首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.

After being displaced, juvenile reef fishes are able to return home over large distances. This strong homing behaviour is extraordinary and may allow insights into the longer-term spatial ecology of fish communities. For example, it appears intuitive that strong homing behaviour should be indicative of long-term site fidelity. However, this connection has rarely been tested. We quantified the site fidelity of juvenile fishes of four species after returning home following displacement. Two species, parrotfishes and Pomacentrus moluccensis, showed significantly reduced site fidelity after returning home. On average, they disappeared from their home sites almost 3 d earlier than expected. Mortality or competitive exclusion does not seem to be the main reasons for their disappearance. Rather, we suggest an increased propensity to relocate after encountering alternative reef locations while homing. It appears that some juvenile fishes may have a higher innate spatial flexibility than their strict homing drive suggests.

  相似文献   

2.
It was tested whether the pajama cardinalfish Sphaeramia nematoptera (Apogonidae) could home by displacing individuals up to 250 m within and among isolated reefs. Contrary to expectations, only two of 37 (5·4%) displaced S. nematoptera returned home and another 16 (43·2%) were found to have joined other social groups and did not home after 26 months of observations; while over the same period, 94% of control S. nematoptera remained associated with home corals, demonstrating strong site attachment. Hence, while this species has the potential to return home, being able to do so may not be as critical as previously assumed.  相似文献   

3.
The diets of four common mesopredator fishes were examined in the back‐reef habitat of a subtropical fringing reef system during the summer months. Quantitative gut content analyses revealed that crustaceans, represented >60% of ingested prey (% mass) by the latticed sand‐perch Parapercis clathrata, brown dottyback Pseudochromis fuscus and half‐moon grouper Epinephelus rivulatus. Dietary analyses also provided insights into ontogenetic shifts. Juvenile P. fuscus ingested large numbers of crustaceans (amphipods and isopods); these small prey were rarely found in larger individuals (<1% of ingested mass). Fishes also made an important contribution to the diets of all three species representing 10–30% of ingested mass. Conversely, the sand lizardfish Synodus dermatogenys fed exclusively on fishes including clupeids, gobies and labrids. Differences in the gut contents of the four species recorded were not apparent using stable isotope analysis of muscle tissues. The similarity of δ13C values in muscle tissues suggested that carbon within prey was derived from primary producers, with comparable carbon isotope signatures to corals and macroalgae, whilst similarities in δ15N values indicated that all four species belonged to the same trophic level. Thus, interspecific differences between mesopredator diets were undetectable when using stable isotope analysis which suggests that detailed elucidation of trophic pathways requires gut content analyses.  相似文献   

4.
Visual censuses of coral reef fishes in Nha Trang Bay Marine Protected Area (MPA) were conducted during September–October 2005. Nha Trang Bay MPA is relatively rich in reef fishes compared to other areas in Vietnam and the Pacific Ocean outside the ‘Coral Triangle,’ consistent with its biogeographic location in the western South China Sea. A total of 266 species of 40 families of coral reef fishes formed five distinct assemblages. Spatial variations in distribution and structure of the assemblages were associated with eight significant biological and physical variables which were cover of living hard corals, encrusting corals, branching corals, Acropora, Millepora, Montipora, depth and distance from the coast of the mainland. The six factors in front are likely related to provision of shelter and nutrition, while the distance factor is likely to represent a gradient in disturbance and impacts from various mainland sources including sedimentation and pollution discharge from nearby rivers. Local species richness ranged from 35 to 70 species 500 m−2 (mean: 51 ± 2 SE) for reef flat stations and from 23 to 68 species 500 m−2 (mean: 48 ± 4 SE) for reef slope stations. Total species richness at each site averaged 76 species (±4 SE), ranging from 56 to 110 species, dominated by wrasses, damselfishes, butterflyfishes, parrotfishes, surgeonfishes, groupers and goatfishes. Density of total fishes at each station ranged from 348 to 1,444 individuals 500 m−2 (mean: 722 ± 302 SE) for the reef flat stations and from 252 to 929 individuals 500 m−2 (mean: 536 ± 215.7 SE) for the reef slope stations. Overall mean density at each site averaged 628.9 (±238.4 SE) individuals 500 m−2. The highly protected sites supported higher mean density of fishes per site (ranged: 904.5–1,213 individuals 500 m−2 for Hon Mun and 1,167.5 individuals 500 m−2 for Hon Cau) compared to other sites (<800 individuals 500 m−2). Of the families included in the census, densities were dominated throughout the MPA by damselfishes and wrasses. