首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phylogeographical structure of coral‐associated reef fishes may have been severely affected, more than species from deeper habitats, by habitat loss during periods of low sea level. The humbug damselfish, Dascyllus aruanus, is widely distributed across the Indo‐West Pacific, and exclusively inhabits branching corals. We used mitochondrial cytochrome b sequence and seven microsatellite loci on D. aruanus samples (260 individuals) from 13 locations across the Indo‐West Pacific to investigate its phylogeographical structure distribution‐wide. A major genetic partition was found between the Indian and Pacific Ocean populations, which we interpret as the result of geographical isolation on either side of the Indo‐Pacific barrier during glacial periods. The peripheral populations of the Red Sea and the Society Islands exhibited lower genetic diversity, and substantial genetic differences with the other populations, suggesting relative isolation. Thus, vicariance on either side of the Indo‐Pacific barrier and peripheral differentiation are considered to be the main drivers that have shaped the phylogeographical patterns presently observed in D. aruanus. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 931–942.  相似文献   

2.
Species‐delimitation studies across wide geographic ranges often reveal insights that ultimately improve our understanding of biogeographic and evolutionary processes. Here we investigated species delimitation and the global coastal pelagic population structures of the marine sardine species from the economically important subgenus Sardinella (Clupeidae). The main purpose of this study was to relate morphological and genetic discontinuities to biogeography, in a taxonomic and systematic context. Morphological examinations have first reduced the currently recognized five species of the subgenus to two distinct morphospecies with parapatric relationship. Genetic analyses further showed a remarkable shallow genealogy across a global scale, yet to be encountered among small pelagic fishes. Additional three species‐delimitation analyses have failed to delimit the five putative species, indicating the possible existence of only a single cosmopolitan species with two ecophenotypic variations, thus entitling Sardinella aurita as the world's most widespread small pelagic fish. Subsequent population‐structure investigations revealed distinct geographical intraspecific sub‐divisions, flagging the West Pacific Ocean through gene‐flow computations as the probable source of future speciation for the subgenus. Considering its utmost importance to fisheries, this finding of a remarkable global genetic homogeneity should attract future attention among population geneticists and fishery researchers.  相似文献   

3.
Halimeda macroloba is a common widespread and morphologically variable species in the Indo‐Pacific Ocean. A series of morphometric data (16 morphological and 46 anatomical variables) and the chloroplast‐encoded tuf A gene were examined to explore the morphological and genetic variations within the species and to better determine species boundaries in H. macroloba in Thai waters. Moreover, the environmental conditions, which may affect morphological variations in H. macroloba, especially of Haplotype I were examined. Our results showed that H. macroloba has more morpho‐anatomical variability and broader species boundaries than previously thought in several characters: holdfast type, segment shape and size, node height with differences in pore size, the presence of two additional patterns of peripheral utricle as seen in surface view, and additional layers of utricles (up to seven layers). Additionally, two new variable characteristics have been reported for the first time, i.e. shape and margin of peripheral utricles. Water depth and light correlated with thallus morphology, larger thalli and segments with a greater number of utricle layers were associated with subtidal plants, while smaller thalli and segments were found in the intertidal or high light intensity areas. The high plasticity of this species may explain why in the Indo‐Pacific Ocean this species is common and dominant.  相似文献   

4.
Cryptic species continue to be uncovered in many fish taxa, posing challenges for fisheries conservation and management. In Sardinella gibbosa, previous investigations revealed subtle intra-species variations, resulting in numerous synonyms and a controversial taxonomy for this sardine. Here, we tested for cryptic diversity within S. gibbosa using genetic data from two mitochondrial and one nuclear gene regions of 248 individuals of S. gibbosa, collected from eight locations across the Philippine archipelago. Deep genetic divergence and subsequent clustering was consistent across both mitochondrial and nuclear markers. Clade distribution is geographically limited: Clade 1 is widely distributed in the central Philippines, while Clade 2 is limited to the northernmost sampling site. In addition, morphometric analyses revealed a unique head shape that characterized each genetic clade. Hence, both genetic and morphological evidence strongly suggests a hidden diversity within this common and commercially-important sardine.  相似文献   

