首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The planarian brain has an inverted-U shaped structure with functional regionalization. To investigate how each region in the brain connects to each other, we traced neural projections by microinjection of fluorescence dye tracers. We found that external light and olfactory/taste signals received in the head region are conveyed in the main lobes (sponge region) of the brain. Chemosensory neurons distributed in the lateral branches project to the peripheral region of the sponge and visual neurons project to the medial region of the sponge. Parts of the sensory neurons project directly to the corresponding sensory neurons on the opposite side of the brain. However, all of the dye labeled brain neurons in the left and right lobes connect to each other via commissural neurons in the central region of the sponge. In addition to these observations, we detected regional differences in the planarian visual neurons. Posterior visual neurons have ipsilateral projection, but anterior visual neurons project to the contralateral side of the brain. A pair of longitudinal ventral nerve cords (VNC) connect to the brain on the ventral side, suggesting that they transmit signals which are integrated and processed in the brain. We also detected the direct connection of neurons in the brain and those of the pharynx, even though most pharynx neurons connect to VNC neurons. Here, we report for the first time on neural connections in the planarian central nervous system after overcoming technical difficulties specific to flatworms.  相似文献   

2.
目的:观察脑内远位触液神经元内p-p38丝裂原活化蛋白激酶(MAPK)的分布及其在噪声应激时的表达。方法:用霍乱毒素亚单位B与辣根过氧化物酶复合物(CB-HRP)标记和免疫组织化学相结合的双重标记技术.观察SD大鼠脑实质内远位触液神经元中p-p38MAPK的分布:进一步制作噪声应激动物模型,观察噪声应激后该类神经元中p-p38MAPK的表达变化。结果:在脑干的特定部位恒定出现被CB-HRP标记的两组神经细胞簇,其他脑区未见CB-HRP标记神经细胞簇。不予应激刺激,该细胞簇内仅有个别神经元见有CB-HRP/p—p38MAPK;噪声应激刺激1d时,上述特定部位细胞簇的CB-HRP/p-p38MAPK双重标记神经元数目没有明显变化;噪音应激刺激5d时,CB-HRP/p—p38MAPK双重标记神经元数目较对照组显著增多(P〈0.05);噪音应激刺激10d时CB-HRP/p—p38MAPK双重标记神经元数目较对照组显著增多(P〈0.05);噪音应激刺激20d时,CB-HRP/p—p38MAPK双重标记神经元数目较对照组显著增多(P〈0.01):结论:在脑干特定部位恒定存在的两组被CBHRP标记的细胞团为远位触液神经元,其中少数触液神经元有p-p38MAPK表达,且当给予动物噪声应激刺激时,p-p38MAPK免疫阳性神经元和CB-HRP/p—p38MAPK双重标记神经元数量显著增加,提示脑实质内的这种远位触液神经元中的P—p38MAPK可能参与了机体对噪声应激的信息传递或调控,其作用随应激天数增加而日趋增强.  相似文献   

3.
In this video, we demonstrate the procedure for isolating whole brains from adult Drosophila in preparation for recording from single neurons. We begin by describing the dissecting solution and capture of the adult females used in our studies. The procedure for removing the whole brain intact, including both optic lobes, is illustrated. Dissection of the overlying trachea is also shown. The isolated brain is not only small but needs special care in handling at this stage to prevent damage to the neurons, many of which are close to the outer surface of the tissue. We show how a special holder we developed is used to stabilize the brain in the recording chamber. A standard electrophysiology set up is used for recording from single neurons or pairs of neurons. A fluorescent image, viewed through the recording microscope, from a GAL4 line driving GFP expression (GH146) illustrates how projection neurons (PNs) are identified in the live brain. A high power Nomarski image shows a view of a single neuron that is being targeted for whole cell recording. When the brain is successfully removed without damage, the majority of the neurons are spontaneously active, firing action potentials and/or exhibiting spontaneous synaptic input. This in situ preparation, in which whole cell recording of identified neurons in the whole brain can be combined with genetic and pharmacological manipulations, is a useful model for exploring cellular physiology and plasticity in the adult CNS.  相似文献   

