首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LUSH  W. M.; EVANS  L. T. 《Annals of botany》1980,46(6):719-725
To test the proposition that photoperiodic controls synchronizethe flowering of cowpeas, Vigna unguiculata (L.) Walp. [V. sinensis(L.) Savi], the day-length requirements for floral initiationand for flowering were investigated in several short-day accessions.No evidence was found of different critical photoperiods atdifferent stages of development, but exposure to only 2–4short days was required for floral initiation compared withabout 20 for development to open flowers. Pod setting was increasedafter exposure to even one short day more than the number requiredfor flower opening. Floral buds at higher nodes appeared to require fewer shortdays for development to flowering than buds at the lower nodes,and displayed faster rates of development. Inflorescence budsdid not resume development if they were exposed to 15 or morelong days following inflorescence initiation. Thus, any tendencytowards synchronous flowering in cowpeas is not due to the criticalday-length for flower development being shorter than that forflower initiation, but could be the result of cumulative photoperiodicinduction of plants and the more rapid development of later-formedflowers. Vigna unguiculata (L.) Walp., cowpeas, flower initiation, flower development, fruit set, photoperiodism  相似文献   

2.
Early growth, nodule development, and nitrogen fixation by two cultivars of cowpea (Vigna unguiculata L. Walp), one large-seeded (Vita 3; 146.0 ± 0.9 milligrams seed dry weight, 4.1 ± 0.2 milligrams seed N), the other small-seeded (Caloona; 57.5 ± 2.5 milligrams seed dry weight, 1.8 ± 0.1 milligrams seed N), were compared under conditions of sand culture with nutrient solution free of combined N. The seed stocks used had been obtained from plants uniformly labeled with 15N, thus enabling changes with time in distribution of cotyledon and fixed N among plant parts to be measured by isotope dilution. Caloona, but not Vita 3, showed physiological symptoms of `N hunger,' i.e. transient loss of chlorophyll (visible yellowing) and N from the first-formed unifoliolate leaves at or around the onset of symbiotic functioning and N2 fixation. The smaller-seeded Caloona showed higher early nitrogenase activity than the larger-seeded Vita 3 and by 28 days had fixed 6.6 milligrams of N per milligram of seed N [mg N · (mg seed N)−1] versus only 3.5 mg N · (mg seed N)−1 in Vita 3. Both cultivars lost around 30% of their initial seed N at germination, mostly as fallen cotyledons. Abscised cotyledons of Caloona contained 1.21 ± 0.17% N; those of Vita 3 contained 2.61 ± 0.37% N. When compared on the basis of cotyledon N available for seedling growth, Caloona was shown to have fixed 10.6 mg N · (mg seed N)−1 and Vita 3 only 5.3 mg N · (mg seed N)−1. Most of the cotyledon N withdrawn from the unifoliolate leaf pair of Caloona during `N-hunger' was committed to early nodule growth and, in total, 20 to 25% of the cotyledon N resource of this cultivar was ultimately invested in establishment of symbiosis compared with only 7% in Vita 3.  相似文献   

3.
A survey of allozyme variation in cultivar-groups of cowpea [Vigna unguiculata (L.) Walp.] was undertaken by examining 21 enzyme systems encoded by 36 loci in 271 accessions representing the five cultivar-groups. Very low levels of variation were found within accessions, which is typical of self-pollinating species. Little variation was also found among accessions. Compared with other legume crops, V. unguiculata is depauperate in allozyme variation. We found an average of 1.61 alleles per locus with 42% of the loci polymorphic and a total heterozygosity of 0.061. Of the variation present, 90% was found within cultivar-groups, while 10% was among cultivar-groups. Data analyses revealed continuous variation among cultivar-groups and geographic regions with the accessions failing to segregate into discrete morphophysiological or geographic clusters. However, evolved cultivar-groups (cv.-gr. Melanophthalmus and cv.-gr. Sesquipedalis) appear to be less diverse than their putative primitive cultivar-group progenitors. Due to the lack of availability of critical material, no clear center of origin can be established. However, the data presented suggest that Northeast Africa could be a possible center of domestication. Received: 18 February 1999 / Accepted: 4 November 1999  相似文献   

4.
Abstract

The presence of latent infections was studied in five cowpeas varieties. Seeds of the varieties were planted and the seedlings inoculated with antigens from Cucumber mosaic virus (CMV) genus Cucumovirus, Bean common mosaic virus (BCMV) genus Potyvirus (Blackeye cowpea mosaic virus strain), Southern bean mosaic virus (SBMV) genus Sobemovirus and Cowpea mottle virus (CPMoV) genus Carmovirus seven days after planting. Seedlings expressing symptoms were rouged at two weeks after inoculation, while asymptomatic ones were subjected to serological indexing to detect the presence/absence of latent infection. Protein A-sandwich enzyme-linked immunosorbent assay (PAS ELISA) was employed for the serological detection of CMV, SBMV and CPMoV, while antigen-coated plate (ACP) ELISA was used to detect BCMV in the asymptomatic plants. Cowpea seedlings without virus symptoms but with positive serological reactions were considered as being latently infected. All of the inoculated TVu 1272 and SuVita-2 plants showed symptoms consistent with CMV and CPMoV infections, respectively. The rate of CMV latent infection was high in TVu 1179 (14.5%), low in SuVita-2 (1.3%) but not recorded in TVu 1272.  相似文献   

5.
Staked and ‘topped’ cowpea plants (cv. K 2809) withsix trifoliate leaves were defoliated in various ways and grownon for 9 d in controlled-environment growth cabinets. Leaveswhich were from 2 to 3 weeks old contributed little to furtherdry weight increment of vegetative plants. When parts of youngleaves were removed plant dry weight increase was affected onlyslightly as compensatory expansion of the remaining laminaetook place. The complete removal of several young leaves washighly detrimental to subsequent plant growth. Thus, the outcomeof defoliation depended not just on the absolute leaf area removedbut also on the position (age) of the leaves treated and whetheror not loss of whole leaves or just parts of leaves was involved.  相似文献   

6.
Summary Rhizobium strains CIAT 301, CIAT 79 and SLM 602 were tested and found effective in the nodulation and nitrogen fixation of cowpea cv. MI-35 (Vigna unguiculata (L.) Walp) plants in growth chamber experiments. Fresh weight of nodules increased with plant age initially and stabilized in 20–30 days from planting, followed by a secondary flush of nodule growth after 30 days. Apparent nitrogen fixation per gram nodule fresh weight reached a maximum in 20–30 days after planting and then decreased, even though a flush of new nodules was produced.  相似文献   

7.
The relationship between seed number per pod and senescenceof the leaf in its axil was examined in a determinate cowpea(Vigna unguiculata L. Walp) variety C.779. The seed number perpod was reduced at all fruiting nodes by surgical excision ofpart of the 4-d-old pod. Leaf senescence as measured by lossof leaf area, chlorophyll content and soluble protein was sloweddown in leaves supporting the development of an artificiallyreduced number of seeds. Diminished nitrogen mobilization fromthe leaf could not account for the reduced rate of leaf senescence.The result suggests the involvement of a senescence signal fromthe developing seeds to the leaf in its axil. Development ofthe basal half of the excised pod in the cowpea provides a uniquesystem for manipulating seed number per pod. Senescence, monocarpic, chlorophyll, protein, Vigna unguiculata, cowpea  相似文献   

