首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
1. Purified mitochondria have been prepared from wild type Paramecium tetraurelia and from the mutant Cl1 which lacks cytochrome aa3. Both mitochondrial preparations are characterized by cyanide insensitivity. Their spectral properties and their redox potentials have been studied.2. Difference spectra (dithionite reduced minus oxidized) of mitochondria from wild type P. tetraurelia at 77 K revealed the α peaks of b-type cytochrome(s) at 553 and 557 nm, of c-type cytochrome at 549 nm and a-type cytochrome at 608 nm. Two α peaks at 549 and 545 nm could be distinguished in the isolated cytochrome c at 77 K. After cytochrome c extraction from wild type mitochondria, a new peak at 551 nm was unmasked, probably belonging to cytochrome c1. The a-type cytochrome was characterized by a split Soret band with maxima at 441 and 450 nm. The mitochondria of the mutant Cl1 in exponential phase of growth differed from the wild type mitochondria in that cytochrome aa3 was absent while twice the quantity of cytochrome b was present. In stationary phase, mitochondria of the mutant were characterized by a new absorption peak at 590 nm.3. Cytochrome aa3 was present at a concentration of 0.3 nmol/mg protein in wild type mitochondria and ubiquinone at a concentration of 8 nmol/mg protein both in mitochondria of the wild type and the mutant Cl1. Cytochrome aa3 was more susceptible to heat than cytochromes b and c,c1.4. CO difference spectra at 77 K revealed two different Co-cytochrome complexes. The first, found only in wild type mitochondria, was a typical CO-cytochrome a3 complex characterized by peaks at 596 and 435 nm and troughs at 613 and 450 nm. The second, found both in mitochondria of the wild type and the mutant, was a CO-cytochrome b complex with peaks at 567, 539 and 420 nm and a trough at 558-549 nm. Both complexes are photo-dissociable.5. Spectral evidence was obtained for interaction of cyanide with the a-type cytochrome (shift of the α peak at 77 K from 608 to 605 nm), but not with the b-type cytochrome.6. The mid-point potentials of the different cytochromes at neutral pH are as follows: cytochrome aa3 235 and 395 mV, cytochrome c,c1 233 mV, cytochromes b 120 mV.  相似文献   

3.
Storey BT 《Plant physiology》1970,46(4):625-630
Addition of 90 micromolar reduced nicotinamide adenine dinucleotide (NADH) in the presence of cyanide to a suspension of aerobic mung bean (Phaseolus aureus) mitochondria depleted with ADP and uncoupler gives a cycle of reduction of electron transport carriers followed by reoxidation, as NADH is oxidized to NAD+ through the cyanide-insensitive, alternate oxidase by excess oxygen in the reaction medium. Under these conditions, cytochrome b553 and the nonfluorescent, high potential flavoprotein Fpha of the plant respiratory chain become completely reduced with half-times of 2.5 to 2.8 seconds for both components. Reoxidation of flavoprotein Fpha on exhaustion of NADH is more rapid than that of cytochrome b553. There is a lag of 1.5 seconds after NADH addition before any reduction of ubiquinone can be observed, whereas there is no lag perceptible in the reduction of flavoprotein Fpha and cytochrome b553. The half-time for ubiquinone reduction is 4.5 seconds, and the extent of reduction is 90% or greater. About 30% of cytochrome b557 is reduced under these conditions with a half-time of 10 seconds; both cytochrome b562 and the fluorescent, high potential flavoprotein Fphf show little, if any, reduction. The two cytochromes c in these mitochondria, c547 and c549, are reduced in synchrony with a half-time of 0.8 second. These two components are already 60% reduced in the presence of cyanide but absence of substrate, and they become completely reduced on addition of NADH. These results indicated that reducing equivalents enter the respiratory chain from exogenous NADH at flavoprotein Fpha and are rapidly transported through cytochrome b553 to the cytochromes c; once the latter are completely reduced, reduction of ubiquinone begins. Ubiquinone appears to act as a storage pool for reducing equivalents entering the respiratory chain on the substrate side of coupling site 2. It is suggested that flavoprotein Fpha and cytochrome b553 together may act as the branching point in the plant respiratory chain from which forward electron transport can take place to oxygen through the cytochrome chain via cytochrome oxidase, or to oxygen through the alternate, cyanide-insensitive oxidase via the fluorescent, high potential flavoprotein Fphf.  相似文献   