4.
Summary The structure of ommatidia at the dorsal eye margin of the fly, Calliphora erythrocephala is specialized for the detection of the e-vector of polarized light. Marginal zone ommatidia are distinguished by R7/R8 receptor cells with large-diameter, short, untwisted rhabdomeres and long axons to the medulla. The arrangement of the R7 microvillar directions along the marginal zone is fan-shaped. Ommatidia lining the dorsal and frontal edge of the eye lack primary screening pigments and have foreshortened crystalline cones. The marginal ommatidia from each eye view a strip that is 5 °–20 ° contralateral to the fly's longitudinal axis and that coincides with the outer boundaries of the binocular overlap.Cobalt injection into the retina demonstrates that photoreceptor axons arising from marginal ommatidia define a special area of marginal neuropil in the second visual neuropil, the medulla. Small-field neurons arising from the marginal medulla area define, in turn, a special area of marginal neuropil in the two deepest visual neuropils, the lobula and the lobula plate. From these arise local assemblies of columnar neurons that relay the marginal zones of one optic lobe to equivalent areas of the opposite lobe and to midbrain regions from which arise descending neurons destined for the the thoracic ganglia.Optically, the marginal zone of the retina represents the lateral edge of a larger area of ommatidia involved in dorsofrontal binocular overlap. This binocularity area is also represented by special arrangements of columnar neurons, which map the binocularity area of one eye into the lobula beneath the opposite eye. Another type of binocularity neuron terminates in the midbrain.These neuronal arrangements suggest two novel features of the insect optic lobes and brain: (1) Marginal neurons that directly connect the left and right optic lobes imply that each lobe receives a common input from areas of the left and right eye, specialized for detecting the pattern of polarized light. (2) Information about the e-vector pattern of sky-light polarization may be integrated with binocular and monocular pathways at the level of descending neurons leading to thoracic motor neuropil.  相似文献   

5.
电磁脉冲辐照大鼠海马区细胞凋亡与形态学变化   总被引:6,自引:0,他引:6  
以体外原代培养的大鼠海马神经元和Wistar大鼠为研究对象,探讨电磁脉冲(场强为6× 104 V/m)辐照后早期海马区细胞凋亡和病理形态学的变化.在照射后1h、6h、12h、24h和48h分别采用MTT法和流式细胞仪测定死亡细胞和凋亡细胞的比例,用光镜和电镜分别进行形态学观察.结果显示在电磁脉冲辐照后,海马神经细胞不仅发生快速的坏死,而且还发生凋亡,同时在早期即可见到血管、胶质细胞和神经元等组织的形态学异常.表明大鼠大脑受电磁脉冲辐照后早期海马区可发生神经细胞坏死和凋亡,以及各组织成分的病理形态学改变,上述变化可能与电磁脉冲致细胞DNA损伤有关.  相似文献   

6.
The attenuating effect of various variants of hypoxia on hyperbaric anesthesia in rats was studied. The most efficient turned out to be the daily 8-fold one-hour interval 6% hypoxia that decreased manifestation of the anesthesia by 60–67%. The immunocytochemical light optical microscopy showed that in the brain cortex after the 8th seance of such hypoxia the number of neurons with the strong and moderate reaction to heat shock proteins (HSP-70) increased essentially, whereas the number of neurons with the weak reaction to these proteins decreased significantly. After the first hypoxia seances the number of cells with no reaction for the nuclear protein NeuN increased, while after its 8th seance the areas of deletion of neurons appeared. It is believed that one of the main causes of an increase of resistance of the rat organism to nitrogen anesthesia after seances of the many-day interval 6% hypoxia is accumulation of HSP-70 in brain motor cortex cells. At the same time, taking into account a possible cell death and areas of deletion of neurons in cortex during the hypoxic action, it is better to use as a preadaptogen the more moderate or not too frequent hypoxia.  相似文献   

