首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Ray‐finned fishes are notable for having flexible fins that allow for the control of fluid forces. A number of studies have addressed the muscular control, kinematics, and hydrodynamics of flexible fins, but little work has investigated just how flexible ray‐finned fish fin rays are, and how flexibility affects their response to environmental perturbations. Analysis of pectoral fin rays of bluegill sunfish showed that the more proximal portion of the fin ray is unsegmented while the distal 60% of the fin ray is segmented. We examined the range of motion and curvatures of the pectoral fin rays of bluegill sunfish during steady swimming, turning maneuvers, and hovering behaviors and during a vortex perturbation impacting the fin during the fin beat. Under normal swimming conditions, curvatures did not exceed 0.029 mm?1 in the proximal, unsegmented portion of the fin ray and 0.065 mm?1 in the distal, segmented portion of the fin ray. When perturbed by a vortex jet traveling at approximately 1 ms?1 (67 ± 2.3 mN s.e. of force at impact), the fin ray underwent a maximum curvature of 9.38 mm?1. Buckling of the fin ray was constrained to the area of impact and did not disrupt the motion of the pectoral fin during swimming. Flexural stiffness of the fin ray was calculated to be 565 × 10?6 Nm2. In computational fluid dynamic simulations of the fin‐vortex interaction, very flexible fin rays showed a combination of attraction and repulsion to impacting vortex dipoles. Due to their small bending rigidity (or flexural stiffness), impacting vortices transferred little force to the fin ray. Conversely, stiffer fin rays experienced rapid small‐amplitude oscillations from vortex impacts, with large impact forces all along the length of the fin ray. Segmentation is a key design feature of ray‐finned fish fin rays, and may serve as a means of making a flexible fin ray out of a rigid material (bone). This flexibility may offer intrinsic damping of environmental fluid perturbations encountered by swimming fish. J. Morphol. 274:1044–1059, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
A new cave‐dwelling fish Triplophysa luochengensis is described based on specimens collected from a karst cave in Guangxi Zhuang Autonomous Region, China, that is interconnected to the Hongshui River drainage. The species can be distinguished from its congeners by a combination of characters: eyes degenerated, anal fin with six branched rays, caudal fin with 16–17 branched rays, pectoral‐fin length 72·4–95·8% of the distance between pectoral‐fin origin and pelvic‐fin origin, lateral head length 26·2–28·2% of standard length (LS), eye diameter 7·5–8·6 of LS, body covered by sparse scales, lateral line complete and 7–8 pre‐operculo‐mandibular pores. Dark pigments irregularly present on dorsum of head, dorsum and flank.  相似文献   

3.
The osteological development of the vertebral column and fins in shi drum Umbrina cirrosa was studied in order to improve knowledge for its introduction in Mediterranean aquaculture. The osteological development was studied in 171 individuals, of total length (LT) from 2·7 to 30·2 mm that were reared under the mesocosm technique. Vertebral ontogeny starts at 3·4 and 4·0 mm LT, with the formation of the first cartilaginous neural and haemal arches, and spines, respectively, and is completed with the full attainment of epicentrals (12·5 mm LT). The formation of vertebral centra occurs between 4·1 and 7·4 mm LT. Pectoral supports are the first fin elements to develop (3·0 mm LT), followed by those of the caudal fin (3·8 mm LT), pelvic fin (3·9 mm LT) and finally by those of the dorsal and anal fins (4·5 mm LT). The caudal fin is the first to develop fin rays and attain the full count of principal fin rays (4·5–6·8 mm LT), but the last to be fully completed with the formation of procurrent fin rays (6·9–17·5 mm LT). The next fins starting to present rays are the dorsal (5·3 mm LT) and the pectoral fins (5·6 mm LT), while the anal and pelvic fins are the last (5·7 mm LT). Following the caudal principal fin rays (6·8 mm LT), the dorsal, anal (6·9 mm LT), pelvic (7·4 mm LT) and pectoral fins (9·8 mm LT) are the next with fully completed ray counts. Aggregation of qualitative changes, such as the appearance of cartilages, the beginning and the complement of the ossification process and the full complement of elements in U. cirrosa were measured as cumulative frequency counts. These measurements reveal three ontogenetic intervals: one very developmentally active period during early life stages (from 3 to 5·9 mm LT), a second slower developmental period (from 6·0 to 8·9 mm LT) and finally a period of ontogeny more focused on structure refinement up to metamorphosis and settlement (>9·0 mm LT).  相似文献   

