首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the full‐length complementary (c)DNA of interleukin‐1 receptor‐associated kinase 1 gene (irak1) was cloned from common carp Cyprinus carpio. The complete open reading frame of irak1 contained 2109 bp encoding a protein of 702 amino acid residues that comprised a death domain, a ProST region, a serine–threonine‐specific protein kinase catalytic domain and a C‐terminal domain. The amino‐acid sequence of C. carpio Irak1 protein shared sequence homology with grass carp Ctenopharyngodon idellus (84·5%). The phylogenetic tree of IRAKs separated the polypeptides into four clades, comprising IRAK1s, IRAK2s, IRAK3s and IRAK4s. Cyprinus carpio Irak1 fell into the cluster with previously reported IRAK1s including teleost Irak1s. The irak1 gene was highly expressed in gills, followed by brain, skin, hindgut, buccal epithelium, spleen, foregut, head kidney and liver, and was expressed at lowest levels in gonad and muscle. The irak1 messenger (m)RNA expression was up‐regulated in liver, spleen, head kidney, foregut, hindgut, gills and skin after stimulation with Vibrio anguillarum and poly(I:C), and significantly high up‐regulated expression was observed in liver and spleen. These results implied that irak1 might participate in antibacterial and antiviral innate immunity. These findings gave the indications that irak1 may participate in antibacterial and antiviral immunity.  相似文献   

2.
3.
4.
5.
Yunhui Peng  Emil Alexov 《Proteins》2016,84(12):1797-1809
The KDM5C gene (also known as JARID1C and SMCX) is located on the X chromosome and encodes a ubiquitously expressed 1560‐aa protein, which plays an important role in lysine methylation (specifically reverses tri‐ and di‐methylation of Lys4 of histone H3). Currently, 13 missense mutations in KDM5C have been linked to X‐linked mental retardation. However, the molecular mechanism of disease is currently unknown due to the experimental difficulties in expressing such large protein and the lack of experimental 3D structure. In this work, we utilize homology modeling, docking, and experimental data to predict 3D structures of KDM5C domains and their mutual arrangement. The resulting quaternary structure includes KDM5C JmjN, ARID, PHD1, JmjC, ZF domains, substrate histone peptide, enzymatic cofactors, and DNA. The predicted quaternary structure was investigated with molecular dynamic simulation for its stability, and further analysis was carried out to identify features measured experimentally. The predicted structure of KDM5C was used to investigate the effects of disease‐causing mutations and it was shown that the mutations alter domain stability and inter‐domain interactions. The structural model reported in this work could prompt experimental investigations of KDM5C domain‐domain interaction and exploration of undiscovered functionalities. Proteins 2016; 84:1797–1809. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
7.
8.
9.
10.
Mycena chlorophos is an oxygen‐dependent bioluminescent fungus. The mechanisms underlying its light emission are unknown. A component that increased the bioluminescence intensity of the immature living gills of M. chlorophos was isolated from mature M. chlorophos gills and chemically characterized. The bioluminescence‐activating component was found to be trans‐3,4‐dihydroxycinnamic acid and its bioluminescence activation was highly structure‐specific. 13C‐ and 18O‐labelling studies using the immature living gills showed that trans‐3,4‐dihydroxycinnamic acid was synthesized from trans‐4‐hydroxycinnamic acid in the gills by hydroxylation with molecular oxygen as well as by the general metabolism, and trans‐3,4‐dihydroxycinnamic acid did not produce hispidin (detection‐limit concentration: 10 pmol/1 g wet gill). Addition of 0.01 mM hispidin to the immature living gills generated no bioluminescence activation. These results suggested that the prompt bioluminescence activation resulting from addition of trans‐3,4‐dihydroxycinnamic acid could not be attributed to the generation of hispidin. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
In contrast to numerous enzymes involved in c‐di‐GMP synthesis and degradation in enterobacteria, only a handful of c‐di‐GMP receptors/effectors have been identified. In search of new c‐di‐GMP receptors, we screened the Escherichia coli ASKA overexpression gene library using the Differential Radial Capillary Action of Ligand Assay (DRaCALA) with fluorescently and radioisotope‐labelled c‐di‐GMP. We uncovered three new candidate c‐di‐GMP receptors in E. coli and characterized one of them, BcsE. The bcsE gene is encoded in cellulose synthase operons in representatives of Gammaproteobacteria and Betaproteobacteria. The purified BcsE proteins from E. coli, Salmonella enterica and Klebsiella pneumoniae bind c‐di‐GMP via the domain of unknown function, DUF2819, which is hereby designated GIL, G GDEF I ‐site l ike domain. The RxGD motif of the GIL domain is required for c‐di‐GMP binding, similar to the c‐di‐GMP‐binding I‐site of the diguanylate cyclase GGDEF domain. Thus, GIL is the second protein domain, after PilZ, dedicated to c‐di‐GMP‐binding. We show that in S. enterica, BcsE is not essential for cellulose synthesis but is required for maximal cellulose production, and that c‐di‐GMP binding is critical for BcsE function. It appears that cellulose production in enterobacteria is controlled by a two‐tiered c‐di‐GMP‐dependent system involving BcsE and the PilZ domain containing glycosyltransferase BcsA.  相似文献   