8.
The response of non-nodulated cowpea (Vigna unguiculata (L.) Walp. cv Caloona) to a wide range of NO3 levels in the rooting medium was studied 40 days after sowing by in vitro assays of plant organs for NO3 reductase (EC 1.6.6.1) and analyses of root bleeding (xylem) sap for nitrogenous solutes. Plants fed 1, 5, 10, 20, and 40 millimolar NO3 showed, respectively, 64, 92, 94, and 91% of their total reductase activity in shoots and 34, 30, 66, 62, and 58% of the total N of their xylem sap as NO3. These data, and the absence in the plants of significant pools of stored NO3, indicated that shoots were major organs of NO3 assimilation, especially at levels of NO3 (10 to 40 millimolar) that maintained plant growth at near maximum rates. Partitioning and utilization of C and N were studied in nodulated, minus NO3 plants and non-nodulated plants fed 10 or 20 millimolar NO3, the levels of NO3 which gave rates of growth and N assimilation closest to those of the symbiotic plants. The conversion of the C of net photosynthate to dry matter was similar in nodulated plants (67%) and NO3-grown plants (64%), but greater proportions of photosynthate were translocated to below ground parts of nodulated plants (37%) than of NO3-fed plants (23 to 26%). Greater photosynthate consumption by nodulated roots was associated with proportionately greater root growth and respiration and 2-fold greater export of C in xylem than in the NO3-fed plants. Theoretical considerations suggest that the elevated CO2 output of nodulated roots was due not only to CO2 loss associated with nodule function, but also to a much greater nonassimilatory component of respiration in the supporting root of the nodulated plant compared to roots of the NO3-fed plants. Data are compared with previously published information from other legumes.  相似文献   

9.
A chimeric plant was observed in the F2 generation of a cross between a mutant cultivar, Ife BPC, and a germplasm line, TVu 2, in cowpea, Vigna unguiculata (L.) Walp. The chimeric plant had four lateral branches, one of which was intensely variegated, while the others were mostly green with few white sectors. F3 progeny from the intensely variegated branch of this plant were all variegated, while seed derived from the mostly green branches produced only green progeny. In subsequent generations, the descendants of the variegated branch bred true for the variegated trait, while those of the mostly green branches were also true-breeding for green colour. No pure-green or pure-white shoots were observed in any of the variegated plants examined in this study. Consequently, no pure-green or pure-white seedlings were produced from seeds harvested from the variegated plants. The results of reciprocal crosses between variegated and normal green plants indicate that variegation is inherited in a strictly uniparental maternal fashion. This is the first report of a cytoplasmically inherited mutation affecting foliage colour in cowpea. Received: 10 March 2000 / Accepted: 16 May 2000  相似文献   

10.
Cowpea (Vigna unguiculata [L.] Walp.) is a major crop for worldwide food and nutritional security, especially in sub‐Saharan Africa, that is resilient to hot and drought‐prone environments. An assembly of the single‐haplotype inbred genome of cowpea IT97K‐499‐35 was developed by exploiting the synergies between single‐molecule real‐time sequencing, optical and genetic mapping, and an assembly reconciliation algorithm. A total of 519 Mb is included in the assembled sequences. Nearly half of the assembled sequence is composed of repetitive elements, which are enriched within recombination‐poor pericentromeric regions. A comparative analysis of these elements suggests that genome size differences between Vigna species are mainly attributable to changes in the amount of Gypsy retrotransposons. Conversely, genes are more abundant in more distal, high‐recombination regions of the chromosomes; there appears to be more duplication of genes within the NBS‐LRR and the SAUR‐like auxin superfamilies compared with other warm‐season legumes that have been sequenced. A surprising outcome is the identification of an inversion of 4.2 Mb among landraces and cultivars, which includes a gene that has been associated in other plants with interactions with the parasitic weed Striga gesnerioides. The genome sequence facilitated the identification of a putative syntelog for multiple organ gigantism in legumes. A revised numbering system has been adopted for cowpea chromosomes based on synteny with common bean (Phaseolus vulgaris). An estimate of nuclear genome size of 640.6 Mbp based on cytometry is presented.  相似文献   

11.
Mature de-embryonated cotyledons with intact proximal end of Vigna unguiculata were cultured on B5 basal medium containing varying concentrations of BAP. Thirty-six percent of the explants produced shoots on B5 medium supplemented with 8× 10–6 M BAP. Cotyledon explants were pre-incubated for 24 h, inoculated with A. tumefaciens pUCD2614 carrying pUCD2340, co-cultivated for 48 h and transferred to hygromycin-B (25 mg/l) containing shoot induction medium. Approximately 15–19% of the explants produced shoots on the selection medium. The elongated shoots were subsequently rooted on B5 basal medium containing hygromycin. The transgenic plants were later established in pots. The presence of hpt gene in the transgenic plants was confirmed by Southern blot hybridization.Abbreviations BAP 6-Benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - hpt hygromycin phosphotransferase - IAA Indole-3-acetic acid - NAA 1-naphthaleneacetic acid  相似文献   