5.
Aim The objective of this study was to reveal the present population structure and infer the gene‐flow history of the Indo‐Pacific tropical eel Anguilla bicolor. Location The Indo‐Pacific region. Methods The entire mitochondrial control region sequence and the genotypes at six microsatellite loci were analysed for 234 specimens collected from eight representative localities where two subspecies have been historically designated. In order to infer the population structure, genetic differentiation estimates, analysis of molecular variance and gene‐tree reconstruction were performed. The history of migration events and population growth was assessed using neutrality tests based on allelic frequency spectrum, coalescent‐based estimation of gene flow and Bayesian demographic analysis using control region sequences. Results Population structure analysis showed genetic divergence between eels from the Indian and Pacific oceans (FST = 0.0174–0.0251, P < 0.05 for microsatellites; ΦST = 0.706, P < 0.001 for control region), while no significant variation was observed within each ocean. Two mitochondrial sublineages that do not coincide with geographical regions were found in the Indian Ocean clade of a gene tree. However, these two sublineages were not differentiated at the microsatellite markers. The estimation of mitochondrial gene‐flow history suggested allopatric isolation between the Indian and Pacific oceans, and a possible secondary contact within the Indian Ocean after an initial population splitting. Bayesian demographic history reconstruction and neutrality tests indicated population growth in each ocean after the Indo‐Pacific divergence. Main conclusions Anguilla bicolor has diverged between the Indian and Pacific oceans, which is consistent with the classical subspecies designation, but is apparently genetically homogeneous in the Indian Ocean. The analysis of gene‐flow and demographic history indicated that the two mitochondrial sublineages observed in the Indian Ocean probably represent the haplotype groups of relict ancestral populations. A comparison with a sympatric congener suggested that absolute physical barriers to gene flow may not be necessary for population divergence in eels.  相似文献   

6.
Squat lobsters have a worldwide distribution and are highly visible crustaceans living in a broad range of habitats. In this study, partial sequences of two mitochondrial DNA genes (16S rRNA and COI) and a nuclear gene (H3) were obtained for all but one of the known species of the shallow‐water genera Sadayoshia (Munididae) and Lauriea, Macrothea and Triodonthea (Galatheidae). Lauriea siagiani appeared to be phylogenetically closer to Triodonthea and Macrothea than to other Lauriea species, suggesting the need for taxonomic re‐evaluation of these taxa. All species of Sadayoshia formed a monophyletic group that would have diverged during the Paleogene (around 50 Mya). Our results support the hypothesis that the late Paleogene–Neogene transition was a period of rapid diversification for shallow‐water species of both Galatheidae and Munididae in the Indo‐Pacific region. This is probably related to high tectonic activity among the Eurasian, Philippine Sea, Indo‐Australian and Pacific plates and corresponding changes in distribution of habitats and ocean currents during the late Paleogene. Finally, the tropical south‐west Pacific province is identified as a major diversification centre for shallow‐water squat lobsters, from where species dispersed to other Pacific and Indian Ocean regions.  相似文献   

7.
Aim In the Indo‐Pacific, the mass of islands of the Indonesian archipelago constitute a major biogeographical barrier (the Indo‐Pacific Barrier, IPB) separating the Pacific and Indian oceans. Evidence for other, more localized barriers include high rates of endemism at the Marquesas and other isolated peripheral islands in the Pacific. Here we use mitochondrial‐sequence comparisons to evaluate the efficacy of biogeographical barriers on populations of the snappers Lutjanus kasmira and Lutjanus fulvus across their natural ranges. Location Pacific and Indian oceans. Methods Mitochondrial cytochrome b sequence data were obtained from 370 individuals of L. kasmira and 203 individuals of L. fulvus collected from across each species’ range. Allele frequency data for two nuclear introns were collected from L. kasmira. Phylogenetic and population‐level analyses were used to determine patterns of population structure in these species and to identify barriers to dispersal. Results Lutjanus kasmira lacks genetic structure across the IPB and throughout 12,000 km of its central Indo‐Pacific range. In contrast, L. fulvus demonstrates high levels of population structure at all geographical scales. In both species, highly significant population structure results primarily from the phylogenetic distinctiveness of their Marquesas Islands populations (L. kasmira, d = 0.50–0.53%; L. fulvus, d = 0.87–1.50%). Coalescence analyses of the L. kasmira data indicate that populations at opposite ends of its range (western Indian Ocean and the Marquesas) are the oldest. Coalescence analyses for L. fulvus are less robust but also indicate colonization from the Indian to the Pacific Ocean. Main conclusions The IPB does not act as a biogeographical barrier to L. kasmira, and, in L. fulvus, its effects are no stronger than isolating mechanisms elsewhere. Both species demonstrate a strong genetic break at the Marquesas. Population divergence and high endemism in that archipelago may be a product of geographical isolation enhanced by oceanographic currents that limit gene flow to and from those islands, and adaptation to unusual ecological conditions. Lutjanus kasmira shows evidence of Pleistocene population expansion throughout the Indo‐central Pacific that originated in the western Indian Ocean rather than the Marquesas, further demonstrating a strong barrier at the latter location.  相似文献   

