首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: The weaver mutant mouse (wv/wv) has an ~70% loss of nigrostriatal dopamine (DA) neurons, but the fractional DA release evoked by amphetamine (but not a high potassium level) has been shown to be greater from striatal slices of the weaver compared with +/+ mice. In the present work we tested the hypothesis that fractional DA release from weaver striatum would be greater when release was mediated by the DA transporter. Serotonin (5-HT)-stimulated fractional DA release was greater from weaver than from +/+ striatum. The release evoked by 5-HT in the presence of 10 µM nomifensine (an antagonist of the DA transporter) was less than in its absence, but the difference between weaver and +/+ striatum remained. In the presence of nomifensine, 1-(m-chlorophenyl)biguanide, classified as a 5-HT3 agonist, also induced a greater fractional release from weaver compared with +/+ striatum. When veratridine was used at a low concentration (1 µM), the fractional evoked release of DA was higher from the weaver in the presence and absence of nomifensine. These findings suggest that the reason for the difference in the responsiveness of the two genotypes to these release-inducing agents is not related to DA transporter function.  相似文献   

2.
Abstract: Protein tyrosine kinases that are known to have major roles in the control of cell growth and transformation are abundant and have numerous phosphoprotein substrates in the adult CNS. Although less well characterized than serine/threonine kinases, tyrosine kinases are also concentrated in the synapse. The effect of genistein, a selective inhibitor of tyrosine kinase activity, was examined on the in vitro release of endogenous dopamine (DA) from superfused mouse striatal slices. Fractional release of DA was significantly increased over basal release levels by genistein (100 and 200 µ M ). The effect was concentration dependent and rapidly reversible on washout of the kinase inhibitor. No significant change from basal release levels was observed with two structural analogues of genistein that do not inhibit tyrosine kinase activity at the same concentration. We have previously described alterations in basal and evoked DA release from the striatum of the weaver ( wv/wv ) mutant mouse, and genotypic differences in fractional release were also observed with genistein stimulation. The total evoked release was 25–50% greater from the wv/wv striatum. These results suggest a modulatory role for tyrosine kinase activity in neurotransmitter release and perhaps an alteration of kinase-regulated mechanisms in the DA-deficient wv/wv striatum.  相似文献   

3.
Abstract: Mice of different ages and homozygous or heterozygous for the weaver gene ( wv ) were used to study the time course for the effect of the weaver gene on several striatal dopaminergic parameters. Dopamine uptake was decreased in the homozygous weaver at all ages examined. The deficit in uptake at the earliest age studied, postnatal day 3, was approximately 50% and increased to greater than 70% at older ages. In control mice, dopamine uptake reached a maximum by postnatal day 22, but in homozygous weaver mice, development of uptake activity was curtailed by postnatal day 7. Dopamine content and tyrosine hydroxylase activity were significantly decreased in the homozygous weaver at all ages studied except postnatal days 7 and 10. The magnitude of the deficit in dopamine content ranged from approximately 40% at postnatal days 3 and 5 to about 70% in adults (6 months to 1 year of age). The magnitude of the deficit in tyrosine hydroxylase activity ranged from 40 to 70%. In general, no major differences between heterozygotes and controls were observed for any of the dopaminergic parameters investigated. The results of the present investigation indicate that neurochemical alterations can be observed in the striata of weaver mice as early as postnatal day 3 and raise the possibility that the striatal dopamine transporter may be an early target of the weaver mutation.  相似文献   

4.
The effects of hypoxia on release of endogenous 3,4-dihydroxyphenylethylamine (DA, dopamine) were investigated in mouse striatal slices. Following a 60-min preincubation, potassium increased DA release 12 times between zero and 1 min. By 10 min, uptake processes exceeded release and DA levels in the media decreased. Hypoxia (low oxygen) and anoxia (no oxygen) increased DA in the media by 120 and 205%, respectively, but did not alter dihydroxyphenylacetic acid concentrations. Under similar conditions, anoxia increased [3H]DA uptake eight-fold. For the uptake studies, the amount of DA added to the media was critical; in the presence of high concentrations of DA, anoxia reduced reuptake. Regardless of exogenous DA, hypoxia and anoxia increased extracellular DA, which may play a role in ischemic cell damage.  相似文献   