7.
Contrary to the long-held dogma according to which the adult mammalian brain does not produce neurons anymore, neuronal turnover has been reported in two discrete areas of the adult brain: the hippocampus and the olfactory bulb. Adult-generated neurons are produced from neural stem cells located in the hippocampal subgranular zone and the subventricular zone of the lateral ventricles. Recently, number of genetic and epigenetic factors that modulate proliferation of stem cells, migration, differentiation and survival of newborn neurons have been characterized. We know that neurogenesis increases in the diseased brain, after stroke or after traumatic brain injury. Importantly, progenitors from the subventricular zone, but not from the subgranular zone, are incorporated at the sites of injury, where they replace some of the degenerated neurons. Thus, the central nervous system has the capacity to regenerate itself after injury and, today, researchers develop strategies aimed at promoting neurogenesis in diseased areas. This basic research is attracting a lot of attention because of the hope that it will lead to regeneration and reconstruction therapy for the damaged brain. In this review, we discuss major findings concerning the organization of the neurogenic niche located in the subventricular zone and examine both intrinsic and extrinsic factors that regulate adult neurogenesis. Then, we present evidences for the intrinsic capability of the adult brain for cell replacement, and shed light on recent works demonstrating that one can greatly enhance appropriate brain cell replacement by using molecular cues known to endogenously control proliferation, migration, differentiation and/or survival of subventricular zone progenitors. Finally, we review some of the advantages and limits of strategies aimed at using endogenous progenitors and their relevance to human clinics.  相似文献   

8.
Circadian clocks of most organisms are synchronized with the 24-hour solar day by the changes of light and dark. In Drosophila, both the visual photoreceptors in the compound eyes as well as the blue-light photoreceptor Cryptochrome expressed within the brain clock neurons contribute to this clock synchronization. A specialized photoreceptive structure located between the retina and the optic lobes, the Hofbauer-Buchner (H-B) eyelet, projects to the clock neurons in the brain and also participates in light synchronization. The compound eye photoreceptors and the H-B eyelet contain Rhodopsin photopigments, which activate the canonical invertebrate phototransduction cascade after being excited by light. We show here that 2 of the photopigments present in these photoreceptors, Rhodopsin 5 (Rh5) and Rhodopsin 6 (Rh6), contribute to light synchronization in a mutant (norpA(P41) ) that disrupts canonical phototransduction due to the absence of Phospholipase C-β (PLC-β). We reveal that norpA(P41) is a true loss-of-function allele, resulting in a truncated PLC-β protein that lacks the catalytic domain. Light reception mediated by Rh5 and Rh6 must therefore utilize either a different (nonretinal) PLC-β enzyme or alternative signaling mechanisms, at least in terms of clock-relevant photoreception. This novel signaling mode may distinguish Rhodopsin-mediated irradiance detection from image-forming vision in Drosophila.  相似文献   

9.
Sinusoidally modulated and discrete light pulses, the parameters of which approximated natural light conditions, were used to determine the response characteristics of ocellar first-order interneurons of the worker honeybee (Apis mellifera carnica). Large ocellar interneurons which terminate within the brain (LB neurons) were recorded from intracellularly and were identified visually after dye injection. Absolute sensitivity of LB neurons to light flashes ranges from 4 X 10(9) quanta/cm2s (Q) for MOC1,7 neurons to 1 X 10(12) Q for MOC3,4. The slope of the response-intensity (R/I) functions, which were calculated for intensities between 2 X 10(9) and 4 X 10(13) Q, varies in different types of LB neurons. The strongest response is given by one group of median ocellar neurons. With constant light around 10(13) Q, most LB neurons exhibit oscillatory hyperpolarizations which, upon increasing the stimulus to even higher intensities (10(14)-10(15) Q), gradually evolve to a hyperpolarized plateau. The frequency of these oscillatory voltage fluctuations increases with the rate of modulation of the stimulating light and reaches maximum values at 5-15 Hz modulation frequency. Two groups of MOC neurons follow sinusoidally modulated light up to 32 +/- 8 Hz (n = 5) and 29 +/- 6 Hz (n = 3), respectively, whereas lateral ocellar neurons cut off at 17 +/- 5 Hz (n = 4). The possible role of LB neurons is discussed. They may be inactivated when the bee is flying in bright sunlight.  相似文献   

