首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequences of mitochondrial (cytochrome b) and nuclear (recombination activating gene 1–RAG1) DNA markers were obtained for two species of the genus Alburnoides, the Taskent riffle minnow A. oblongus Bulgakov 1923 and the Terek spirlin A. gmelini Bogutskaya and Coad 2009. Phylogenetic analysis revealed that A. oblongus belongs to the genus Alburnus.  相似文献   

2.
GlyptothoraxBlyth (1860) is the most species-diverse and widely-distributed genus in the Sisoridae, but few studies have examined monophyly of the genus and phylogenetic relations within it. We used the nuclear RAG2 gene and mitochondrial COI and Cyt b genes from 50 of the approximately 70 species to examine monophyly of Glyptothorax and phylogenetic relationships within the genus. Molecular phylogenetic trees were constructed using maximum parsimony, maximum likelihood and Bayesian inference methods. All methods strongly supported monophyly of Glyptothorax, with Bagarius as its sister group. Both analyses of two- and three-gene datasets recovered nine major subclades of Glyptothorax, but some internal nodes remained poorly resolved. The phylogenetic relationships within the genus and existing taxonomic problems are discussed.  相似文献   

3.
Changes in gene expression contribute to reproductive isolation of species, adaptation, and development and may impact the genetic fate of duplicated genes. African clawed frogs (genus Xenopus) offer a useful model for examining regulatory evolution, particularly after gene duplication, because species in this genus are polyploid. Additionally, these species can produce viable hybrids, and expression divergence between coexpressed species-specific alleles in hybrids can be attributed exclusively to cis-acting mechanisms. Here we have explored expression divergence of a duplicated heterodimer composed of the recombination activating genes 1 and 2 (RAG1 and RAG2). Previous work identified a phylogenetically biased pattern of pseudogenization of RAG1 wherein one duplicate—RAG1β—was more likely to become a pseudogene than the other one—RAG1α. In this study we show that ancestral expression divergence between these duplicates could account for this. Using comparative data we demonstrate that regulatory divergence between species and between duplicated genes varies significantly across tissue types. These results have implications for understanding of variables that influence pseudogenization of duplicated genes generated by polyploidization, and for interpretation of the relative contributions of cis versus trans mechanisms to expression divergence at the cellular level. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
A new genus of Neotropical Satyrinae butterflies, Viloriodes Pyrcz & Espeland gen. n. is described in the Pedaliodes Butler complex comprising 11–13 genera and more than 400 species. Support for the new genus is provided by a phylogenetic analysis based on target enrichment (TE) data including 618 nuclear loci with a total of 248,940 nucleotides, and the mitochondrial gene cytochrome oxidase subunit 1 (COI). Five species, whose DNA sequences were obtained by TE during this study, form a strongly supported clade sister to the large clade comprising Pedaliodes and four other genera. Complementary COI analysis confirms the monophyly of Viloriodes gen. n., with the above five plus eight other species clustering in highly supported clades in both Bayesian Inference and Maximum Likelihood analyses, and a TE + COI concatenated tree. Based on molecular and morphological data, 30 species are assigned to Viloriodes gen. n. The new genus can be recognized by a set of subtle morphological characteristics of colour patterns and male and female genitalia. An analysis of divergence times indicates that Viloriodes gen. n. and Steromapedaliodes Forster separated around 5.9 Mya. Viloriodes gen. n. has a wider geographic distribution than any other genus of the Pedaliodes complex, being found from central Mexico to northern Argentina and to the Guyana Shield, typically occurring at lower elevations than Pedaliodes.  相似文献   