5.
We have previously reported that intracerebroventricular administration of 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (6R-BH4), a cofactor for tyrosine hydroxylase, enhances biosynthesis of 3,4-dihydroxyphenylethylamine (dopamine) in the rat brain. In the present study, we have more precisely examined the effects of 6R-BH4 on dopamine release in vivo from the rat striatum using brain microdialysis. The amount of dopamine collected in striatal dialysates was determined using HPLC with electrochemical detection after purification with an alumina batch method. When the striatum was dialyzed with Ringer solution containing various concentrations of 6R-BH4 (0.25, 0.5, and 1.0 mM), dopamine levels in striatal dialysates increased in a concentration-dependent manner. Biopterin had little effect on dopamine levels in dialysates. The 6R-BH4-induced increase in dopamine levels in dialysates was abolished after pretreatment with tetrodotoxin (50 microM) added to the perfusion fluid, but after pretreatment with nomifensine (100 mg/kg, intraperitoneal injection), an inhibitor of dopamine uptake mechanism, a larger increase was observed. After inhibition of tyrosine hydroxylase by pretreatment with alpha-methyl-p-tyrosine (250 mg/kg, intraperitoneal injection), most of the increase persisted. These results suggest that 6R-BH4 has a dopamine-releasing action, which is not dependent on biosynthesis of dopamine.  相似文献   

6.
Abstract: The effect of a series of indoleamines on the potassium-evoked tritium release of previously accumulated [3H]dopamine from rat striatal slices has been investigated. The indoleamines 5-hydroxytryptamine, 5-methoxy-tryptamine, 5-methoxy- N, N' -dimethyltryptamine and tryptamine (10−7 to 10−3 M) all reduced potassium-evoked release of tritium, to a maximum of 50%. The uptake of [3H]dopamine was unaffected by these compounds. A series of 5-hydroxytryptamine antagonists were examined for their ability to reduce the inhibition of potassium-evoked tritium release induced by 5-methoxytryptamine. The relative order of antagonist potency obtained was methysergide > metergoline > methiothepin > cinanserin > cyproheptadine > mianserin, and was consistent with an action on 5-hydroxytryptamine receptors. It is concluded that there are inhibitory 5-hydroxytryptamine receptors located on the terminals of dopaminergic neurones in the striatum.  相似文献   

7.
Abstract: The effect of tetanus toxin on the uptake and release of radiolabelled transmitters from slices prepared from substantia nigra (SN) and striatum of rats has been investigated. Tetanus toxin-500–750 mouse lethal doses (MLD)-injected into the SN 6 h before preparing the slices significantly reduced the calcium-dependent, potassium-evoked release of [3H]GABA. Endogenous GABA levels in the SN and [3H]GABA uptake by nigral slices were unaffected by pretreatment with the toxin. Injections of tetanus toxin (1000–2000 MLD) into the striatum significantly reduced the calcium-dependent, potassium-evoked release of [14C]GABA and also [3H]dopamine, but had no effect on the K+-evoked release of [3H]5-hydroxytryptamine or [14C]acetylcholine. It is concluded that tetanus toxin inhibits GABA release directly and not by interference with synthesis or inactivation processes.  相似文献   