10.
A brief review of the available information concerning age-related genomic (DNA) damage and its repair, with special reference to brain tissue, is presented. The usefulness of examining the validity of DNA-damage and repair hypothesis of aging in a postmitotic cell like neuron is emphasized. The limited number of reports that exist on brain seem to overwhelmingly support the accumulation of DNA damage with age. However, results regarding the age-dependent decline in DNA-repair capacity are conflicting and divided. The possible reasons for these discrepancies are discussed in light of the gathering evidence, including some human genetic disorders, to indicate how complex is the DNA-repair system in higher animals. It is suggested that assessment of repair potential of neurons with respect to a specific damage in a specific gene might yield more definitive answers about the DNA-repair process and its role in aging.  相似文献   

11.
This paper presents three examples of imaging brain activity with voltage- or calcium-sensitive dyes and then discusses the methodological aspects of the measurements that are needed to achieve an optimal signal-to-noise ratio.Internally injected voltage-sensitive dye can be used to monitor membrane potential in the dendrites of invertebrate and vertebrate neurons in in vitro preparations.Both invertebrate and vertebrate ganglia can be bathed in voltage-sensitive dyes to stain all of the cell bodies in the preparation. These dyes can then be used to follow the spike activity of many neurons simultaneously while the preparations are generating behaviors.Calcium-sensitive dyes that are internalized into olfactory receptor neurons in the nose will, after several days, be transported to the nerve terminals of these cells in the olfactory bulb. There they can be used to measure the input from the nose to the bulb.Three kinds of noise are discussed. a. Shot noise from the random emission of photons from the preparation. b. Vibrational noise from external sources. c. Noise that occurs in the absence of light, the dark noise.Three different parts of the light measuring apparatus are discussed: the light sources, the optics, and the cameras.The major effort presently underway to improve the usefulness of optical recordings of brain activity are to find methods for staining individual cell types in the brain. Most of these efforts center around fluorescent protein sensors of activity.  相似文献   

12.
13.
Circadian rhythms modulate many physiologic processes and behaviors. Therefore, their disruption causes a variety of potential adverse effects in humans and animals. Circadian disruption induced by constant light exposure has been discovered to produce pathophysiologic consequences after brain injury. However, the underlying mechanisms that lead to more severe impairment and disruption of neurophysiologic processes are not well understood. Here, we evaluated the effect of constant light exposure on the neurobehavioral impairment and survival of neurons in rats after traumatic brain injury (TBI). Sixty adult male Sprague–Dawley rats were subjected to a weight-drop model of TBI and then exposed to either a standard 12-/12-h light/dark cycle or a constant 24-h light/light cycle for 14 days. Our results showed that 14 days of constant light exposure after TBI significantly worsened the sensorimotor and cognitive deficits, which were associated with decreased body weight, impaired water and food intake, increased cortical lesion volume, and decreased neuronal survival. Furthermore, environmental circadian disruption inhibited cell proliferation and newborn cell survival and decreased immature cell production in rats subjected to the TBI model. We conclude that circadian disruption induced by constant light exposure worsens histologic and neurobehavioral impairment and inhibits neurogenesis in adult TBI rats. Our novel findings suggest that light exposure should be decreased and circadian rhythm reestablished in hospitalized TBI patients and that drugs and strategies that maintain circadian rhythm would offer a novel therapeutic option.  相似文献   

14.
The induction of development of neurons and glial cells from neural progenitor cells (NPCs) is at present considered a promising strategy for recoverу after ischemic insult-evoked damage to the brain. To estimate whether grafted NPCs can develop morphological properties of the mature neurons and become functionally integrated within a host hippocampal circuitry, immunohistochemical approaches at the light and electron microscopy levels have been used. Ischemic insult in FVB-strain mice was evoked by 20-min-long occlusion of both carotid arteries. One day after occlusion, NPCs from GFP-transgenic fetuses were suboccipitally transplanted into the ischemic brain. We found that 44.7 ± 3.8% (mean ± s.e.m) of the grafted GFP-positive cells differentiated 3 months after transplantation into cells demonstrating morphological features of hippocampal pyramidal neurons. Moreover, grafted cells demonstrated manifestations of rather intense formation of the synapses between host and donor neural cells. Thus, our observations show that the NPC-based transplantation approach may be promising in the treatmen t of ischemic insult.  相似文献   