12.
13.
Aims: This study aimed at isolating thermophilic bacteria that utilize cheap carbon substrates for the economically feasible production of poly(3‐hydroxybutyrate), poly(3HB), at elevated temperatures. Methods and Results: Thermophilic bacteria were enriched from an aerobic organic waste treatment plant in Germany, and from hot springs in Egypt. Using the viable colony staining method for hydrophobic cellular inclusions with Nile red in mineral salts medium (MSM) containing different carbon sources, six Gram‐negative bacteria were isolated. Under the cultivation conditions used in this study, strains MW9, MW11, MW12, MW13 and MW14 formed stable star‐shaped cell‐aggregates (SSCAs) during growth; only strain MW10 consisted of free‐living rod‐shaped cells. The phylogenetic relationships of the strains as derived from 16S rRNA gene sequence comparisons revealed them as members of the Alphaproteobacteria. The 16S rRNA gene sequences of the isolates were very similar (>99% similarity) and exhibited similarities ranging from 93 to 99% with the most closely related species that were Chelatococcus daeguensis, Chelatococcus sambhunathii , Chelatococcus asaccharovorans, Bosea minatitlanensis, Bosea thiooxidans and Methylobacterium lusitanum. Strains MW9, MW10, MW13 and MW14 grew optimally in MSM with glucose, whereas strains MW11 and MW12 preferred glycerol as sole carbon source for growth and poly(3HB) accumulation. The highest cell density and highest poly(3HB) content attained were 4·8 g l?l (cell dry weight) and 73% (w/w), respectively. Cells of all strains grew at temperatures between 37 and 55°C with the optimum growth at 50°C. Conclusions: New PHA‐accumulating thermophilic bacterial strains were isolated and characterized to produce poly(3HB) from glucose or glycerol in MSM at 50°C. SSCAs formation was reported during growth. Significance and Impact of the Study: To the best of our knowledge, this is the first report on the formation of SSCAs by PHA‐accumulating bacteria and also by thermophilic bacteria. PHA‐producing thermophiles can significantly reduce the costs of fermentative PHA production.  相似文献   

14.
15.
The competitive ability and habitat selection of juvenile all‐fish GH‐transgenic common carp Cyprinus carpio and their size‐matched non‐transgenic conspecifics, in the absence and presence of predation risk, under different food distributions, were compared. Unequal‐competitor ideal‐free‐distribution analysis showed that a larger proportion of transgenic C. carpio fed within the system, although they were not overrepresented at a higher‐quantity food source. Moreover, the analysis showed that transgenic C. carpio maintained a faster growth rate, and were more willing to risk exposure to a predator when foraging, thereby supporting the hypothesis that predation selects against maximal growth rates by removing individuals that display increased foraging effort. Without compensatory behaviours that could mitigate the effects of predation risk, the escaped or released transgenic C. carpio with high‐gain and high‐risk performance would grow well but probably suffer high predation mortality in nature.  相似文献   

16.
Wound‐induced suberin deposition involves the temporal and spatial coordination of phenolic and fatty acid metabolism. Phenolic metabolism leads to both soluble metabolites that accumulate as defense compounds as well as hydroxycinnamoyl derivatives that form the basis of the poly(phenolic) domain found in suberized tissue. Fatty acid metabolism involves the biosynthesis of very‐long‐chain fatty acids, 1‐alkanols, ω‐hydroxy fatty acids and α,ω‐dioic acids that form a poly(aliphatic) domain, commonly referred to as suberin. Using the abscisic acid (ABA) biosynthesis inhibitor fluridone (FD), we reduced wound‐induced de novo biosynthesis of ABA in potato tubers, and measured the impact on the expression of genes involved in phenolic metabolism (StPAL1, StC4H, StCCR, StTHT), aliphatic metabolism (StCYP86A33, StCYP86B12, StFAR3, StKCS6), metabolism linking phenolics and aliphatics (StFHT) or acyl chains and glycerol (StGPAT5, StGPAT6), and in the delivery of aliphatic monomers to the site of suberization (StABCG1). In FD‐treated tissue, both aliphatic gene expression and accumulation of aliphatic suberin monomers were delayed. Exogenous ABA restored normal aliphatic suberin deposition in FD‐treated tissue, and enhanced aliphatic gene expression and poly(aliphatic) domain deposition when applied alone. By contrast, phenolic metabolism genes were not affected by FD treatment, while FD + ABA and ABA treatments slightly enhanced the accumulation of polar metabolites. These data support a role for ABA in the differential induction of phenolic and aliphatic metabolism during wound‐induced suberization in potato.  相似文献   