8.
The effects of a number of biochemical and pharmacological manipulations on amphetamine (AMPH)-induced alterations in dopamine (DA) release and metabolism were examined in the rat striatum using the in vivo brain microdialysis method. Basal striatal dialysate concentrations were: DA, 7 nM; dihydroxyphenylacetic acid (DOPAC), 850 nM; homovanillic acid (HVA), 500 nM; 5-hydroxyindoleacetic acid (5-HIAA), 300 nM; and 3-methoxytyramine (3-MT), 3 nM. Intraperitoneal injection of AMPH (4 mg/kg) induced a substantial increase in DA efflux, which attained its maximum response 20-40 min after drug injection. On the other hand, DOPAC and HVA efflux declined following AMPH. The DA response, but not those of DOPAC and HVA, was dose dependent within the range of AMPH tested (2-16 mg/kg). High doses of AMPH (greater than 8 mg/kg) also decreased 5-HIAA and increased 3-MT efflux. Depletion of vesicular stores of DA using reserpine did not affect significantly AMPH-induced dopamine efflux. In contrast, prior inhibition of catecholamine synthesis, using alpha-methyl-p-tyrosine, proved to be an effective inhibitor of AMPH-evoked DA release (less than 35% of control). Moreover, the DA releasing action of AMPH was facilitated in pargyline-pretreated animals (220% of control). These data suggest that AMPH releases preferentially a newly synthesised pool of DA. Nomifensine, a DA uptake inhibitor, was an effective inhibitor of AMPH-induced DA efflux (18% of control). On the other hand, this action of AMPH was facilitated by veratrine and ouabain (200-210% of control). These results suggest that the membrane DA carrier may be involved in the actions of AMPH on DA efflux.  相似文献   

9.
Haloperidol-induced dopamine (DA) release and metabolism were studied in the rat striatum at 10-11, 21-22, and 35-36 days of age using intracerebral dialysis and HPLC with electrochemical detection. There was an age-related increase in basal DA release and extracellular levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), with the greatest increases occurring between 10-11 and 21-22 days of age. Haloperidol (0.1 mg/kg, i.p.) significantly increased DA release at each age compared to control. Also, haloperidol produced a significantly greater increase in DA release at 10-11 days than at 21-22 or 35-36 days of age when expressed as percentage of predrug release. Haloperidol increased DA release over 60 min to 235%, 138%, and 158% above baseline at 10-11, 21-22, and 35-36 days of age, respectively, after which time the levels remained relatively constant. Haloperidol significantly increased extracellular DOPAC and HVA levels at each age compared to controls, but there were no significant differences in DOPAC or HVA levels between ages in response to haloperidol. The results indicate that, at 10 days of age, DA release in the striatum is physiologically functional and that the regulatory feedback control of DA release and metabolism in the striatum develops prior to 10 days of age.  相似文献   

10.
Hypoxia induces alterations of central monoaminergic transmission and of behavior. We studied the effect of hypoxia on adult and newborn rats to obtain more information about long-lasting changes of dopamine (DA) transmission caused by neonatal hypoxia. One single exposure of adult rats to hypoxia leads to short-term alterations of DA uptake: decreased affinity of the uptake carrier to DA (Km, 269.5% versus control) and a sharp increase of Vmax up to 301.4% resulting in an increase of total uptake of DA into the striatum synaptosomes. The K+-evoked DA release decreased to 69.5%. After 1 week of recovery all parameters are normalized. Chronic postnatal hypoxia (postnatal day 2-11) caused long-lasting changes of DA release and uptake opposite to those observed in adult rats. Three months after hypoxia, the K+-stimulated DA release was enhanced (132% of control), and the uptake was reduced due to decreased affinity of the uptake carrier system for the substrate (Km, 187% of control value). In conclusion, the alterations observed after chronic postnatal hypoxia reflect special adaptive processes that are related to the high plasticity of the immature neonatal brain and contribute to an increased DA function in the nigrostriatal system.  相似文献   

11.
It is becoming apparent that the synthesis of nitric oxide (NO) from L-arginine not only explains endothelium-dependent vascular relaxation, but is a widespread mechanism for the regulation of cell function and communication. We examined the role of NO on the endogenous dopamine (DA) release from rat striatum. Nitroprusside, in the concentration range of 3-100 microM, induced a dose-dependent increase in the endogenous DA release from rat striatal slices. The maximal response was 330% over the baseline release. A higher concentration of nitroprusside (300 microM) produced an inhibitory effect on the spontaneous release of DA. L-Arginine (10 and 100 microM), a substrate in the NO-forming enzyme system, also produced an elevation of DA release. L-Arginine-induced DA release was attenuated by NG-monomethyl-L-arginine, an inhibitor of NO synthase. NADPH (1 microM), a cofactor of NO synthase, enhanced L-arginine-induced DA release. These results suggest a possible involvement of NO in the DA release process in rat striatum.  相似文献   