15.
The task of the visual system is to translate light into neuronal encoded information. This translation of photons into neuronal signals is achieved by photoreceptor neurons (PRs), specialized sensory neurons, located in the eye. Upon perception of light the PRs will send a signal to target neurons, which represent a first station of visual processing. Increasing complexity of visual processing stems from the number of distinct PR subtypes and their various types of target neurons that are contacted. The visual system of the fruit fly larva represents a simple visual system (larval optic neuropil, LON) that consists of 12 PRs falling into two classes: blue-senstive PRs expressing Rhodopsin 5 (Rh5) and green-sensitive PRs expressing Rhodopsin 6 (Rh6). These afferents contact a small number of target neurons, including optic lobe pioneers (OLPs) and lateral clock neurons (LNs). We combine the use of genetic markers to label both PR subtypes and the distinct, identifiable sets of target neurons with a serial EM reconstruction to generate a high-resolution map of the larval optic neuropil. We find that the larval optic neuropil shows a clear bipartite organization consisting of one domain innervated by PRs and one devoid of PR axons. The topology of PR projections, in particular the relationship between Rh5 and Rh6 afferents, is maintained from the nerve entering the brain to the axon terminals. The target neurons can be subdivided according to neurotransmitter or neuropeptide they use as well as the location within the brain. We further track the larval optic neuropil through development from first larval instar to its location in the adult brain as the accessory medulla.  相似文献   

16.
This special issue on steroids and glia represents the intersection of two emerging themes in the neurosciences: (a) Glia actively modulate and participate in brain function throughout life, and (b) glia are sensitive to steroid hormones. This overview begins by reviewing some of the basic principles of steroid hormone action on the brain and introducing the various glia that inhabit the peripheral and central nervous system. A prominent theme among the articles that follow is that glia may be direct targets for steroid hormones since they possess steroid receptors and the promoter region of glial-specific genes such as glutamine synthetase contain hormone-responsive elements. The articles in this special issue discuss evidence that glia may mediate steroid action on the nervous system in the context of (a) steroid metabolism, which may control the hormonal microenvironment of neurons both in the normal and injured brain; (b) brain development including sexual differentiation; (c) synaptic plasticity which may underlie the cyclic release of luteinizing hormone releasing hormone in the female rodent brain; (d) neural repair and aging; and (e) brain immune function. Another theme among these articles is that glia influence neurons via specific secreted and cell-surface molecules, and that steroids affect this mode of communication by altering the level of glial production of these signaling molecules and/or the sensitivity of neurons to such signals.  相似文献   

17.
It is now well documented that active neurogenesis does exist throughout the life span in the brain of various species including human. Two discrete brain regions contain progenitor cells that are capable of differentiating into neurons or glia, the subventricular zone and the dentate gyrus of the hippocampal formation. Recent studies have shown that neurogenesis can be modulated by a variety of factors, including stress and neurohormones, growth factors, neurotransmitters, drugs of abuse, and also strokes and traumatic brain injuries. In particular, the hippocampal neurogenesis may play a role in neuroadaptation associated with pathologies, such as cognitive disorders and depression. The increased neurogenesis at sites of injury may represent an attempt by the central nervous system to regenerate after damage. We herein review the most significant data on hippocampal neurogenesis in brain under various pathological conditions, with a special attention to mood disorders including depression and addiction. Special issue dedicated to Dr. Moussa Youdim.  相似文献   