17.
A mixed culture of Pseudomonas fluorescens and Pusillimonas noertemanii, obtained by soil enrichment, elaborated an enzyme (EnvD) which rapidly hydrolysed poly‐γ‐d ‐glutamic acid (PDGA), the constituent of the anti‐phagocytic capsule conferring virulence on Bacillus anthracis. The EnvD gene is carried on the P. noertemanii genome but co‐culture is required for the elaboration of PDGA depolymerase activity. EnvD showed strong sequence homology to dienelactone hydrolases from other Gram‐negative bacteria, possessed no general protease activity but cleaved γ‐links in both d ‐ and l ‐glutamic acid‐containing polymers. The stability at 37°C was markedly superior to that of CapD, a γ‐glutamyltranspeptidase with PDGA depolymerase activity. Recombinant EnvD was recovered from inclusion bodies in soluble form from an Escherichia coli expression vector and the enzyme stripped the PDGA capsule from the surface of B. anthracis Pasteur within 5 min. We conclude from this in vitro study that rEnvD shows promise as a potential therapeutic for the treatment of anthrax.  相似文献   

18.
A gene coding for a class VII cytochrome P450 monooxygenase (CYP116B5) was identified from Acinetobacter radioresistens S13 growing on media with medium (C14, C16) and long (C24, C36) chain alkanes as the sole energy source. Phylogenetic analysis of its N‐ and C‐terminal domains suggests an evolutionary model involving a plasmid‐mediated horizontal gene transfer from the donor Rhodococcus jostii RHA1 to the receiving A. radioresistens S13. This event was followed by fusion and integration of the new gene in A. radioresistens chromosome. Heterologous expression of CYP116B5 in Escherichia coli BL21, together with the A. radioresistens Baeyer–Villiger monooxygenase, allowed the recombinant bacteria to grow on long‐ and medium‐chain alkanes, showing that CYP116B5 is involved in the first step of terminal oxidation of medium‐chain alkanes overlapping AlkB and in the first step of sub‐terminal oxidation of long‐chain alkanes. It was also demonstrated that CYP116B5 is a self‐sufficient cytochrome P450 consisting of a heme domain (aa 1–392) involved in the oxidation step of n‐alkanes degradation, and its reductase domain (aa 444–758) comprising the NADPH‐, FMN‐ and [2Fe2S]‐binding sites. To our knowledge, CYP116B5 is the first member of this class to have its natural substrate and function identified.  相似文献   

19.
20.
In mammals, interferon-inducible protein 56 (IFI56) has been considered to play a role in mediating inhibition of viral replication and cell growth, and possibly in mediating cell apoptosis. Here, we reported the cloning of an IFI56 homologue from the spleen of large yellow croaker, a marine fish (LycIFI56). The complete cDNA of LycIFI56 gene is 1628 nucleotides (nt) encoding a protein of 437 amino acids (aa), with a putative molecular weight of 50.8 kDa. The deduced LycIFI56 protein has a high-level homology with all members of IFIT (IFN-inducible proteins with TPR domain) family, and its 9 putative TPR motifs all locate the corresponding position of these IFIT proteins. Phylogenetic analysis showed that five fish IFIT members form a unique clad independent of mammalian homologues, reflecting a distant evolutionary relationship from mammals. LycIFI56 gene was constitutively expressed in various tissues examined, such as gills, intestine, liver, kidney, heart, spleen, muscle and blood. Upon induction with poly(I:C), LycIFI56 gene expression is obviously up-regulated in spleen, gills, intestine, liver and kidney at 24 h post-induction, suggesting that LycIFI56 may be involved in the immune response induced by poly(I:C). Analysis of the expression kinetics of LycIFI56 and IRF1 genes revealed that the up-regulation of LycIRF-1 expression by poly (I:C) was apparently earlier than that of LycIFI56. These results would facilitate a better understanding of the expression regulation of fish IFI56 gene, and of its roles in immunity of bony fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号