12.
Abstract: The effects of benzazepine derivatives on extracellular levels of dopamine (DA) and l -3,4-dihydroxyphenylacetic acid (DOPAC) in the dorsal striatum of freely moving rats were studied using in vivo microdialysis. Direct injection of SKF-38393 (0.5 or 1.5 µg/0.5 µl), a selective D1 receptor agonist, into the striatum through a cannula secured alongside a microdialysis probe produced a rapid dose-dependent transient increase in striatal DA efflux and a more gradual reduction in efflux of DOPAC. The rapid increase in DA efflux was not affected by infusion of tetrodotoxin (TTX; 2 µ M ) or Ca2+-free Ringer's solution and occurred after either enantiomer of SKF-38393. A TTX-insensitive increase in DA level similar to that induced by SKF-38393 was also seen after other benzazepines acting as agonists (SKF-75670 and SKF-82958, each 1.5 µg in 0.5 µl) and antagonists (SCH-23390, 1.5 µg in 0.5 µl) at the D1 receptor and after (+)-amphetamine. These effects were inhibited by infusion of nomifensine (100 µ M ). It is concluded that the transient increases in striatal DA efflux seen after intrastriatal injection of SKF-38393 and other benzazepines are not mediated by presynaptic D1 receptors but by an amphetamine-like action on the dopamine transporter.  相似文献   

13.
Abstract: The in vivo release rates of endogenous noradrenaline from the hypothalamus and dopamine from the caudate nucleus of the rat have been determined. Artificial CSF perfusates collected from a push-pull cannula inserted into specific areas of the brain were assayed for the amines by a sensitive radioenzymatic procedure. The release rates of noradrenaline and dopamine into artificial CSF perfusates were 38 ± 6 and 46 ± 6 pg/h (225 ± 36 and 301 ± 39 fmol/h), respectively; when 0.5 mM amphetamine was added to the CSF, the release rates of noradrenaline and dopamine increased to 176 ± 50 and 1183 ± 453 pg/h (1041 ± 296 and 7732 ± 2961 fmol/h), respectively.  相似文献   

14.
Cannabinoid receptors are widely distributed in the nuclei of the extrapyramidal motor and mesolimbic reward systems; their exact functions are, however, not known. The aim of the present study was to characterize the effects of cannabinoids on the electrically evoked release of endogenous dopamine in the corpus striatum and the nucleus accumbens. In rat brain slices dopamine release elicited by single electrical pulses was determined by fast cyclic voltammetry. Dopamine release was markedly inhibited by the OP2 opioid receptor agonist U-50488 and the D2/D3 dopamine receptor agonist quinpirole, indicating that our method is suitable for studying presynaptic modulation of dopamine release. In contrast, the CB1/CB2 cannabinoid receptor agonists WIN55212-2 (10(-6) M) and CP55940 (10(-6)-10(-5) M) and the CB1 cannabinoid receptor antagonist SR141716A (10(-6) M) had no effect on the electrically evoked dopamine release in the corpus striatum and the nucleus accumbens. The lack of a presynaptic effect on terminals of nigrostriatal and mesolimbic dopaminergic neurons is in accord with the anatomical distribution of cannabinoid receptors: The perikarya of these neurons in the substantia nigra and the ventral tegmental area do not synthesize mRNA, and hence protein, for CB1 and CB2 cannabinoid receptors. It is therefore unlikely that presynaptic modulation of dopamine release in the corpus striatum and the nucleus accumbens plays a role in the extrapyramidal motor and rewarding effects of cannabinoids.  相似文献   