5.
Heroine cichlids are the second largest and very diverse tribe of Neotropical cichlids, and the only cichlid group that inhabits Mesoamerica. The taxonomy of heroines is complex because monophyly of most genera has never been demonstrated, and many species groups are without applicable generic names after their removal from the catch-all genus Cichlasoma (sensu Regan, 1905). Hence, a robust phylogeny for the group is largely wanting. A rather complete heroine phylogeny based on cytb sequence data is available [Concheiro Pérez, G.A., Říčan O., Ortí G., Bermingham, E., Doadrio, I., Zardoya, R. 2007. Phylogeny and biogeography of 91 species of heroine cichlids (Teleostei: Cichlidae) based on sequences of the cytochrome b gene. Mol. Phylogenet. Evol. 43, 91–110], and in the present study, we have added and analyzed independent data sets (nuclear and morphological) to further confirm and strengthen the cytb-phylogenetic hypothesis. We have analyzed a combined cytb-nuclear (RAG1 and two S7 introns) data set of 48 species representing main heroine lineages to achieve further resolution of heroine higher taxonomic levels and a combined cytb-morphological data set of 92 species to stabilize generic taxonomy. The recovered phylogenies supported the circumamazonian—CAM—Heroini (sensu Concheiro Peréz et al., 2007) as a monophyletic group, that could be divided into six main clades: (1) australoheroines (the southernmost heroine genus Australoheros), (2) nandopsines (the Antillean genus Nandopsis), (3) caquetaines (including the north western Amazonian genera Caquetaia and Heroina), (4) astatheroines (including Astatheros, Herotilapia and Rocio), (5) amphilophines (including Amphilophus and related genera), and (6) herichthyines (including Herichthyis and related genera). Nuclear and mitochondrial data partitions arrived at highly congruent topologies. Suprageneric relationships were influenced mainly by the nuclear signal, as well as the most basal phylogenetic position of Australoheros within CAM heroines. The new phylogeny of the tribe Heroini provides robust framework to stabilize the taxonomy of the group and for future comparative studies on these morphologically and ecologically diverse freshwater fishes. Morphology was mostly informative at the genus level and aid in determining the monophyly and composition of heroine genera. Upon acceptance of all putative genera, as recovered in this study, the Heroini would be with 35 genera the most genus-rich clade of Neotropical cichlids.  相似文献   

6.
The first empirically supported phylogenetic hypothesis of relationships for the southern African endemic butterfly tribe Dirini is presented. Data derived from the morphology and ecology of the adults and immature stages (33 characters), and portions of the mitochondrial gene cytochrome oxidase I (COI) and the nuclear genes elongation factor 1α (EF1α) and wingless (WG) (totalling 1734 bp) were used to infer the relationships of the in‐group genera. An expanded molecular dataset using four genera from the Nymphalini and Satyrini to root the tree, and three genera from the Melanitini to test the monophyly of the tribe, was analysed using parsimony and Bayesian methods. Estimates of divergence times were calculated using two fossil calibrations under a relaxed molecular clock model. The monophyly of the tribe and each in‐group genus were strongly supported. Key findings are the sister‐taxon relationship of Aeropetes and Tarsocera, the apparent simultaneous or nearly simultaneous radiation of four lineages, the polyphyly of the species within Torynesis, and the apparent trans‐Atlantic dispersal of the ancestors of Manataria about 40 Ma. Estimates of divergence times indicate that the tribe has undergone two major radiations since its origin: the first when they left forest habitats in the mid–late Oligocene, shortly after the radiation of the grasses (Poaceae), and the second in the early‐middle Pliocene, coinciding with the aridification of southern Africa and the spread of conditions that favoured C4 grasses over the C3 grasses that dirine larvae prefer to eat. The high species diversity within the tribe appears to be partly a taxonomic artefact that may have resulted from the misinterpretation of climate‐related phenotypic variation within extant species. Relocation and breeding experiments should test this hypothesis.  相似文献   

7.
Cnidium officinale Makino is important medicinally and economically, but its origin is uncertain. The phylogenetic relationship ofC. officinale is provided from the analyses based on the ribulose-1,5-bisphosphate carboxylase/oxgenase gene (rbcL) sequences of 41 species which represent the 34 genera of Aplaceae, the four genera of Araliaceae, and one genus each of Pittosporaceae, Cornaceae, and Caprifoliaceae. The strict consensus tree obtained supports a close relationship ofC. officinale to the Chinese members ofLigusticum, especially toL. chuanxiong. Additionally, the tree shows (1) polyphyly of the genusLigusticum and (2) monophyly of the subfamily Apioideae. Within Apioideae, we recognized some groups in our phylogenetic tree. The grouping is discordant in several respects with the traditional tribal divisions based mainly on fruit morphology.  相似文献   