4.
Prolonged swimming performances of two as yet unnamed species of three‐spined stickleback, Gasterosteus spp., were compared. The two fishes (not yet formally described, referred to here as benthic and limnetic) inhabit different niches within Paxton Lake, Texada Island, British Columbia, Canada, and are recent, morphologically distinct species. Limnetics had longer endurance during prolonged swimming than did benthics. The mean regression of the log10 of fatigue time (Ft, s) on swimming speed (U, standard length, LS s?1) for limnetics (log10Ft = 7·03 ? 0·46U) had a similar slope, but a significantly higher intercept than that for benthics (log10Ft = 5·55 ? 0·43U). Adult benthics were larger, heavier and deeper‐bodied fish than limnetics. Limnetics, however, had a significantly greater pectoral fin edge:base ratio (mean ± s .e .: limnetics, 4·58 ± 0·43; benthics, 3·63 ± 0·27). In addition, limnetics had significantly lower drag coefficients (CD) than benthics (limnetics, log10CD = ?0·49log10Re + 0·66; benthics, log10CD = ?0·26log10Re ? 0·30) where Re is the Reynolds number [(LSU?1), where U and ν are swimming velocity and the kinematic viscosity of the water, respectively]. Compared to their ancestral form, the anadromous three‐spined stickleback Gasterosteus aculeatus L., limnetics and benthics had significantly longer and shorter endurance times, respectively. In addition, both these fishes had significantly higher fast‐start velocities than their ancestral form. Selection due to differential resource use may have lead to divergence of body form, and, therefore, of steady swimming performance. Therefore predation may be the selective force for the similar high escape performance in these two fishes.  相似文献   

5.
A new species of hillstream loach Balitora eddsi is described from the Karnali River drainage in south‐western Nepal. The new species is distinguished from all its congeners by possessing the following combination of characters: six to seven unbranched pectoral‐fin rays, pelvic‐fin length 12–14% standard length (LS), dorsal surface without circular or irregular shaped dark blotches, snout pointed, median lobe between anterior rostral barbels pointed posteriorly, dorsal‐fin origin posterior to pelvic‐fin origin, lateral line scales 66–67, caudal peduncle length 22–23·2% LS, caudal peduncle depth 4·1–4·2 times its length.  相似文献   

6.
Critical (<30 min) and prolonged (>60 min) swimming speeds in laboratory chambers were determined for larvae of six species of Australian freshwater fishes: trout cod Maccullochella macquariensis, Murray cod Maccullochella peelii, golden perch Macquaria ambigua, silver perch Bidyanus bidyanus, carp gudgeon Hypseleotris spp. and Murray River rainbowfish Melanotaenia fluviatilis. Developmental stage (preflexion, flexion, postflexion and metalarva) better explained swimming ability than did length, size or age (days after hatch). Critical speed increased with larval development, and metalarvae were the fastest swimmers for all species. Maccullochella macquariensis larvae had the highest critical [maximum absolute 46·4 cm s?1 and 44·6 relative body lengths (LB) s?1] and prolonged (maximum 15·4 cm s?1, 15·6 LB s?1) swimming speeds and B. bidyanus larvae the lowest critical (minimum 0·1 cm s?1, 0·3 LB s?1) and prolonged swimming speeds (minimum 1·1 cm s?1, 1·0 LB s?1). Prolonged swimming trials determined that the larvae of some species could not swim for 60 min at any speed, whereas the larvae of the best swimming species, M. macquariensis, could swim for 60 min at 44% of the critical speed. The swimming performance of species with precocial life‐history strategies, with well‐developed larvae at hatch, was comparatively better and potentially had greater ability to influence their dispersal by actively swimming than species with altricial life‐history strategies, with poorly developed larvae at hatch.  相似文献   