4.
Storey BT 《Plant physiology》1974,54(6):840-845
Cytochromes b553, b557, and b562 of mung bean (Phaseolus aureus) mitochondria become partially reduced with endogenous substrate on addition of antimycin A to the aerobic mitochondrial suspension. Addition of ATP causes partial reoxidation of the three cytochromes. This partial oxidation by ATP is inhibited by oligomycin and reversed by uncoupler. Ubiquinone does not appear to act as electron acceptor for the oxidation reaction, but a nonfluorescent flavoprotein, or possibly ironsulfur protein, component does appear to act as acceptor. This is consistent with reverse electron transport driven by ATP across the first site of energy conservation of the respiratory chain. Endogenous pyridine nucleotide and the fluorescent flavoprotein with Em7.2 = −155mv (midpoint potential at pH 7.2, referred to normal hydrogen electrode) in uncoupled mitochondria become reduced in anaerobiosis attained by oxidation of succinate in the absence of respiratory inhibitors of the cytochrome chain, provided that Pi and ATP are present. Under these same conditions, cytochrome b557 is completely reduced but cytochrome b562 remains nearly completely oxidized. There is no equilibration across the first site of energy conservation between the carriers on the low potential side and cytochrome b562 with Em7.2 = −77mv on the high potential side. It is concluded that cytochrome b562 is not a part of the main sequence of electron transport carriers of the mitochondrial respiratory chain of plants; it can participate in redox reactions with the respiratory chain in coupled mitochondria but not in uncoupled mitochondria unless antimycin A is present.  相似文献   

5.
Bayard T. Storey 《BBA》1973,292(3):592-602

1. 1. Cycles of oxidation followed by reduction at pH 7.2 have been induced in uncoupled anaerobic mung bean mitochondria treated with succinate and malonate by addition of oxygen-saturated medium. Under the conditions used, cytochromes b557, b553, c549 (corresponding to c1 in mammalian mitochondria) and ubiquinone are completely oxidized in the aerobic state, but become completely reduced in anaerobiosis.

2. 2. The time course of the transition from fully oxidized to fully reduced in anaerobiosis was measured for cytochromes c549, b557, and b553. The intramitochondrial redox potential (IMPh) was calculated as a function of time for each of the three cytochromes from the time course of the oxidized-to-reduced transition and the known midpoint potentials of the cytochromes at pH 7.2. The three curves so obtained are superimposable, showing that the three cytochromes are in redox equilibrium under these conditions during the oxidized-to-reduced transition.

3. 3. This result shows that the slow reduction of cytochrome b557 under these conditions, heretofore considered anomalous, is merely a consequence of its more negative midpoint potential of +42 mV at pH 7.2, compared to +75 mV for cytochrome b553 and +235 mV for cytochrome c549. Cytochrome b557 is placed on the low potential side of coupling site II and transfers electrons to cytochrome c549 via the coupling site.

4. 4. The time course of the transition from fully oxidized to fully reduced was also measured for ubiquinone. Using the change in intramitochondrial potential IMPh with time obtained from the three cytochromes, the change in redox state of ubiquinone with IMPh was calculated. When replotted as IMPh versus the logarithm of the ratio (fraction oxidized)/(fraction reduced), two redox components with n = 2 were found. The major component is ubiquinone with a midpoint potential Em7.2 = + 70 mV. The minor component has a midpoint potential Em7.2 = − 12 mV; its nature is unknown.