8.
Conoesucidae (Trichoptera, Insecta) are restricted to SE Australia, Tasmania and New Zealand. The family includes 42 described species in 12 genera, and each genus is endemic to either New Zealand or Australia. Although monophyly has been previously assumed, no morphological characters have been proposed to represent synapomorphies for the group. We collected molecular data from two mitochondrial genes (16S and cytochrome oxidase I), one nuclear gene (elongation factor 1-α) (2237–2277 bp in total), and 12 morphological characters to produce the first phylogeny of the family. We combined the molecular and morphological characters and performed both a maximum parsimony analysis and a Bayesian analysis to test the monophyly of the family, and to hypothesize the phylogeny among its genera. The parsimony analysis revealed a single most parsimonious tree with Conoesucidae being a monophyletic taxon and sistergroup to the Calocidae. The Bayesian inference produced a distribution of trees, the consensus of which is supported with posterior probabilities of 100% for 15 out of 22 possible ingroup clades including the most basal branch of the family, indicating strong support for a monophyletic Conoesucidae. The most parsimonious tree and the tree from the Bayesian analysis were identical except that the ingroup genus Pycnocentria changed position by jumping to a neighbouring clade. Based on the assumption that the ancestral conoesucid species was present on both New Zealand and Australia, a biogeographical analysis using the dispersal-vicariance criteria demonstrated that one or two (depending on which of the two phylogenetic reconstructions were applied) sympatric speciation events took place on New Zealand prior to a single, late dispersal from New Zealand to Australia.  相似文献   

9.
The water scavenger beetle tribe Hydrobiusini contains 47 species in eight genera distributed worldwide. Most species of the tribe are aquatic, although several species are known to occur in waterfalls or tree mosses. Some members of the tribe are known to communicate via underwater stridulation. While recent morphological and molecular‐based phylogenies have affirmed the monophyly of the tribe as currently circumscribed, doubts remain about the monophyly of included genera. Here we use morphological and molecular data to infer a species‐level phylogeny of the Hydrobiusini. The monophyly of the tribe is decisively supported, as is the monophyly of most genera. The genus Hydrobius was found to be polyphyletic, and as a result the genus Limnohydrobius stat. rev. is removed from synonymy with Hydrobius, yielding three new combinations: L. melaenus comb.n. , L. orientalis comb.n. , and L. tumbius comb.n. Recent changes to the species‐level taxonomy of Hydrobius are reviewed. The morphology of the stridulatory apparatus has undergone a single remarkable transformation within the lineage, from a simple, unmodified pars stridens to one that is highly organized and complex. We present an updated key to genera, revised generic diagnoses and a list of the known distributions for all species within the tribe.  相似文献   

10.
The phylogenetic relationships between members of the South Asian family Psilorhynchidae are investigated using both mitochondrial and nuclear DNA sequence data. Phylogenetic hypotheses were derived from maximum likelihood and maximum parsimony analyses of a three gene concatenated data set, including cytochrome c oxidase subunit 1 (640 bp), cytochrome b (1140 bp) and exon 3 of the recombination‐activating gene 1 (~1500 bp). Our investigation provides strong support for the monophyly of two species groups of Psilorhynchus (the P. balitora and P. nudithoracicus species groups) and corroborates previous hypotheses on the phylogenetic position of the Western Ghats species Psilorhynchus tenura based on morphology. Basal relationships within Psilorhynchus were poorly supported and are worthy of further investigation. A fossil calibrated relaxed molecular clock estimates the split between Psilorhynchus and its sister group to have occurred within the Eocene/Oligocene, with subsequent diversification in the Miocene.  相似文献   