12.
Summary The effects of K and Mg application on dry matter yield and uptake of K, Mg and Ca in cowpea were studied in greenhouse at Haryana Agricultural University, Hissar (india). Dry matter yields of leaves, stems and roots increased by 17, 30 and 27 per cent over control due to application of 150 ppm K and 17, 16 and 26 per cent by 40 ppm Mg respectively. Potassium application has antagonistic effect on Ca concentration of leaves, stems and roots and synergistic on root Mg concentrations upto 25 ppm K. However, Mg had a synergistic effect on concentration of K upto 20 ppm Mg and antagonistic at 40 ppm Mg in all plant parts. Uptake of K, Mg and Ca increased by Mg application, but K increased only K uptake.  相似文献   

13.
 The cowpea [Vigna unguiculata (L.) Walp.] is a morphologically and genetically variable species composed of wild perennial, wild annual, and cultivated forms that are mainly used for edible seeds and pods. In this study, genetic variation in 199 germplasm accessions of wild and cultivated cowpea was evaluated using an allozyme analysis. The results from this survey showed that wild cowpea exhibits genetic variation perfectly fitted with the existing morphological classification. The cowpea gene-pool is characterized by its unusually large size. It encompasses taxa (ranked as subspecies) that could be considered as different species considering the high genetic distances observed between accessions belonging to different taxa. These subspecies can be classified into three groups characterized by their breeding systems: perennial outcrossers, perennial out-inbreds, and inbred annuals. Allozyme data confirm this grouping. Perennial outcrossers look primitive and are more remote from each other and from perennial out-inbreds. Within this large gene-pool, mainly made of perennial taxa, cultivated cowpeas (ssp. unguiculata var. unguiculata) form a genetically coherent group and are closely related to annual cowpeas (ssp. unguiculata var. spontanea) which may include the most likely progenitor of cultivated cowpeas. Received: 15 June 1998 / Accepted: 29 September 1998  相似文献   

14.
Nitrogen metabolism and transport were studied during reproductivedevelopment of cowpea (Vigna unguiculata (L.) Walp. cv. Vita3) under three contrasting nitrogen regimes: (1) nitrate suppliedcontinuously (plants non-nodulated), (2) symbiotic N2 fixation(no combined nitrogen), (3) nitrogenstarvation post-anthesisof previously N2-fixing plants. The last treatment involveddaily flushing of the root systems with 100% oxygen which suppressedpost-anthesis N2-fixation by 76–79%, thereby making fruitgrowth almost entirely reliant upon mobilization of previouslyaccumulated nitrogen. The bulk of the xylem nitrogen (root bleedingsap or peduncle tracheal sap) of nitrate-fed plants was nitrateand amide, that of symbiotic and O2-treated plants largely ureide.The composition of fruit cryopuncture phloem sap, however, wasclosely similar in all treatments, with most nitrogen as amidesand amino acids. The evidence suggested intense metabolic transferof root derived nitrate-N or ureide-N to amino acids by vegetativeplant parts prior to translocation to fruits. All tissues offruits showed patterns of development of enzymic activitiesconsistent with release of nitrogen from both ureides and amidesand re-assimilation of ammonia to form amino acids. Althoughthe levels of enzyme activities varied between treatments thedifferences could not be readily associated with individualpatterns of nitrogen transport in the treatments. Nitrogen sufficiencyin the NO3-fed plants was marked by elevated vegetative biomassand low harvest indices for dry matter and nitrogen, while nitrogendeficiency of the O2-treated plants was associated with seedabortion, small seed size and low seed nitrogen concentration,and efficient mobilization of nitrogen from vegetative partsto fruits. Key words: Nitrogen, Translocation, Cowpea  相似文献   

15.
The ureides, allantoin and allantoic acid, represented major fractions of the soluble nitrogen pool of nodulated plants of cowpea (Vigna unguiculata [L.] Walp. cv. Caloona) throughout vegetative and reproductive growth. Stem and petioles were the principal sites of ureide accumulation, especially in early fruiting.