Abbreviations: IMPh, intramitochondrial potential, referred to the normal hydrogen electrode; Em7.2, midpoint potential at pH 7.2  相似文献   


6.
Storey BT 《Plant physiology》1971,48(4):493-497
The oxidation-reduction potentials of the flavoproteins of skunk cabbage (Symplocarpus foetidus) mitochondria have been measured under anaerobic conditions by means of a combined spectrophotometric or fluorimetric-potentiometric method. Five components were resolved whose oxidation-reduction reactions corresponded to two-electron changes, as expected for flavoproteins. The midpoint potentials at pH 7.2 are as follows, listed in order of increasingly negative potential: +170 millivolts, +110 millivolts, +20 millivolts, −70 millivolts, and −155 millivolts. The most negative component was highly fluorescent; the other components could only be identified by their characteristic absorbance changes. In addition to these components, which are mitochondrial, variable amounts of a very highly fluorescent flavoprotein with a midpoint potential of −215 millivolts was found. This component appears to be extra-mitochondrial. The same midpoint potential values at pH 7.2 were obtained with mitochondria in the uncoupled state as in mitochondria energized with ATP in the absence of phosphate.  相似文献   

7.
J.S. Leigh  M. Erecińska 《BBA》1975,387(1):95-106
Succinate-cytochrome c reductase can be easily solubilized in a phospholipid mixture (1:1, lysolecithin:lecithin) in the absence of detergents. The resulting solution contains two b cytochromes with half-reduction potentials of 95 ± 10 mV (b561), and 0 ± 10 mV (b566) and cytochrome c1 (Em 7.2 = +280±5 mV). The oxidation-reduction midpoint potentials obtained by optical potentiometric titrations are identical to those determined by the EPR titrations and are 40–60 mV higher than the corresponding midpoint potentials of these cytochromes in intact mitochondria. In contrast to detergent-suspended preparations, no CO-sensitive cytochrome b can be detected in the phospholipid-solubilized preparation or intact mitochondria. The half-reduction potential of cytochrome b566 is pH-dependent above pH 7.0 (?60 mV/pH unit) while that of b561 is essentially pH-independent from pH 6.7–8.5, in contrast to its pH dependence in intact mitochondria. EPR characterizations show the presence of three oxidized low-spin heme-iron signals with g values of 3.78, 3.41 and 3.37. The identification of these signals with cytochromes b566 (bT), b561 (bK) and c1 respectively is made on the basis of redox midpoint potentials. No significant amounts of oxidized high-spin heme-iron are detectable. In addition, the preparation contains four distinct types of iron-sulfur centers: S1 and S2 (Em 7.4 = ?260 mV and 0 mV), and two iron-sulfur proteins which are associated with the cytochrome b-c1 complex: Rieske's iron-sulfur protein (Em 7.4 = +280 mV) and Ohnishi's Center 5 (Em 7.4 = +35 mV).  相似文献   

8.
Differential spectrometry revealed two species for the b-type, as well as for the c-type, cytochromes in mitochondria from Agaricus bisporus Lge. The two b-type components are denoted according to their peak position in the α region at room temperature, i.e. b560 and b566. The b556 component present in all the studied higher plant mitochondria was not detected in the system. At 293 K, the c-type cytochromes exhibit a common α band with a maximum at 550 nanometers. This band is split at 77 K, with peak positions at 547 nanometers (cytochrome c) and 552 nanometers (cytochrome c1).  相似文献   

9.
Pring DR 《Plant physiology》1975,55(2):203-206
Cytochromes a + a3, b, and c of mitochondria prepared from fertile and cytoplasmic male-sterile single- and double-cross maize (Zea mays L.) lines were examined by difference spectra at 25 C. The sterile lines contained the full complement of cytochromes, and absorption maxima were identical for each fertile-sterile combination. A small, but significant, increase of b cytochromes was detected in each sterile line, whereas the quantities of cytochromes a + a3 and c were essentially unchanged. The yield of mitochondrial protein per gram of tissue was higher for the single-than for the double-cross, whereas the sterile cytoplasm did not affect ultimate mitochondrial yield.  相似文献   

10.
The properties of the mitochondrial succinate-cytochrome c reductase   总被引:2,自引:0,他引:2  
The cytochromes b and bT of pigeon heart mitochondria have half-reduction potentials (Em's) of +30 mV and −30 mV at pH 7.2. The midpoint potentials of these cytochromes become more negative by 30–60 mV per pH unit when the pH is made more alkaline. Detergents may be used to prepare a succinate-cytochrome c reductase free of cytochrome oxidase in which the activation of electron transport induced by oxidation of cytochrome c1 causes the half-reduction potential of cytochrome bT to become at least 175 mV more positive than in the absence of electron transport. This change is interpreted as indicating that the primary energy conservation reaction at site 2 remains fully functional in the purified reductase. Preliminary electron paramagnetic resonance spectra of the succinate-cytochrome c reductase as measured at near liquid helium temperatures are presented.  相似文献   