11.
Eremiadinae, one of three subfamilies of Lacertidae, are distributed throughout Asia and Africa. Previous phylogenetic studies suggested that one of the main groups of Eremiadinae (the Ethiopian clade) consist of two clades with predominately East‐African and South‐African distribution. Yet, especially the latter one, which includes the genera Pedioplanis, Meroles, Ichnotropis, Tropidosaura and Australolacerta, was not well supported in the molecular phylogenetic analysis. In this study, we analysed the phylogenetic relationships among the genera of the ‘South African clade’ to assess whether this group actually forms a highly supported clade and to address questions concerning the monophyly of the genera. We sequenced sections of the widely used mitochondrial genes coding for 16S rRNA, 12S rRNA and cytochrome b (altogether 2045 bp) as well as the nuclear genes c‐mos, RAG‐1, PRLR, KIF24, EXPH5 and RAG‐2 (altogether 4473 bp). The combined data set increased the support values for several nodes considerably. Yet, the relationships among five major lineages within the ‘South African clade’ are not clearly resolved even with this large data set. We interpret this as a ‘hard polytomy’ due to fast radiation within the South African lacertids. The combined tree based on nine marker genes provides strong support for the ‘South African Clade’ and its sister group relationship with the ‘East African Clade’. Our results confirm the genus Tropidosaura as a monophylum, while Ichnotropis is paraphyletic in our trees: Ichnotropis squamulosa appears more closely related to Meroles than to Ichnotropis capensis. Furthermore, the monophyly of Meroles is questionable as well. Based on our results, I. squamulosa should be transferred from Ichnotropis into the genus Meroles. Also, the two species of Australolacerta (A. australis and A. rupicola) are very distantly related and the genus is perhaps paraphyletic, too. Finally we propose a phylogeographical scenario in the context of palaeoclimatic data and compare it with a previously postulated hypothesis.  相似文献   

12.
The rove beetle subtribe Xanthopygina (Coleoptera: Staphylinidae: Staphylininae: Staphylinini) is a species‐rich group of 27 neotropical genera that contains some of the largest and most brightly coloured of all staphylinid beetles. The monophyly of the subtribe has never been tested before, using a large dataset of taxa and genes. Bayesian and maximum likelihood analyses are used on individual genes (COI, 28S rDNA, wingless, arginine kinase, CAD and topoisomerase I) and the partitioned concatenated dataset to test for monophyly and examine the relationships among Xanthopygina genera. Xanthopygina (excluding Philothalpus) are shown to be a monophyletic group with strong support values. The genus Philothalpus is removed from Xanthopygina and placed in the tribe Staphylinini as incertae sedis. Four distinct clades of Xanthopygina genera are recognized. The origin of Xanthopygina is hypothesized to be in the Late Cretaceous or later and the origin of myrmecophilous adaptations is discussed.  相似文献   

13.
14.
Chironius is one of the most speciose genera of the South American colubrid snakes. Although the genus represents a well‐known radiation of diurnal racers, its monophyly, affinities with other Neotropical colubrid genera, and intrageneric relationships are open questions. Here, we present a phylogenetic analysis of Chironius based on a data matrix that combines one nuclear (c‐mos) and two mitochondrial (12S and 16S rRNA) genes with 37 morphological characters derived from scutellation, skull, and hemipenial features. Phylogenetic relationships were inferred using maximum parsimony (MP) and maximum likelihood (ML). Our combined morphological and molecular analyses strongly support the monophyly of the genus Chironius and its sister‐group relationship with a clade formed by the genera Dendrophidion and Drymobius. Phylogenetic relationships within the genus Chironius is still controversial, although five clades are retrieved with medium to strong support. © 2014 The Linnean Society of London  相似文献   

15.
Phrynosomatid lizards are among the most common and diverse groups of reptiles in western North America, Mexico, and Central America. Phrynosomatidae includes 136 species in 10 genera. Phrynosomatids are used as model systems in many research programs in evolution and ecology, and much of this research has been undertaken in a comparative phylogenetic framework. However, relationships among many phrynosomatid genera are poorly supported and in conflict between recent studies. Further, previous studies based on mitochondrial DNA sequences suggested that the most species-rich genus (Sceloporus) is possibly paraphyletic with respect to as many as four other genera (Petrosaurus, Sator, Urosaurus, and Uta). Here, we collect new sequence data from five nuclear genes and combine them with published data from one additional nuclear gene and five mitochondrial gene regions. We compare trees from nuclear and mitochondrial data from 37 phrynosomatid taxa, including a “species tree” (from BEST) for the nuclear data. We also present a phylogeny for 122 phrynosomatid species based on maximum likelihood analysis of the combined data, which provides a strongly-supported hypothesis for relationships among most phrynosomatid genera and includes most phrynosomatid species. Our results strongly support the monophyly of Sceloporus (including Sator) and many of the relationships within it. We present a new classification for phrynosomatid lizards and the genus Sceloporus, and offer a new tree with branch lengths for use in comparative studies.  相似文献   