Labeling studies using 14CO2 and 15N2 and incubation periods of 25 to 245 minutes indicated that synthesis of allantoin and allantoic acid in root nodules involved currently delivered photosynthate and recently fixed N, and that the ureides were exported from nodule to shoot via the xylem. From 60 to 80% of xylem-borne N consisted of ureides; the remainder was glutamine, asparagine, and amino acids. Allantoin predominated in the soluble N fraction of nodules and fruits, allantoin and allantoic acid were present in approximately equal proportions in xylem exudate, stems, and petioles.

Extracts of the plant tissue fraction of nitrogen-fixing cowpea nodules contained glutamate synthase (EC 2.6.1.53) and glutamine synthetase (EC 6.3.1.2), but little activity of glutamate dehydrogenase (EC 1.4.1.3). High levels of uricase (EC 1.7.3.3) and allantoinase (EC 3.5.2.5) were also detected. Allantoinase but little uricase was found in extracts of leaflets, pods, and seeds.

Balance sheets were constructed for production, storage, and utilization of ureide N during growth. Virtually all (average 92%) of the ureides exported from roots was metabolized on entering the shoot, the compounds being presumably used as N sources for protein synthesis.

  相似文献   

16.
D akora , F.D. & V incent , J.M. 1984. Fast-growing bacteria from nodules of cowpea ( Vigna unguiculata (L.) Walp.) Journal of Applied Bacteriology 56 , 327–330.
First plating from nodules of cowpea frequently yielded fast-growing large colonies, either apparently uniform or associated with small colony forms typical of the expected slow-grower ( Bradyrhizobium ). Most cultures from single large colonies nodulated both cowpea and siratro ( Macroptilium atropurpureum ), but all such nodules revealed Bradyrhizobium alone or associated with a fast-growing form. Six of nine plants inoculated with a mixed inoculum of slow and fast forms had nodules occupied by both although in no case was the fast-grower able to secure solo invasion. Most of the fast-growing forms shared some internal antigens with Rhizo-biurn meliloti and/or R. trifolii ; none reacted with antiserum to Bradyrhizobium CB 756.  相似文献   

17.
A comparative chromosomal evaluation was carried out between Vigna unguiculata (cowpea) and V. radiata (mung bean) with chromomycin A3 (CMA3)/4’,6-diamidino-2-phenylindole (DAPI) banding and fluorescent in situ hybridization (FISH) using 5S/45S ribosomal DNA (rDNA) probes. Both species had symmetric karyotypes (2n = 22), with prevalence of centromeres in chromosomes at median (m) and submedian (sm) regions and chromosomes ranging in size from 2.1 to 1.25 μm (V. unguiculata) and 2.18 to 0.93 μm (V. radiata). Three different banding patterns were identified for V. unguiculata: CMA3+/DAPI0, CMA3++/DAPI, and CMA3+/DAPI. The CMA3+/DAPI0 bands were observed in the pericentromeric regions of all chromosomes, while the CMA3++/DAPI and CMA3+/DAPI bands were co-localized with the 45S rDNA in the subtelomeric position (chromosomes B, G, and D, J, respectively) and in the proximal position in chromosome F. Two pairs of chromosomes (D and I) bearing interstitial 5S rDNA have been also identified. Vigna radiata displayed CMA30/DAPI+ bands distributed in the centromeric region of chromosomes B, C, and F, while CMA3++/DAPI bands were co-localized with the 45S rDNA sites in the subtelomeric position of the short arm in the F and K chromosome pairs. Three pairs of 5S rDNA sites were identified, the first in the proximal region of the long arm in chromosome E and the two others in the proximal and subterminal positions in the long arm of chromosome J. These data highlight some divergences regarding the amount and composition of the heterochromatin in both species, allowing the identification of individual chromosomes in V. unguiculata and V. radiata, and a comparison with other members of the Phaseoloid clade.  相似文献   