7.
A dorsal‐fin photo‐identification technique paired with a non‐invasive parallel laser photogrammetry technique was used to non‐invasively identify individual Sphyrna mokarran over time. Based on the data collected over a duration of 59 days, 16 different S. mokarran (mean ± s.d . pre‐caudal length: 220·82 ± 13·66 cm; mean ± s.d . cephalofoil width: 71·38 ± 7·94 cm) were identified using dorsal‐fin photo‐identification, with a mean ± s.d . shark re‐sighting frequency of 4·05 ± 3·06 at‐sea days. The results illustrate a high S. mokarran sighting rate and therefore, the utilization of parallel laser photogrammetry and dorsal‐fin photo‐identification may be a plausible multi‐year approach to aid in non‐invasively determining the growth rate and inter‐annual site fidelity of these animals.  相似文献   

8.
Labriform locomotion is the primary swimming mode for many fishesthat use the pectoral fins to generate thrust across a broadrange of speeds. A review of the literature on hydrodynamics,kinematics, and morphology of pectoral fin mechanisms in fishesreveals that we lack several kinds of morphological and kinematicdata that are critical for understanding thrust generation inthis mode, particularly at higher velocities. Several needsinclude detailed three-dimensional kinematic data on speciesthat are pectoral fin swimmers across a broad range of speeds,data on the motor patterns of pectoral fin muscles, and thedevelopment of a mechanical model of pectoral fin functionalmorphology. New data are presented here on pectoral fin locomotionin Gomphosus varius, a labrid fish that uses the pectoral finsat speeds of 1 –6 total body lengths per second. Three-dimensionalkinematic data for the pectoral fins of G. varius show thata typical "drag-based" mechanism is not used in this species.Instead, the thrust mechanics of this fish are dominated bylift forces and acceleration reaction forces. The fin is twistedlike a propeller during the fin stroke, so that angles of attackare variable along the fin length. Electromyographic data onsix fin muscles indicate the sequence of muscle activity thatproduces antagonistic fin abduction and adduction and controlsthe leading edge of the fin. EMG activity in abductors and adductorsis synchronous with the start of abduction and adduction, respectively,so that muscle mechanics actuate the fin with positive work.A mechanical model of the pectoral fin is proposed in whichfin morphometrics and computer simulations allow predictionsof fin kinematics in three dimensions. The transmission of forceand motion to the leading edge of the fin depends on the mechanicaladvantage of fin ray levers. An integrative program of researchis suggested that will synthesize data on morphology, physiology,kinematics, and hydrodynamics to understand the mechanics ofpectoral fin swimming.  相似文献   

9.
A new species of the gobiid genus Gobius (Gobiidae, Perciformes), Gobius incognitus sp. nov. is described from the Mediterranean Sea, and its most morphologically similar species Gobius bucchichi is redescribed. The new species is distinguished from its congeners by: scales in lateral series 51–59; predorsal scales 25–35; opercle scaled in adults with 10–16 scales present; pectoral fin with ray count 18–20 and free tips on upper rays well developed and on the first ray longer than two thirds of the entire ray length; pelvic disc complete and with well‐developed anterior membrane without lateral lobes; anterior oculoscapular canal with pore α at rear of orbit; oculoscapular row x1 not extending forwards to pore β; suborbital row d discontinuous with large gap below suborbital rows 3 and 4; eye diameter 1·08–1·32 in snout length; by pigment rows on cheek and pigmentation on pectoral‐fin base.  相似文献   