11.
Rice seeds were germinated for up to 5 days under water (submerged)and some for another day in air (air-adapted). Control seedswere germinated for 6 days throughout in air. Low-temperaturedifference spectra of shoot mitochondria were compared amongthese three types of seedlings. All cytochromes found in theaerobic seedlings were present in the submerged seedlings. However,there were some differences in the cytochromes b553 and c ofthese two types of seedlings. The cytochrome aa3 peak heightand cytochrome oxidase activity per mitochondrial protein increased1.6- and 2.8-fold, respectively, during air adaptation. Slightlyhigher concentrations of the b-type cytochromes than found inair-adapted mitochondria were already present in submerged mitochondria.The computed difference between the dithionite-reduced differencespectra of mitochondria from submerged seedlings before andafter air adaptation, showed that cytochromes aa3 and c hadincreased more than cytochrome b557 during air adaptation. (Received November 16, 1987; Accepted March 16, 1988)  相似文献   

12.
An analytical technique for the in situ characterization of b- and c-type cytochromes has been developed. From evaluation of the results of potentiometric measurements and spectrum deconvolutions, it was concluded that an integrated best-fit analysis of potentiometric and spectral data gave the most reliable results. In the total cytochrome b content of cytoplasmic membranes from aerobically grown Escherichia coli, four major components are distinguished with α-band maxima at 77 K of 555.7, 556.7, 558.6 and 563.5 nm, and midpoint potentials at pH 7.0 of 46, 174, ?75 and 187 mV, respectively. In addition, two very small contributions to the α-band spectrum at 547.0 and 560.2 nm, with midpoint potentials of 71 and 169 mV, respectively, have been distinguished. On the basis of their spectral properties they should be designated as a cytochrome c and a cytochrome b, respectively. In Complex III, isolated from beef heart mitochondria, five cytochromes are distinguished: cytochrome c1 (Λm(25°C) = 553.5 nm; E0 = 238 mV) and four cytochromes bΛm(25°C) = 558.6, 561.2, 562.1, 566.1 nm and E0 = ?83, 26, 85, ?60 mV).  相似文献   

13.
Cytochrome c553 is a monohaemic c type cytochrome isolated from the sulfate reducing bacteria Desulfovibrio,vulgaris. Its midpoint potential value, determined by optical, EPR and polarographic studies is significantly lower than the midpoint potentials reported for other monohaemic cytochromes c (+ 10 mV instead of + 290 mV). In an attempt to study correlations between amino acid sequence, haem iron coordination and haem exposure in cytochromes c, cytochrome c553 is compared with mitochondrial and bacterial c type cytochromes.  相似文献   

14.
Ethidium bromide intercalates between the bases of native DNA, resulting in several biological anomalies. The effects of ethidium bromide on the mitochondria of cultured mouse L cells were studied. At a concentration of 1 µg ethidium bromide/ml it was observed that concentrations of cytochromes a + a3 and b decreased, a + a3 more rapidly than b. In contrast, the concentration of cytochromes c1 and c increased or remained the same as in control cells. Concomitant with the decrease of cytochromes a + a3 and b was an enlargement of the mitochondria and a reduction in the cristae. The cristae that remained were abnormally organized. After prolonged treatment with ethidium bromide a second population of small, more normally organized mitochondria was apparent. These effects of ethidium bromide could be reversed.  相似文献   

15.
The object of this work was to test the suggestion that the equilibrium poise between cytochromea and cytochromec in mitochondria might be influenced by the membrane potential.
  1. The midpoint potentials of cytochromes (c+c 1) and cytochromea (CO present) were found to be 250 mV and 245 mV, respectively, by equilibrating rat liver mitochondria with mixtures of ferrocyanide and ferricyanide anaerobically in presence of antimycin A and measuring the redox state of the cytochromes spectrophotometrically. In absence of CO, cytochrome oxidase gave an anomalous redox titration curve with a “midpoint” at about 275 mV.
  2. When the mitochondria were equilibrated with ferricyanide/ferrocyanide, the redox poise of cytochromea (CO present) and of cytochromes (a+a 3) but not of cytochromes (c+c 1) was dependent on the sign and magnitude of the membrane potential developed by treating the mitochondria as follows: by adding ATP, by chaging the composition of the suspension medium so as to vary the Donnan or Nernst potential, by adding valinomycin in a medium of low K+ ion content, or by adding a pulse of acid or alkali when the membrane was made permeable to protons with FCCP.
  3. The findings agree with the suggestion that the respiratory chain is arranged across the cristae membrane with cytochromesc 1 andc in contact with the outer phase and cytochromesa anda 3 plugged through, so that the equilibrium distribution of electrons between thec anda cytochromes is influenced by the electric field across the membrane.
  相似文献   

16.
The functional and thermodynamic characteristics of the ubiquinolcytochrome (Cyt) c oxidoreductase in a Cyt b/c1-enriched fraction (defined S-1) isolated from Jerusalem artichoke mitochondria (JAM) (Helianthus tuberosus), have been analyzed. Fraction S-1, obtained through deoxycholate-KCl fractionation procedure, contained one Cyt of c type (formally c1 with Em7.0 of +240 millivolts), two b type Cyt with Em7.0 values of +100 and −25 millivolts, ferredoxin-like centers presumably linked to succinic- and NADH-dehydrogenases, and a Rieske-type iron sulfur center (gy = 1.89). The ubiquinol-dependent Cyt c reduction by fraction S-1 showed sensitivity to antimycin A, myxothiazol, and n-2-hepthyl-1-hydroxyquinoline N-oxide with I50 of 12 nanomolar, 30 nanomolar, and 0.1 micromolar, respectively. Oxidation-induced extra b type reduction, a widespread phenomenon of bacterial and mitochondrial respiratory systems, has also been observed in both intact mitochondria and S-1 fraction. The data seem to blur previous experiments in which both spectral and functional differences between higher plant and mammalian mitochondria have been underlined.  相似文献   

17.
The cytochrome complement of Methylophilus methylotrophus and its respiratory properties were determined during batch culture and in continuous culture under conditions of methanol-, nitrogen- and O2-limitation. About 35% of the cytochrome c produced by the bacteria was released into the growth medium, and of the remaining cytochrome c about half was membrane-bound and half was soluble. Two cytochromes c were always present on membranes (redox potentials 375mV and 310mV), and these probably correspond to the soluble cytochromes c described previously [Cross & Anthony (1980) Biochem. J. 192, 421–427]. A third minor component of cytochrome c (midpoint potential 356mV) was only detected on membranes of methanol-limited bacteria. M. methylotrophus always contained two membrane-bound cytochromes b with α-band absorption maxima of about 556 and 563nm (measured at room temperature) and midpoint potentials of 110 and 60mV respectively. There appeared to be relatively more of the cytochrome b563 in methanol-limited bacteria. A third b-type cytochrome with an α-band absorption maximum at 558 (at 77K) reacted with CO and had a high midpoint redox potential (260mV); it is thus a potential oxidase and hence is called cytochrome o. The roles of these cytochromes in electron transport were confirmed by investigating the patterns of respiratory inhibition. It is proposed that two cytochromes are physiological oxidases: cytochrome a+a3, which is present only in methanol-limited conditions, and the cytochrome o, which is induced 10-fold in conditions of methanol excess. Schemes for electron transport from methanol and NAD(P)H to O2 in M. methylotrophus under various limitations are proposed. Spectra and potentiometric titrations of cytochromes in whole cells and membranes of M. methylotrophus grown under various nutrient limitations have been deposited as Supplementary Publication SUP 50111 (10 pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1978) 169, 5.  相似文献   

18.
Extinction coefficients for cytochrome b and c1 in the isolated cytochrome bc1 complex from Rhodopseudomonas sphaeroides GA have been determined. They are 25 mM?1.cm?1 at 561 nm for cytochrome b and 17.4 mM?1.cm?1 at 553 nM for cytochrome c1 for the difference between the reduced and the oxidized state. Cytochrome b is present in two forms in the complex. One form has an Em7 of 50 mV, an α-peak of 557 nm at liquid N2 temperature and of 561 nm at RT, which is red-shifted by antimycin A. The other form has an Em7 of ?90 mV, a double α-peak of 555 and 561 nm at liquid N2 temperature corresponding to 559 and 566 nm at RT. The absorption at 566 nm is red-shifted by myxothiazol. The two shifts are independent of each other. Both midpoint potentials of cytochromes b are pH-dependent. The redox center compositions of the cytochrome bc1 complexes from Rhodopseudomonas sphaeroides and from mitochondria are identical.  相似文献   

19.
The mitochondria isolated from the ciliate protozoon Tetrahymena pyriformis carry an oxidative phosphorylation with P/O ratio of 2 for succinate oxidation and P/O ratio of 3 for the oxidation of the NAD-linked substrates. The respiration is more than 90% inhibited with 1 mM cyanide while antimycin A and rotenone inhibit at concentrations of 1000-fold higher than those effective in mammalian mitochondria.Using a combination of spectral studies and potentiometric titrations, the components of the respiratory chain were identified and characterized with respect to the values of their half-reduction potentials. In the cytochrome bc1 region of the chain a cytochrome c was present with an Em7.2 of 0.225 V and two components with absorption maxima at 560 nm and the half-reduction potential values of ?0.065 and ?0.15 V at pH 7.2. The cytochrome with the more positive half-reduction potential was identified as the analogue of the cytochrome(s) b present in mitochondria of higher organisms, while the cytochrome with the more negative half-reduction potential was tentatively identified as cytochrome o. In addition ubiquinone was present at a concentration of approx. 4 nmol per mg mitochondrial protein.In the spectral region where cytochromes a absorb at least three cytochromes were found. A cytochrome with an absorption maximum at 593 nm and a midpoint potential of ?0.085 V at pH 7.2 was identified as cytochrome a1. The absorption change at 615–640 nm, attributed usually to cytochrome a2 was resolved into two components with Em7.2 values of 0.245 and 0.345 V. It is concluded that the terminal oxidase in Tetrahymena pyriformis mitochondria is cytochrome a2 which in its two-component structure resembles cytochrome aa3.  相似文献   

20.
《BBA》1985,806(2):320-330
Two membrane-associated cytochromes, cytochrome cm-553 and cytochrome cm-552, were derived from Nitrosomonas europaea. The major c-type cytochrome, cytochrome cm-553, accounted for 92% of the c heme found in the membrane. It had absorption maxima at 410 nm in the oxidized form and at 417, 523 and 553 nm in the dithionite reduced form. Cytochrome cm-552 possessed absorption maxima at 409 nm in the oxidized form, at 421, 522 and 552 in the dithionite reduced form, and at 418 in the dithionite reduced plus CO form. The concentration and cellular distribution of the two c-type membrane cytochromes, hydroxylamine oxidoreductase and cytochromes c-552, c-554, and a were determined. Over 95% of the soluble cytochromes (hydroxylamine oxidoreductase cytochromes and c-552 and c-554) were periplasmic, whereas cytochrome cm-553, cytochrome cm-552 and cytochrome a were associated with the cell membrane. The outer membrane and cytoplasm were devoid of cytochromes. The extracytoplasmic location of the proton-yielding hydroxylamine oxidizing system (NH2OH ™ HNO + 2H+ + 2e) may contribute to an energy-linked proton gradient. The heme concentrations of hydroxylamine oxidoreductase and cytochromes c-552, c-554, cm-553, cm-552 and a were approx. 2.4, 1.2, 0.3, 1.3, 0.1 and 1.1 nmol/mg cell protein, respectively. The corresponding molar ratios of heme were 22:11:2.9:12:1.0:10. The enzyme or cytochrome concentrations for hydroxylamine oxidoreductase and cytochromes c-552, c-554, cm-553, cm-552 and a were approx. 0.13, 1.05, 0.09, 0.63, 0.055 and 0.56 nmol/mg cell protein, respectively. The corresponding molar ratios were 0.24:2.2:0.16:1.2:0.1:1.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号