenanthroline (phen), dipyridoquinoxaline (dpq) and 2,9-dimethyl-1,10-phenanthroline (dmp), are prepared and structurally characterized by X-ray crystallography. The complexes have a distorted square-pyramidal (4+1) CuN(3)OS coordination geometry. While [CuL(phen)](ClO(4)) and [CuL(dpq)](ClO(4)) show axial sulfur ligation, [CuL(dmp)](ClO(4)) has the sulfur bonded at the equatorial site. The one-electron paramagnetic complexes exhibit axial electron paramagnetic resonance (EPR) spectra in dimethylformamide glass at 77 K. The complexes are redox active and a quasireversible electron transfer process near 0.0 V vs saturated calomel electrode (SCE) in DMF-Tris buffer (1:4 v/v at pH 7.2) involving Cu(II)/Cu(I) couple is observed for the phen and dpq complexes. The dmp complex exhibits an irreversible reduction process forming bis(dmp)copper(I) species. A profound effect of the substituents of the phenanthroline bases is observed on the binding of the complexes to the calf thymus (CT) and in the cleavage of supercoiled (SC) pUC19 DNA. The phen and dpq complexes show DNA cleavage activity in presence of mercaptopropionic acid (MPA). The dmp complex is cleavage inactive in presence of MPA. All the complexes show photocleavage activity when irradiated with a monochromatic UV light of 312 nm. The dpq complex also cleaves SC DNA on visible light irradiation at 436, 532 and 632.8 nm but with a longer exposure time and higher complex concentration. The cleavage reactions in presence of MPA are found to involve hydroxyl radical. The photocleavage reactions are found to occur under aerobic conditions showing an enhancement of cleavage in D(2)O and inhibition with azide addition suggesting formation of singlet oxygen as a reactive species. The roles of sulfur of the Schiff base as photosensitizer and the phenanthroline bases as minor groove binder, and their influence on the photocleavage activity are discussed. The quinoxaline ligand exhibits significant photosensitizing effect assisted by the copper(II) center.  相似文献   

16.
Ultraviolet–visible, emission and circular dichroism spectroscopic methods were used in transfer RNA (tRNA) interaction studies performed for polyethyleneimine–copper(II) complexes [Cu(phen)(l ‐Tyr)BPEI]ClO4 (where phen =1,10‐phenanthroline, l ‐Tyr = l ‐tyrosine and BPEI = branched polyethyleneimine) with various degrees of coordination (x = 0.059, 0.149, 0.182) in the polymer chain. The results indicated that polyethyleneimine–copper(II) complexes bind with tRNA mostly through surface binding, although other binding modes, such as hydrogen bonding and van der Waals interactions, might also be present. Dye‐exclusion, sulforhodamine B and 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assays of a polyethyleneimine–copper(II) complex with a higher degree of coordination against different cancer cell lines proved that the complex exhibited cytotoxic specificity and a significant cancer cell inhibition rate. Antimicrobial screening showed activity against some human pathogens.  相似文献   

17.
The neutral mononuclear copper(II) complexes with the quinolone antibacterial drugs, pipemidic acid and N-propyl-norfloxacin, in the presence or absence of nitrogen-donor heterocyclic ligands, 2,2′-bipyridine, 1,10-phenanthroline or 2,2′-dipyridylamine, have been prepared and characterized spectroscopically. The interaction of copper(II) with the deprotonated quinolone ligand leads to the formation of the neutral mononuclear complexes of the type [Cu(quinolone)2(H2O)] (1)–(2) while the presence of the N-donor ligand leads to the formation of the neutral mononuclear complexes of the type [Cu(quinolone)(N-donor)Cl] (3)–(8). In all the complexes, copper(II) is pentacoordinate having a distorted square pyramidal geometry. The electron paramagnetic resonance spectra of 1 and 2 are typical of mononuclear Cu(II) complexes, while for the mixed-ligands complexes 3–8 a mixture of dimeric and monomeric species is indicated. The interaction of the complexes with calf-thymus DNA has been investigated with diverse spectroscopic techniques and has shown that the complexes can be bound to calf-thymus DNA by the intercalative mode. The antimicrobial activity of the complexes has been tested on three different microorganisms. All the complexes show an increased biological activity in comparison to the corresponding free quinolone ligand.  相似文献   

18.
Copper(II) complexes of three linear unsymmetrical tridentate ligands viz. N-methyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L1), N,N-dimethyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L2) and N,N-dimethyl-N'-((6-methyl)pyrid-2-ylmethyl)ethylenediamine (L3) have been isolated and characterized by elemental analysis, electronic absorption and EPR spectroscopy and cyclic and differential pulse voltammetry. Of these complexes [Cu(L2)Cl2] and [Cu(L3)Cl2] have been structurally characterized by X-ray crystallography. The [Cu(L2)Cl2] complex crystallizes in the monoclinic space group P2(1)/n with a=11.566(2) A, b=7.369(1) A, c=15.703(3) A, alpha=90 degrees , beta=109.68(8) degrees , gamma=90 degrees and Z=4 while [Cu(L3)Cl2] crystallizes in the triclinic space group P1 with a=9.191(2) A, b=12.359(3) A, c=14.880(3) A, alpha=79.61(13) degrees , beta=86.64(13) degrees , gamma=87.28(8) degrees and Z=2. The coordination geometries around copper (II) in these two complexes are best described as trigonal bipyramidal distorted square based pyramidal (TBDSBP). The distorted CuN3Cl basal plane in them is comprised of three nitrogen atoms of the meridionally coordinated ligand and a chloride ion and the axial position is occupied by the other chloride ion. The interaction of these complexes with Calf Thymus DNA (CT DNA) has been studied by using absorption, emission and circular dichroic spectral methods, thermal denaturation studies, viscometry and cyclic and differential pulse voltammetry. A strong blueshift in the ligand field band and a redshift in the ligand based bands of the copper(II) complexes on binding to DNA imply a covalent mode of DNA binding of the complexes, which involves coordination of most possibly guanine N7 nitrogen of DNA to form a CuN4 chromophore. This is supported by studying the interaction of the complexes with N-methylimidazole (N-meim), guanosine monophosphate (GMP), adenosine monophosphate (AMP) and cytidine (cytd) by ligand field and EPR spectral methods, which indicate the formation of a CuN4 chromophore only in the case of the more basic N-meim and GMP. The DNA melting curves obtained in the presence of copper(II) complexes reveal a monophasic and irreversible melting of the DNA strands and the high positive DeltaTm values (12-21 degrees C) also support the formation of strong Cu-N bonds by the complexes with DNA, leading to intra- and/or interstrand crosslinking of DNA. Competitive ethidium bromide (EthBr) binding studies show that the L2 and L3 complexes are less efficient than the L1 complex in quenching EthBr emission, which is consistent with their forming DNA crosslinking preventing the displacement of the DNA-bound EthBr. A very slight decrease in relative viscosity of DNA is observed on treating the L1 and L2 complexes with CT DNA; however, a relatively significant decrease is observed for the L3 complex suggesting that the length of the DNA fiber is shortened. DNA cleavage experiments show that all the complexes induce the cleavage of pBR322 plasmid DNA, the complex of L1 being more efficient than those of sterically hindered L2 and L3 ligands.  相似文献   

19.
A series of metal carboxylates containing pyridine N-oxide are prepared via one pot synthesis and solid phase synthesis. The structural variations from metal to metal are observed. In the case of reactions of manganese(II) acetate with pyridine N-oxide in the presence of aromatic carboxylic acids, polymeric complexes with bridging aromatic carboxylate as well as bridging pyridine N-oxide are observed. Whereas, the reaction of copper(II) acetate with pyridine N-oxide in the presence of an aromatic carboxylic acid led to mononuclear or binuclear paddle wheel carboxylate complexes with monodentate pyridine N-oxide. Co-crystal of two neutral complexes having composition [Cu2(OBz)4(MeOH)2][Cu2(OBz)4(pyO)2] (where OBz = benzoate, pyO = pyridine N-oxide) each neutral parts have paddle wheel structure. Solid phase reaction of zinc chloride with sodium benzoate prepared in situ and pyridine N-oxide leads to a tetra-nuclear zinc complex.  相似文献   

20.
The hydroxo-bridged dinuclear copper (II)/phen complex [Cu(2)(phen)(2)(OH)(2)(H(2)O)(2)][Cu(2)(phen)(2)(OH)(2)Cl(2)]Cl(2).6H(2)O (phen=1,10-phenanthroline) has been prepared and characterized by single crystal X-ray diffraction. The coordinated area of the complex shows two distorted [CuN(2)O(2)O(w)] and [CuN(2)O(2)Cl] square-pyramidal and one strictly planar configuration CuO(2)Cu involving two O atoms of hydroxo-bridged, Cu(2+) cations, N atoms of two phen ligands and disorder solvate water and chlorine anions. In the presence of H(2)O(2), the complex of mono(1,10-phenanthroline)copper exhibits higher activity as a nuclease than bis(1,10-phenanthroline)copper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号