16.
We constructed a molecular phylogeny of 15 species of cuckoos using mitochondrial DNA sequences spanning 553 nucleotide bases of the cytochrome b gene and 298 nucleotide bases of the ND2 gene. A parallel analysis for the cytochrome b gene including published sequences in the Genbank database was performed. Phylogenetic analyses of the sequences were done using parsimony, a sequence distance method (Fitch-Margoliash), and a character-state method which uses probabilities (maximum likelihood). Phenograms support the monophyly of three major clades: Cuculinae, Phaenicophaeinae and Neomorphinae-Crotophaginae. Clamator, a strictly parasitic genus traditionally included within the Cuculinae, groups together with Coccyzus (a nonobligate parasite) and some nesting cuckoos. Tapera and Dromococcyx, the parasitic cuckoos from the New World, appear as sister genera, close to New World cuckoos: Neomorphinae and Crotophaginae. Based on the results, and being conscious that a more strict resolution of the relationships among the three major clades is required, we postulate that brood parasitism has a polyphyletic origin in the Cuculiformes, with parasite species being found within the three defined clades. Evidence suggests that species within each clade share a common parasitic ancestor, but some show partial or total loss of brood parasitic behaviour.  相似文献   

17.
To study the evolution of mtDNA and the intergeneric relationships of New World Jays (Aves: Corvidae), we sequenced the entire mitochondrial DNA control region (CR) from 21 species representing all genera of New World jays, an Old World jay, crows, and a magpie. Using maximum likelihood methods, we found that both the transition/transversion ratio (κ) and among site rate variation (α) were higher in flanking domains I and II than in the conserved central domain and that the frequency of indels was highest in domain II. Estimates of κ and α were much more influenced by the density of taxon sampling than by alternative optimal tree topologies. We implemented a successive approximation method incorporating these parameters into phylogenetic analysis. In addition we compared our study in detail to a previous study using cytochrome b and morphology to examine the effect of taxon sampling, evolutionary rates of genes, and combined data on tree resolution. We found that the particular weighting scheme used had no effect on tree topology and little effect on tree robustness. Taxon sampling had a significant effect on tree robustness but little effect on the topology of the best tree. The CR data set differed nonsignificantly from the tree derived from the cytochrome b/morphological data set primarily in the placement of the genus Gymnorhinus, which is near the base of the CR tree. However, contrary to conventional taxonomy, the CR data set suggested that blue and black jays (Cyanocorax sensu lato) might be paraphyletic and that the brown jay Psilorhinus (=Cyanocorax) morio is the sister group to magpie jays (Calocitta), a phylogenetic hypothesis that is likely as parsimonious with regard to nonmolecular characters as monophyly of Cyanocorax. The CR tree also suggests that the common ancestor of NWJs was likely a cooperative breeder. Consistent with recent systematic theory, our data suggest that DNA sequences with high substitution rates such as the CR may nonetheless be useful in reconstructing relatively deep phylogenetic nodes in avian groups. Received: 10 November 1999 / Accepted: 16 March 2000  相似文献   