10.
The organization of tissues in appendages often affects their mechanical properties and function. In the fish family Labridae, swimming behavior is associated with pectoral fin flexural stiffness and morphology, where fins range on a continuum from stiff to relatively flexible fins. Across this diversity, pectoral fin flexural stiffness decreases exponentially along the length of any given fin ray, and ray stiffness decreases along the chord of the fin from the leading to trailing edge. In this study, we examine the morphological properties of fin rays, including the effective modulus in bending (E), second moment of area (I), segmentation, and branching patterns, and their impact on fin ray stiffness. We quantify intrinsic pectoral fin ray stiffness in similarly sized fins of two closely related species that employ fins of divergent mechanics, the flapping Gomphosus varius and the rowing Halichoeres bivittatus. While segmentation patterns and E were similar between species, measurements of I and the number of fin ray branch nodes were greater in G. varius than in H. bivittatus. A multiple regression model found that of these variables, I was always significantly correlated with fin ray flexural stiffness and that variation in I always explained the majority of the variation in flexural stiffness. Thus, while most of the morphological variables quantified in this study correlate with fin ray flexural stiffness, second moment of area is the greatest factor contributing to variation in flexural stiffness. Further, interspecific variation in fin ray branching pattern could be used as a means of tuning the effective stiffness of the fin webbing to differences in swimming behavior and hydrodynamics. The comparison of these results to other systems begins to unveil fundamental morphological features of biological beams and yields insight into the role of mechanical properties in fin deformation for aquatic locomotion.  相似文献   

11.
Maximum sustained swimming speeds, swimming energetics and swimming kinematics were measured in the green jack Caranx caballus (Teleostei: Carangidae) using a 41 l temperature‐controlled, Brett‐type swimming‐tunnel respirometer. In individual C. caballus [mean ±s.d. of 22·1 ± 2·2 cm fork length (LF), 190 ± 61 g, n = 11] at 27·2 ± 0·7° C, mean critical speed (Ucrit) was 102·5 ± 13·7 cm s?1 or 4·6 ± 0·9 LF s?1. The maximum speed that was maintained for a 30 min period while swimming steadily using the slow, oxidative locomotor muscle (Umax,c) was 99·4 ± 14·4 cm s?1 or 4·5 ± 0·9 LF s?1. Oxygen consumption rate (M in mg O2 min?1) increased with swimming speed and with fish mass, but mass‐specific M (mg O2 kg?1 h?1) as a function of relative speed (LF s?1) did not vary significantly with fish size. Mean standard metabolic rate (RS) was 170 ± 38 mg O2 kg?1 h?1, and the mean ratio of M at Umax,c to RS, an estimate of factorial aerobic scope, was 3·6 ± 1·0. The optimal speed (Uopt), at which the gross cost of transport was a minimum of 2·14 J kg?1 m?1, was 3·8 LF s?1. In a subset of the fish studied (19·7–22·7 cm LF, 106–164 g, n = 5), the swimming kinematic variables of tailbeat frequency, yaw and stride length all increased significantly with swimming speed but not fish size, whereas tailbeat amplitude varied significantly with speed, fish mass and LF. The mean propulsive wavelength was 86·7 ± 5·6 %LF or 73·7 ± 5·2 %LT. Mean ±s.d . yaw and tailbeat amplitude values, calculated from lateral displacement of each intervertebral joint during a complete tailbeat cycle in three C. caballus (19·7, 21·6 and 22·7 cm LF; 23·4, 25·3 and 26·4 cm LT), were 4·6 ± 0·1 and 17·1 ± 2·2 %LT, respectively. Overall, the sustained swimming performance, energetics, kinematics, lateral displacement and intervertebral bending angles measured in C. caballus were similar to those of other active ectothermic fishes that have been studied, and C. caballus was more similar to the chub mackerel Scomber japonicus than to the kawakawa tuna Euthynnus affinis.  相似文献   

12.
The swimming capacity of Barbus bocagei was measured with the critical swimming speed (Ucrit) standard test in a modified Bla?ka‐type swim tunnel. Sixty B. bocagei were tested and they exhibited a mean ±s .d . Ucrit of 0·81 ± 0·11 m s?1 or 3·1 ± 0·86 total lengths per second (LT s?1). Sex had no effect on Ucrit but significant differences were found between the swimming performance of fish with distinct sizes.  相似文献   