8.
Maskrays of the genus Neotrygon (Dasyatidae) have dispersed widely in the Indo‐West Pacific being represented largely by an assemblage of narrow‐ranging coastal endemics. Phylogenetic reconstruction methods reproduced nearly identical and statistically robust topologies supporting the monophyly of the genus Neotrygon within the family Dasyatidae, the genus Taeniura being consistently basal to Neotrygon, and Dasyatis being polyphyletic to the genera Taeniurops and Pteroplatytrygon. The Neotrygon kuhlii complex, once considered to be an assemblage of color variants of the same biological species, is the most derived and widely dispersed subgroup of the genus. Mitochondrial (COI, 16S) and nuclear (RAG1) phylogenies used in synergy with molecular dating identified paleoclimatic fluctuations responsible for periods of vicariance and dispersal promoting population fragmentation and speciation in Neotrygon. Signatures of population differentiation exist in N. ningalooensis and N. annotata, yet a large‐scale geological event, such as the collision between the Australian and Eurasian Plates, coupled with subsequent sea‐level falls, appears to have separated a once homogeneous population of the ancestral form of N. kuhlii into southern Indian Ocean and northern Pacific taxa some 4–16 million years ago. Repeated climatic oscillations, and the subsequent establishment of land and shallow sea connections within and between Australia and parts of the Indo‐Malay Archipelago, have both promoted speciation and established zones of secondary contact within the Indian and Pacific Ocean basins.  相似文献   

9.
Phylogeographic forces driving evolution of sea‐dispersed plants are often influenced by regional and species characteristics, although not yet deciphered at a large spatial scale for many taxa like the mangrove species Heritiera littoralis. This study aimed to assess geographic distribution of genetic variation of this widespread mangrove in the Indo‐West Pacific region and identify the phylogeographic factors influencing its present‐day distribution. Analysis of five chloroplast DNA fragments’ sequences from 37 populations revealed low genetic diversity at the population level and strong genetic structure of H. littoralis in this region. The estimated divergence times between the major genetic lineages indicated that glacial level changes during the Pleistocene epoch induced strong genetic differentiation across the Indian and Pacific Oceans. In comparison to the strong genetic break imposed by the Sunda Shelf toward splitting the lineages of the Indian and Pacific Oceans, the genetic differentiation between Indo‐Malesia and Australasia was not so prominent. Long‐distance dispersal ability of H. littoralis propagules helped the species to attain transoceanic distribution not only across South East Asia and Australia, but also across the Indian Ocean to East Africa. However, oceanic circulation pattern in the South China Sea was found to act as a barrier creating further intraoceanic genetic differentiation. Overall, phylogeographic analysis in this study revealed that glacial vicariance had profound influence on population differentiation in H. littoralis and caused low genetic diversity except for the refugia populations near the equator which might have persisted through glacial maxima. With increasing loss of suitable habitats due to anthropogenic activities, these findings therefore emphasize the urgent need for conservation actions for all populations throughout the distribution range of H. littoralis.  相似文献   