18.
Aminergic brain structures have been investigated by means of light microscopical autoradiography after injection of the tritiated catecholamines noradrenaline and dopamine and the indoleamine (or tryptamine) serotonin into the brain cavity of frogs of the Rana esculenta complex. These amines are fairly specifically taken up by catecholaminergic and serotoninergic neurons, respectively, which are located in structures like the catecholaminergic preoptic recess organ; the mixed catecholaminergic-serotoninergic paraventricular organ/nucleus infundibularis-complex and nucleus reticularis mesencephali; the telencephalic septal and striatal areas and the tectum opticum, which contain many catecholaminergic axon terminals; the habenular area, which contains serotoninergic axon terminals. The autoradiographical data on the location and the nature of these aminergic brain structures agree well with the mainly fluorescence microscopical and immunocytochemical data from the literature. The autoradiographical detection method can be combined at the light and the electron microscopical level with other histological, histochemical, or immunohistochemical techniques in one and the same preparation, and the results of the different treatments may eventually be made visible simultaneously.  相似文献   

19.
Cerebrospinal fluid (CSF)-contacting neurons are sensory-type cells sending ciliated dendritic process into the CSF. Some of the prosencephalic CSF-contacting neurons of higher vertebrates were postulated to be chemoreceptors detecting the chemical composition of the CSF, other cells may percieve light as "deep encephalic photoreceptors". In our earlier works, CSF-contacting neurons of the mechanoreceptor-type were described around the central canal of the hagfish spinal cord. It was supposed that perceiving the flow of the CSF they are involved in vasoregulatory mechanisms of the nervous tissue. In the present work, we examined the brain ventricular system of the Atlantic hagfish with special reference to the presence and fine structure of CSF-contacting neurons. Myxinoids have an ontogenetically reduced brain ventricular system. In the adult hagfish (Myxine glutinosa) the lumen of the lateral ventricle is closed, the third ventricle has a preoptic-, infundibular and subhabenular part that are not connected to each other. The choroid plexus is absent. The infundibular part of the third ventricle has a medial hypophyseal recess and, more caudally, a paired lateral recess. We found CSF-contacting neurons in the lower part of the third ventricle, in the preoptic and infundibular recess as well as in the lateral infundibular recesses. No CSF-contacting neurons were found in the cerebral aqueduct connecting the subhabenular recess to the fourth ventricle. There is a pineal recess and a well-developed subcommissural organ at the rostral end of the aqueduct. Extending from the caudal part of the fourth ventricle in the medulla to the caudal end of the spinal cord, the central canal has a dorsal and ventral part. Dendrites of CSF-contacting neurons are protruding into the ventral lumen. Corroborating the supposed choroid plexus-like function of the wall of the dorsal central canal, segmental vessels reach a thin area on both sides of the ependymal lining. The perikarya of the CSF-contacting neurons found in the brain ventricles are mainly bipolar and contain granular vesicles of various size. The bulb-like terminal of their ventricular dendrites bears several stereocilia and contains basal bodies as well as mitochondria. Basal bodies emit cilia of the 9+0-type. Cilia may arise from the basal body and accessory basal body as well. The axons run ependymofugally and enter--partially cross--the periventricular synaptic zones. No neurohemal terminals similar to those formed by spinal CSF-contacting neurons of higher vertebrates have been found in the hagfish. We suppose that CSF-contacting neurons transform CSF-mediated non-synaptic information taken up by their ventricular dendrites to synaptic one. A light-sensitive role for some (preoptic?) groups of CSF-contacting neurons cannot be excluded.  相似文献   

20.
The localization of cholinergic neurons in the cat lower brain stem was determined immunocytochemically with a monoclonal antibody against choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme. ChAT-positive neurons were observed in four major cell groups: cranial nerve motor and special visceromotor neurons: parasympathetic preganglionic visceromotor neurons; neurons located in the ponto-mesencephalic tegmentum including area X (or pedunculopontine tegmental nucleus), nucleus laterodorsalis tegmenti (Ldt) of Castaldi, and peri-locus coeruleus alpha (peri-alpha); and neurons located in nucleus reticularis magnocellularis (Mc) and adjacent nucleus reticularis gigantocellularis (Gc) of the medulla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号