13.
The objective of this study was to identify kinematic variables correlated with oxygen consumption during spontaneous labriform swimming. Kinematic variables (swimming speed, change of speed, turning angle, turning rate, turning radius and pectoral fin beat frequency) and oxygen consumption (MO2) of spontaneous swimming in Embiotoca lateralis were measured in a circular arena using video tracking and respirometry, respectively. The main variable influencing MO2 was pectoral fin beat frequency (r 2 = 0.71). No significant relationship was found between swimming speed and pectoral fin beat frequency. Complementary to other methods within biotelemetry such as EMG it is suggested that such correlations of pectoral fin beat frequency may be used to measure the energy requirements of labriform swimming fish such as E. lateralis in the field, but need to be taken with great caution since movement and oxygen consumption patterns are likely to be quite different in field situation compared to a small lab tank. In addition, our methods could be useful to measure metabolic costs of growth and development, or bioassays for possible toxicological effects on fish.  相似文献   

14.
The larval development of the dusky grouper Epinephelus marginatus up to the benthic juvenile stage is described in detail to establish a reference for their larval identification. Development is described in terms of ontogenetic changes in morphology, growth, pigmentation, fin structure and skeletal structure. Larvae were reared in mesocosms at a mean temperature of 24·3° C, salinity of 36·5, dissolved oxygen of 6·4 mg l?1 and pH of 8·2. Newly hatched larvae had an estimated total length (LT) of 2·3 mm. On the second day post hatching the yolk was almost fully absorbed with traces of the oil globule still present, the eyes were already pigmented and mouth and gut functional. At this stage the cranial skeletal elements for feeding and breathing (mouth and gills) and the pectoral‐fin support were already present. About 50% of the observed larvae had food in their guts. Pigmentation was very characteristic, consisting of two large chromatophores visible on the edge of the primordial fin, close to the midpoint of the post‐anal region of the body and over the midgut and hindgut and post‐anal portion of the body. At 2·9 mm LT the emergence of the second dorsal‐fin spine, characteristic of the Epinephilinae, was clearly visible. The pre‐flexion stage started in larva of 3·2 mm LT. At 5·5 mm LT the larvae possessed posterior preopercular angle spines, and the dorsal and pelvic spines presented serrated edges and were pigmented. The water surface‐tension‐related death of the yolk sac and pre‐flexion larvae described in the rearing of several other grouper species did not occur during E. marginatus culture. Notochord flexion, with initial ossification of the caudal‐fin supporting elements, started at 6·6 mm LT. At this stage the major melanophores, preopercular, dorsal and pelvic spines and mandibular teeth were already present. Transformation of larvae into juveniles occurred when larvae averaged 13·8 mm LT. Juveniles with a mean LT of 20·1 mm started to settle and most of them were benthic with a mean LT of 26·8 mm.  相似文献   

15.
Chlorophthalmus corniger is redescribed on the basis of recently collected specimens. The species is redefined as a species of Chlorophthalmus with the lower jaw terminating in a distinctly projecting horizontal plate with strong, spine‐like processes directed forward from the plate's corners; body silvery grey, with numerous minute black spots and traces of broad darker crossbars; base of anterior dorsal fin spines and distal parts of dorsal fins black; adipose fin tiny with numerous black spots; caudal fin black; 3·5 scales above lateral line; three rows of cheek scales; head very large, 34·3–40·1% standard length (LS); eye large, 29·8–40·8% head length (LH); pectoral fin long, extending to beyond dorsal fin base, 21·7–26·2% LS. Chlorophthalmus bicornis is a junior synonym of C. corniger based on the examination of the type series of both species. It is confined to the northern half of the Indian Ocean, reliably recorded from Somalia and the Gulf of Aden to southern Java, Indonesia, at depths between 200 and 500 m. A lectotype and three paralectotypes were designated for C. corniger. DNA barcodes for Indian species of Chlorophthalmus were generated.  相似文献   