18.
The flyingfish family Exocoetidae is a diverse group of marine fishes that are widespread and abundant in tropical and subtropical seas. Flyingfishes are epipelagic specialists that are easily distinguished by their enlarged fins, which are used for gliding leaps over the surface of the water. Although phylogenetic hypotheses have been proposed for flyingfish genera based on morphology, no comprehensive molecular studies have been performed. In the present study, we describe a species‐level molecular phylogeny for the family Exocoetidae, based on data from the mitochondrial cytochrome b gene (1137 bp) and the nuclear RAG2 gene (882 bp). We find strong support for previous morphology‐based phylogenetic hypotheses, as well as the monophyly of most currently accepted flyingfish genera. However, the most diverse genus Cheilopogon is not monophyletic. Using our novel flyingfish topology, we examine previously proposed hypotheses for the origin and evolution of gliding. The results support the progressive transition from two‐wing to four‐wing gliding. We also use phylogenetic approaches to test the macroecological effects of two life history characters (e.g. egg buoyancy and habitat) on species range size in flyingfishes. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102, 161–174.  相似文献   

19.
Species of Sinocyrtaspis Liu inhabit moist montane environments in south China, and occur allopatrically in restricted regions without overlapping areas. This study presents the first phylogeny of Sinocyrtaspis based on one nuclear DNA sequence [partial ITS1-5.8S rDNA-ITS2 (ITS)] as well as two mitochondrial genes [cytochrome oxidase subunit I (COI) and cytochrome b (CYTB)] using Bayesian inference and maximum likelihood. In addition, reconstructing the ancestral geographical range on the basis of the combined genes and distribution information, MaxEnt modelling was used to predict potential distribution areas in the Last Glacial Maximum (LGM), the mid-Holocene, the present-day and in the year 2070, in order to understand speciation processes and responses to climate change in this genus. The phylogenetic analyses supported the monophyly of Sinocyrtaspis. The results of species delimitation confirmed seven Sinocyrtaspis species and that the speciation events mainly occurred in the late Miocene to early Pliocene when the climate became colder and drier. The conclusions of the phylogeographical analysis are as follows: (i) the centres of origin of Sinocyrtaspis were Hunan and north-east Guangxi; (ii) two dispersal routes became obvious with the final destinations of Jiangxi and Zhejiang, respectively; (iii) after the Miocene cooling period, the ancestor species partly remained in Guizhou and partly spread; (iv) as a response to climate change, species altered distribution areas by moving along altitude gradients in mountain regions, whereas the anthropogenic global warming trend has promoted some species moving to high-latitude areas or caused population differentiation.  相似文献   

20.
Analysis of a morphological dataset containing 152 parsimony‐informative characters yielded the first phylogenetic reconstruction spanning the South American characiform family Anostomidae. The reconstruction included 46 ingroup species representing all anostomid genera and subgenera. Outgroup comparisons included members of the sister group to the Anostomidae (the Chilodontidae) as well as members of the families Curimatidae, Characidae, Citharinidae, Distichodontidae, Hemiodontidae, Parodontidae and Prochilodontidae. The results supported a clade containing Anostomus, Gnathodolus, Pseudanos, Sartor and Synaptolaemus (the subfamily Anostominae sensu Winterbottom) albeit with a somewhat different set of relationships among the species within these genera. Anostomus as previously recognized was found to be paraphyletic and is split herein into two monophyletic components, a restricted Anostomus and the new genus Petulanos gen. nov. , described herein. Laemolyta appeared as sister to the clade containing Anostomus, Gnathodolus, Petulanos, Pseudanos, Sartor and Synaptolaemus. Rhytiodus and Schizodon together formed a well‐supported clade that was, in turn, sister to the clade containing Anostomus, Gnathodolus, Laemolyta, Petulanos, Pseudanos, Sartor and Synaptolaemus. Anostomoides was sister to the clade formed by these nine genera. Leporinus as currently defined was not found to be monophyletic, although certain clades within that genus were supported, including the species with subterminal mouths in the former subgenus Hypomasticus which we recognize herein as a genus. Abramites nested in Leporinus, and Leporellus was found to be the most basal anostomid genus. The presence of cis‐ and trans‐Andean species in Abramites, Leporellus, Leporinus and Schizodon, all relatively basal genera, suggests that much of the diversification of anostomid species pre‐dates the uplift of the Andean Cordilleras circa 11.8 million years ago. Several important morphological shifts in anostomid evolution are illustrated and discussed, including instances of convergence and reversal. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 154 , 70–210.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号