10.
Southern Africa has economically exploited populations of terete gracilarioids on the cool temperate west coast and numerous species of endemic and Indo‐Pacific tropical Gracilariaceae on the south and east coasts. Gross morphological characters have been the main means of identification, and incorrect applications have led to a number of misidentifications. In this study, small subunit rDNA and RUBISCO spacer sequences were used to determine phylogenetic relationships. Whereas rDNA sequences successfully differentiate major groups within the family as well as species belonging to the Gracilariopsis and the Curdiea/Melanthalia clade, RUBISCO spacer sequencing was required to distinguish between species of Gracilaria. The southern African gracilarioid complex (stringy, terete, elongate members of the Gracilariaceae) was resolved into three species: Gracilaria gracilis, Gracilariopsis longissima, and Gracilariopsis funicularis. South African Gracilaria protea was shown to be conspecific with tropical Indian Ocean G. corticata. Apart from G. gracilis and G. corticata, South African Gracilaria species were differentiated into a temperate‐tropical terete grouping and a temperate‐tropical flattened grouping.  相似文献   

11.
Trachinocephalus, a formerly monotypic and nearly circumtropical genus of lizardfishes, is split into three valid species. Trachinocephalus gauguini n. sp. is described from the Marquesas Islands and is distinguished from the two other species in the genus by having a shorter snout, a narrower interorbital space, larger eye and modally fewer anal‐fin and pectoral‐fin rays. The distribution of Trachinocephalus myops (type species) is restricted to the Atlantic Ocean and the name Trachinocephalus trachinus is resurrected for populations from the Indo‐West Pacific Ocean. Principal component analyses and bivariate plots based on the morphometric data differentiated T. gauguini from the other two species, but a substantial overlap between T. myops and T. trachinus exists. Phylogenetic evidence based on mtDNA COI sequences unambiguously supports the recognition of at least three species in Trachinocephalus, revealing deep divergences between the Atlantic Ocean, Indo‐West Pacific Ocean and Marquesas entities. Additional analyses of species delimitations using the generalized mixed Yule coalescent model and the Poisson tree processes model provide a more liberal assessment of species in Trachinocephalus, indicating that many more cryptic species may exist. Finally, a taxonomic key to identify the three species recognized here is provided.  相似文献   

12.
Genetic stock structure is atypical in tuna species, with most species demonstrating geographically‐broad, panmictic populations. Here, genetic data suggest a distinct pattern for Thunnus tonggol across the Indo‐Pacific region. The genetic variation in the coastal tuna T. tonggol sampled from across the South China Sea was examined using the highly variable mitochondrial DNA displacement loop (D‐loop) gene region. One hundred and thirty‐nine specimens were sampled from four locations in Indonesia, Vietnam and the Philippines. Phylogenetic reconstruction of genetic relationships revealed no significant ?ST statistics and hence no population structure within the South China Sea. However, subsequent analysis with sequence data from coastal northwest India infers discrete genetic stocks between the Indian Ocean and the South China Sea. Consistent with previous genetic analyses of tuna species in the Indo‐Pacific, the findings in this study infer no population structure within each basin, but rather show a significant partitioning across the wider region. Furthermore, these results have implications for the management of the commercially valuable Thunnus tonggol across national boundaries, and thus requiring collaboration among countries to ensure its sustainable use.  相似文献   

13.
The conservation of humpback dolphins, distributed in coastal waters of the Indo‐West Pacific and eastern Atlantic Oceans, has been hindered by a lack of understanding about the number of species in the genus (Sousa) and their population structure. To address this issue, we present a combined analysis of genetic and morphologic data collected from beach‐cast, remote‐biopsied and museum specimens from throughout the known Sousa range. We extracted genetic sequence data from 235 samples from extant populations and explored the mitochondrial control region and four nuclear introns through phylogenetic, population‐level and population aggregation frameworks. In addition, 180 cranial specimens from the same geographical regions allowed comparisons of 24 morphological characters through multivariate analyses. The genetic and morphological data showed significant and concordant patterns of geographical segregation, which are typical for the kind of demographic isolation displayed by species units, across the Sousa genus distribution range. Based on our combined genetic and morphological analyses, there is convincing evidence for at least four species within the genus (S. teuszii in the Atlantic off West Africa, S. plumbea in the central and western Indian Ocean, S. chinensis in the eastern Indian and West Pacific Oceans, and a new as‐yet‐unnamed species off northern Australia).  相似文献   