18.
The cowpea (Vigna unguiculata (L.) Walp.) cultivars TVu 354 and Solojo were grown in solution culture at 10 to 1000 M Ca supply. The Ca supply did not vary by more than 10% during the experiment. The pH value was kept constant within 0.1 units at 4.0 by automatic titration. The cultivar TVu 354 proved to be much more Ca-efficient than Solojo. At 10 M Ca supply Solojo died, whereas TVu 354 was hardly affected in dry matter production. The differences in Ca efficiency were independent of the P supply. They could not be explained by differences in Ca uptake or Ca concentrations in the plant tissue. Short-term studies using 45Ca, both in the dark and in the light, indicated better transport of Ca from the roots to the shoots and within the shoots to the younger leaves in the Ca-efficient cultivar TVu 354. However, the main reason for the differences between the cultivars in sensitivity to low Ca supply were differences in the Ca requirement of the plant tissue to maintain tissue organization and function. Sequential fractionation of the freeze-dried leaf tissue with hot water, 0.5 M NaCl, 1 M CH3COOH, and 2 M HCl did not reveal cultivar differences in Ca binding state. The results clearly show that considerable genetic potential in tolerance to low Ca supply exists in cowpea. However, a better understanding of the physiological/biochemical reasons for low internal Ca requirement is needed.  相似文献   

19.
Trypsin inhibitor (TI) activity was followed in the pod (pericarp),seed coat, cotyledon and embryo axis during fruit developmentof cowpea. On the basis of seed fresh weight, three phases couldbe distinguished from anthesis to fruit maturity. In the podTI activity increased from the beginning of Phase I to a maximumin the middle of the phase. From then on the activity declineduntil no activity could be detected before the end of phaseII. The cotyledons did not contain any TI in Phase I. TI activitywas first detected in the cotyledon in the beginning of PhaseII at the same time that globulin synthesis started. The TIactivity in the cotyledon increased to a maximum at the endof Phase II before decreasing in Phase III. In the embryo axisa similar pattern of TI activity to that of the cotyledon wasfound. No protein TI could be detected in the seed coat at anystage. In the pod there is a TI with a mol. wt of 12500 andpI of 4.4. Mature cotyledon and embryo axis have two TI withmol. wt 10800 and 24700 with pI 4.7 and 5.0 respectively. Duringdevelopment the smaller TI (mol. wt 10800) was synthesised beforethe larger TI (mol. wt 24700). There were large differencesbetween the maximum absolute amounts of TI present in the pericarp,cotyledon and embryo axis.  相似文献   

20.
 We examined the influence of Glomus intraradices on nonhydraulic signaling of soil drying, in a drought-avoiding plant having stomates that are extremely sensitive to changes in soil moisture. Cowpea [Vigna un guiculata (L.) Walp. 'White Acre'] seedlings were grown in a greenhouse with root systems split between two pots. The 2×3×2 experimental design included two levels of mycorrhizal colonization (presence or absence of Glomus intraradices Schenck & Smith UT143), three levels of phosphorus fertilization within each mycorrhizal treatment and two levels of water (both pots watered or one pot watered, one pot allowed to dry). Stomatal conductance was mostly similar in fully watered mycorrhizal and nonmycorrhizal controls. However, g s of half-dried, nonmycorrhizal plants was reduced on fewer days and to a lesser extent than g s of half-dried, mycorrhizal plants, perhaps related to quicker soil drying in mycorrhizal pots. The partial soil drying treatment had little effect on leaf relative water content or osmotic potential, indicating that declines in g s and leaf growth were induced by some nonhydraulic factor. Leaf growth was inhibited only in nonmycorrhizal plants, evidently due to a difference in phosphorus nutrition between mycorrhizal and nonmycorrhizal plants. The mycorrhizal effect on g s was not associated with phosphorus nutrition. Inhibition of g s was directly related to extent of soil drying, while inhibition of leaf growth was inversely related to extent of soil drying. Accepted: 4 August 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号