15.
The effects of apomorphine (0.1-2.5 mg/kg) on release of endogenous dopamine and extracellular levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the prefrontal cortex and the striatum were examined in vivo by a microdialysis method. Apomorphine significantly reduced release of dopamine and the extracellular levels of dopamine metabolites, DOPAC and HVA, not only in the striatum, but also in the prefrontal cortex. These findings indicate that dopamine autoreceptors modulate in vivo release of dopamine in the prefrontal cortex.  相似文献   

16.
The effect of opiate peptides on basal and potassium-stimulated endogenous dopamine (DA) release from striatal slices was studied in vitro. Dual stimulation of the striatal slices gave a reproducible increase in DA release that was calcium dependent. Addition of the delta-opiate receptor agonists Met5-enkephalin, [D-Ala2,D-Leu5]enkephalin (DADLE), and [D-Ser2]Leu-enkephalin-Thr (DSLET), increased the basal DA release without affecting potassium-stimulated release in a dose-dependent manner. The effect of DADLE was antagonized by the addition of naloxone. In contrast, the mu-opioid receptor agonist [D-Ala2,N-MePhe4,Gly-ol5]enkephalin (DAGO) and the epsilon-opioid agonist beta-endorphin inhibited the stimulated DA release without changing the basal release. The inhibitory effect of DAGO on potassium-stimulated release was antagonized by naloxone. The addition of ethanol (75 mM) to the incubation media produced a delayed increase of both the basal and stimulated DA release. There was no change in stimulated DA release when the change in basal release was subtracted, suggesting that ethanol produced a dose-dependent, selective increase in basal DA release. Naloxone and the selective delta-opiate antagonist ICI 174864 inhibited the ethanol-induced increase in basal DA release. Naloxone and ICI 174864 added alone did not alter either basal or stimulated DA release. We therefore suggest that the ethanol-induced increase in basal DA release is an indirect effect involving an endogenous delta-opiate agonist.  相似文献   

17.
In vivo brain microdialysis was used to examine the role of potassium channel activation in dopamine (DA) autoreceptor function in the striatum of freely moving rats. Local application of the D2 receptor agonists quinpirole or N-0437 through the dialysis probe significantly reduced extracellular concentrations of DA. Local application of the D2 antagonist (-)-sulpiride produced significant increases in DA. Local perfusion with quinine, a K+ channel blocker, completely blocked the (-)-sulpiride-induced increases in DA but did not affect the DA agonist-induced decreases. (-)-Sulpiride completely blocked the effect of quinpirole on DA both in control and in quinine-treated animals. At the highest dose used, quinine caused a large transient increase in extracellular DA. Local application of tetrodotoxin or infusion of Mg2+ in the absence of Ca2+ did not prevent this quinine-induced transient increase in extracellular DA. These results demonstrate that DA autoreceptors in the striatum regulate DA release in awake, behaving animals. Local application of (-)-sulpiride increases DA levels by blocking the tonic activation of autoreceptors by endogenous DA. Quinine blocks the neuroleptic-induced increase in DA, perhaps by preventing the K+ channel opening that would normally accompany endogenous autoreceptor activation. The fact that exogenously applied DA receptor agonists can decrease extracellular DA levels in the presence of quinine suggests that they may be acting at extrasynaptic autoreceptors that are not tonically active in vivo. The effect of DA agonists on this site is via a DA receptor because it is blocked by (-)-sulpiride. However, this receptor does not appear to be coupled to a quinine-sensitive potassium channel.  相似文献   