14.
Scyllaeidae represents a small clade of dendronotoid nudibranchs. Notobryon wardi Odhner, 1936, has been reported to occur in tropical oceans from the Indo‐Pacific and eastern Pacific to temperate South Africa. The systematics of Notobryon has not been reviewed using modern systematic tools. Here, specimens of Notobryon were examined from the eastern Pacific, the Indo‐Pacific, and from temperate South Africa. Additionally, representatives of Scyllaea and Crosslandia were studied. Scyllaeidae was found to be monophyletic. Notobryon was also found to be monophyletic and is the sister group to Crosslandia plus Scyllaea. The molecular data also clearly indicate that within Notobryon, at least three distinct species are present, two of which are here described. Genetic distance data indicate that eastern Pacific and South African exemplars are 10–23% divergent from Indo‐Pacific exemplars of Notobryon wardi. Scyllaea pelagica has been regarded as a single, circumtropical species. Our molecular studies clearly indicate that the Atlantic and Indo‐Pacific populations are distinct and we resurrect Scyllaea fulva Quoy & Gaimard, 1824 for the Indo‐Pacific species. Our morphological studies clearly corroborate our molecular findings and differences in morphology distinguish closely related species. Different species clearly have distinct penial morphology. These studies clearly reinforce the view that eastern Pacific, Indo‐Pacific, and temperate biotas consist largely of distinct faunas, with only a minor degree of faunal overlap. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 311–336.  相似文献   

15.
Sponges assemblages were sampled in four coastal study regions (Malindi, Kenya; Quirimba Archipelago, northern Mozambique; Inhaca Island, Southern Mozambique and Anakao, Madagascar) in the west Indian Ocean. Sponge species were counted in multiple 0.5 m2 quadrats at depths of between 0 and 20 m at a number of sites within localities within each region. Despite the relatively small areas sampled, sponge samples comprised a total of 130 species and 70 genera of the classes Demospongiae and Calcarea. Sponges are clearly a major taxon in these regions in terms of numbers of species, percentage cover or biomass, although their ecology in the west Indian Ocean is virtually unknown. Nearly half of the genera, e.g. Iotrochota, found were species with a so‐called Tethyan distribution. Most of the other genera were cosmopolitan, e.g. Clathria, but some were cold water (Coelosphaera), Indo‐Australian (Ianthella) or circum‐African (Crambe). Many of the species encountered in the present study occurred in at least two study regions, many in more and could occupy large areas of substratum. Some of these, e.g. Xestospongia exigua, are commonly found throughout the Indo‐west Pacific region where they also occupy much space. The endemicity of the shallow water sponge faunas in East Africa (20–25%) seem to be high within the Indo‐Pacific realm but are lower than northern Papua New Guinea. The tropical regions (Kenya and Northern Mozambique) were more speciose than subtropical regions (southern Mozambique and Madagascar) but not significantly more diverse (Shannon H′). Although latitude was not a major influence on sponge community patterns, hard substratum assemblages did form a cline from the tropics to Southern Mozambique, linked by Madagascar. Substratum nature (habitat) was most important in influencing the suite and number of species present. Sponge assemblages of soft substrata were much more dissimilar, both within and between habitats, than those on hard substrata. There was a predictable variability in species richness between hard substratum habitats: coral reefs being speciose and caves being less so. Our findings showed that both patterns and influences on species richness may be decoupled from those influencing diversity. In our data species richness, but not diversity, showed striking regional and bathymetric trends. In addition, sponge species richness mainly split at coral reef vs. non‐reef habitats, whilst diversity divided principally into assemblages on hard and soft substrata. We consider this dichotomy of findings between species richness and diversity values to be important, as these are two principal measures used for the interpretation of biodiversity.  相似文献   