16.
Dam construction is a major driver of ecological change in freshwater ecosystems. Fish populations have been shown to diverge in response to different flow velocity habitats, yet adaptations of fish populations to river and reservoir habitats created by dams remains poorly understood. We aimed to evaluate divergence of morphological traits and prolonged swimming speed performance between lotic and lentic populations of Australian smelt Retropinna semoni and quantify the relationship between prolonged swimming speed performance and morphology. Prolonged swimming speed performance was assessed for 15 individuals from each of three river and two reservoir populations of R. semoni using the critical swimming speed test (Ucrit). Body shape was characterized using geometric morphometrics, which was combined with fin aspect ratios and standard length to assess morphological divergence among the five populations. Best subsets model-selection was used to identify the morphological traits that best explain Ucrit variation among individuals. Our results indicate R. semoni from river populations had significantly higher prolonged swimming speed performance (Ucrit = 46.61 ± 0.98 cm s−1) than reservoir conspecifics (Ucrit = 35.57 ± 0.83 cm s−1; F1,74 = 58.624, Z = 35.938, P < 0.001). Similarly, R. semoni sampled from river populations had significantly higher fin aspect ratios (ARcaudal = 1.71 ± 0.04 and 1.29 ± 0.02 respectively; F(1,74) = 56.247, Z = 40.107, P < 0.001; ARpectoral = 1.85 ± 0.03 and 1.33 ± 0.02 respectively; F(1,74) = 7.156, Z = 4.055, P < 0.01). Best-subset analyses revealed Ucrit was most strongly correlated with pectoral and caudal fin aspect ratios (R2adj = 0.973, AICc = 41.54). Body shape, however, was subject to a three-way interaction among population, habitat and sex effects (F3,74 = 1.038. Z = 1.982; P < 0.05). Thus sexual dimorphism formed a significant component of unique and complex variation in body shape among populations from different habitat types. This study revealed profound effects of human-altered flow environments on locomotor morphology and its functional link to changes in swimming performance of a common freshwater fish. While past studies have indicated body shape may be an important axis for divergence between lotic and lentic populations of several freshwater fishes, fin aspect ratios were the most important predictor of swimming speed in our study. Differences in body morphology here were inconsistent between river and reservoir populations, suggesting this aspect of phenotype may be more strongly influenced by other factors such as predation and sexual dimorphism.  相似文献   

17.
Acipenseriformes hold an important place in the evolutionary history of bony fishes. Given their phylogenetic position as extant basal Actinopterygii, it is generally held that a thorough understanding of their morphology will greatly contribute to the knowledge of the evolutionary history and the origin of diversity for the major osteichthyan clades. To this end, we examined comparative developmental series from the pectoral girdle in Acipenser fulvescens, A. medirostris, A. transmontanus, and Scaphirhynchus albus to document, describe, and compare ontogenetic and allometric differences in the pectoral girdle. We find, not surprisingly, broad congruence between taxa in the basic pattern of development of the dermal and chondral elements of the pectoral girdle. However, we also find clear differences in the details of structure and development among the species examined in the dermal elements, including the clavicle, cleithrum, supracleithrum, posttemporal, and pectoral‐fin spine. We also find differences in the internal fin elements such as the distal radials as well as in the number of fin rays and their association with the propterygium. Further, there are clear ontogenetic differences during development of the dermal and chondral elements in these species and allometric variation in the pectoral‐fin spine. The characters highlighted provide a suite of elements for further examination in studies of the phylogeny of sturgeons. Determining the distribution of these characters in other sturgeons may aid in further resolution of phylogenetic relationships, and these data highlight the role that ontogenetic and comparative developmental studies provide in systematics. J. Morphol. 276:241–260, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
A new species of paedomorphic gobioid, Schindleria elongata, from the Red Sea, is described on the basis of five specimens. The new species is characterized by its lack of body pigmentation; the body depth at pectoral‐fin origin 4–5% of standard length (LS) and at anal‐fin origin 5–7% LS; the predorsal length 66–70% LS; pre‐anal length 66–71% LS; dorsal‐fin rays 13 or 14; anal‐fin rays 10 or 11; first dorsal‐fin ray at myomere 20 or 21; first anal‐fin ray below second to fourth dorsal‐fin rays; myomeres 19 or 20 + 13 or 14 = 33 or 34 total; premaxillae and dentaries with small teeth; gas bladder located posteriorly at 56–60% LS; males with a rod‐like, flexible urogenital papilla lacking lobes, projections or accessory papillae, with distal half tapering to a broad, angular point and usually posteriorly directed. A key to the species of Schindleriidae is presented.  相似文献   