18.
Abstract: K+-evoked acetyl[3H]choline ([3H]ACh) release was inhibited in a concentration-dependent manner by apomorphine and the D2 agonist quinpirole in striatal slices prepared from euthyroid and hypothyroid rats. However, there was a significant increase in the maximum inhibition observed with both agonists in the hypothyroid compared with the euthyroid group, which paralleled the increased D2 agonist sensitivity reported for stereotyped behavior. The D2 antagonist raclopride decreased, and the D, antagonist SCH 23390 increased, the inhibition of [3H]ACh release by apomorphine, confirming an inhibitory role for D2 receptors and an opposing role for D1 receptors. Because there is no difference in D1 or D2 receptor concentration between the euthyroid and hypothyroid groups, it is suggested that thyroid hormone modulation of D2 receptor sensitivity affects a receptor-mediated event. Following intrastriatal injection of pertussis toxin (PTX), apomorphine no longer inhibited [3H]ACh release. In fact, increased [3H]- ACh release was observed, an effect reduced by SCH 23390, providing evidence that D1 receptors enhance [3H]- ACh release, and confirming that a PTX-sensitive G protein mediates the D2 response. As it has been reported that thyroid hormones modulate G protein expression, this mechanism may underlie their effect on dopamine agonist- mediated inhibition of ACh.  相似文献   

19.
Abstract: Serotonin (5-HT) applied at 1, 3, and 10 µ M into the striatum of halothane-anesthetized rats by in vivo microdialysis enhanced dopamine (DA) outflow up to 173, 283, and 584% of baseline values, respectively. The 5-HT effect was partially reduced by 1 or 10 µ M GR 125,487, a 5-HT4 antagonist, and by 100 µ M DAU 6285, a 5-HT3/4 antagonist, whereas the 5-HT1/2/6 antagonist methiothepin (50 µ M ) was ineffective. In the presence of tetrodotoxin the effect of 1 µ M 5-HT was not affected by 5-HT4 antagonists. In addition, tetrodotoxin abolished the increase in DA release induced by the 5-HT4 agonist ( S )-zacopride (100 µ M ). In striatal synaptosomes, 1 and 10 µ M 5-HT increased the outflow of newly synthesized [3H]DA up to 163 and 635% of control values, respectively. The 5-HT4 agonists BIMU 8 and ( S )-zacopride (1 and 10 µ M ) failed to modify [3H]DA outflow, whereas 5-methoxytryptamine (5-MeOT) at 10 µ M increased it (62%). In prelabeled [3H]DA synaptosomes, 1 µ M 5-HT, but not ( S )-zacopride (1 and 10 µ M ), increased [3H]DA outflow. DAU 6285 (10 µ M ) failed to modify the enhancement of newly synthesized [3H]DA outflow induced by 5-MeOT or 5-HT (1 µ M ), whereas the effect of 5-HT was reduced to the same extent by the DA reuptake inhibitor nomifensine (1 µ M ) alone or in the presence of DAU 6285. These results show that striatal 5-HT4 receptors are involved in the 5-HT-induced enhancement of striatal DA release in vivo and that they are not located on striatal DA terminals.  相似文献   

20.
In the present study, we have applied the brain microdialysis technique to investigate the effect of the stimulation of adenylate cyclase on the extracellular levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) in the striatum of freely moving rats. Infusion of 8-bromo-adenosine 3',5'-cyclic monophosphate (8-Br-cAMP), 3-isobutyl-1-methylxanthine, or forskolin produced a significant increase in the release of DA. The effect of 8-Br-cAMP was tetrodotoxin, Ca2+, and dose dependent and was saturable. 8-Br-cAMP also caused an increase in the output of DOPAC and HVA. No effects were seen on the output of 5-HIAA, except at the highest 8-Br-cAMP concentration studied. Infusion of 8-Br-cAMP (25 microM, 1.0 mM, and 3.3 mM) together with infusion of (-)-sulpiride (1 microM) or systemic administration of (+/-)-sulpiride (55 mumol/kg i.p.) produced an additive effect on the release of DA. Infusion or peripheral administration of (-)-N-0437 (1 microM or 1 mumol/kg) both decreased the 8-Br-cAMP-induced increase in the release of DA. These results demonstrate that cyclic AMP may stimulate the release of DA, but it is unlikely that this second messenger is linked to presynaptic D2 receptors controlling the release of DA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号