16.
Aim Cryptoblepharus is a genus of small arboreal or rock‐dwelling scincid lizards, widespread through the Indo‐Pacific and Australian regions, with a disjunct outlier in the Malagasy region. The taxonomy within this genus is controversial, with different authors ranking the different forms (now some 36) at various levels, from different species to subspecies of a single species, Cryptoblepharus boutonii. We investigated the biogeography and genetic differentiation of the Cryptoblepharus from the Western Indian Ocean region, in order to understand their origin and history. Location Western Indian Ocean region. Methods We analysed sequences of mitochondrial DNA (partial 12s and 16s rRNA genes, 766 bp) from 48 specimens collected in Madagascar, Mauritius, the four Comoros islands and East Africa, and also in New Caledonia, representing the Australo‐Pacific unit of the distribution. Results Pairwise sequence divergences of c. 3.1% were found between the New Caledonian forms and the ones from the Western Indian Ocean. Two clades were identified in Madagascar, probably corresponding to the recognized forms cognatus and voeltzkowi, and two clades were identified in the Comoro islands, where each island population formed a distinct haplotype clade. The East African samples form a monophyletic unit, with some variation existing between Pemba, Zanzibar and continental Tanzania populations. Individuals from Mauritius form a divergent group, more related to populations from Moheli and Grand Comore (Comoros islands) than to the others. Main conclusions The level of divergence between the populations from the Western Indian Ocean and Australian regions and the geographic coherence of the variation within the Western Indian Ocean group are concordant with the hypothesis of a colonization of this region by a natural transoceanic dispersal (from Australia or Indonesia). The group then may have diversified in Madagascar, from where it separately colonized the East African coast, the Comoros islands (twice), and Mauritius. The genetic divergence found is congruent with the known morphological variation, but its degree is much lower than typically seen between distinct species of reptiles.  相似文献   

17.
Here, multi‐locus sequence data are coupled with observations of live colouration to recognize a new species, Eviota punyit from the Coral Triangle, Indian Ocean and Red Sea. Relaxed molecular clock divergence time estimation indicates a Pliocene origin for the new species, and the current distribution of the new species and its sister species Eviota sebreei supports a scenario of vicariance across the Indo‐Pacific Barrier, followed by subsequent range expansion and overlap in the Coral Triangle. These results are consistent with the ‘centre of overlap’ hypothesis, which states that the increased diversity in the Coral Triangle is due in part to the overlapping ranges of Indian Ocean and Pacific Ocean faunas. These findings are discussed in the context of other geminate pairs of coral reef fishes separated by the Indo‐Pacific Barrier.  相似文献   

18.
Wolf herrings (Chirocentridae; Clupeoidei) are commonly found in local fish markets throughout the Indo‐West Pacific region where they constitute an auxiliary source of food and income for local communities. The validity of the two species of wolf herrings, Chirocentrus dorab Forsskål, 1775 and C. nudus Swainon, 1839, is only supported by slight morphological differences. The identification of either species is challenging, especially for juveniles, and precludes accurate assessments of these natural resources at a species level. As a step towards gaining better knowledge of the genetic structure of these fishes, we examined genetic differentiation between these two species by reconstructing their entire mitogenomic sequences using high‐throughput sequencing technology. We found that the mitogenome of each species shared the same gene content and order that were the same for those found in most other teleost fishes. Despite their high morphological similarity, these two species of Chirocentrus were genetically well differentiated (p‐distance = 16.3% at their cytochrome oxidase I). A mitogenomic time‐calibrated phylogenetic analysis showed that wolf herrings originated about 35 million years ago, and they represent a case of morphological stasis. Furthermore, comparison of published and newly determined mitochondrial COI barcode region sequences from 22 individuals revealed species‐level cryptic genetic diversity within C. dorab. Altogether, these mitochondrial data are effective in discriminating species within this genus and informing population genetic relationships within species of wolf herrings.  相似文献   

19.
The long‐snouted African spurdog Squalus bassi sp. nov. is described based on material collected from the outer shelf and upper continental slope off South Africa and Mozambique. Squalus bassi shares with S. mitsukurii, S. montalbani, S. chloroculus, S. grahami, S. griffini, S. edmundsi, S. quasimodo and S. lobularis a large snout with prenarial length greater than distance between nostrils and upper labial furrows, dermal denticles tricuspidate and rhomboid and elevated number of vertebrae. Squalus bassi can be distinguished from all its congeners by a combination of body and fin colouration, external morphometrics, vertebral counts and shape of dermal denticles. Similar long‐snouted congeners from the Indo‐Pacific region, including S. montalbani, S. edmundsi and S. lalannei are compared in detail with the new species. This new species has been misidentified as the Japanese S. mitsukurii and the Mediterranean S. blainvillei due to the lack of comparative morphological analyses. The validity of the nominal species S. mitsukurii in the south‐eastern Atlantic Ocean and western Indian Ocean is also clarified herein, indicating it has a more restricted geographical distribution in the North Pacific Ocean.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号