19.
Swimming speed, angular correlation and expected displacement were measured in juvenile summer flounder Paralichthys dentatus acclimated to either oxygen saturation (c. 7·8 mg O2 l?1; saturation‐acclimated fish) or diel‐cycling hypoxia (cycling between 11·0 and 2·0 mg O2 l?1) for 10 days and subsequently exposed to more severe diel‐cycling hypoxia (cycling between 7·0 and 0·4 mg O2 l?1). Saturation‐acclimated P. dentatus exhibited an active response to declining dissolved oxygen (DO) by increasing swimming speed, angular correlation and expected displacement to peak levels at 1·4 mg O2 l?1 that were 3·5, 5·5 and 4·2 fold, respectively, greater than those at DO saturation. Diel‐cycling hypoxia‐acclimated P. dentatus also exhibited an active response to declining DO, although it was relatively less pronounced. Diel‐cycling hypoxia‐acclimated P. dentatus swimming speed, however, still doubled as DO decreased from 7·0 to 2·8 mg O2 l?1. Diel‐cycling hypoxia‐acclimated P. dentatus did not recover as well from low DO exposure as did saturation‐acclimated fish. This was reflected in their relatively more random swimming (low angular correlation between successive moves) and poor maintenance of rank order between individuals during the recovery phase. Even saturation‐acclimated P. dentatus did not resume swimming at speeds observed at saturation until DO was 4·2 mg O2 l?1. Paralichthys dentatus were very sensitive to decreasing DO, even at DO levels that were not lethal or growth limiting. This sensitivity and their poor recovery may preclude juvenile P. dentatus from using highly productive nursery habitats affected by diel‐cycling hypoxia.  相似文献   

20.
Streamside measurements of critical thermal maxima (Tcrit), swimming performance (Ucrit), and routine (Rr) and maximum (Rmax) metabolic rates were performed on three populations of genetically distinct redband trout Oncorhynchus mykiss in the high‐desert region of south‐eastern Oregon. The Tcrit values (29·4 ± 0·1° C) for small (40–140 g) redband trout from the three streams, and large (400–1400 g) redband trout at Bridge Creek were not different, and were comparable to published values for other salmonids. At high water temperatures (24–28° C), large fish incurred higher metabolic costs and were more thermally sensitive than small fish. Ucrit(3·6 ± 0·1 LF s?1), Rr(200 ± 13 mg O2 kg?0·830 h?1) and metabolic power (533 ± 22 mg O2 kg?0·882 h?1) were not significantly different between populations of small redband trout at 24° C. Rmax and metabolic power, however, were higher than previous measurements for rainbow trout at these temperatures. Fish from Bridge Creek had a 30% lower minimum total cost of transport (Cmin), exhibited a lower refusal rate, and had smaller hearts than fish at 12‐mile or Rock Creeks. In contrast, no differences in Ucrit or metabolism were observed between the two size classes of redband trout, although Cmin was significantly lower for large fish at all swimming speeds. Biochemical analyses revealed that fish from 12‐mile Creek, which had the highest refusal rate (36%), were moderately hyperkalemic and had substantially lower circulating levels of free fatty acids, triglycerides and albumin. Aerobic and anaerobic enzyme activities in axial white muscle, however, were not different between populations, and morphological features were similar. Results of this study: 1) suggest that the physiological mechanisms that determine Tcrit in salmonids are highly conserved; 2) show that adult (large) redband trout are more susceptible to the negative affects of elevated temperatures than small redband trout; 3) demonstrate that swimming efficiency can vary considerably between redband trout populations; 4) suggest that metabolic energy stores correlate positively with swimming behaviour of redband trout at high water temperatures; 5) question the use of Tcrit for assessing physiological function and defining thermal habitat requirements of stream‐dwelling salmonids like the redband trout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号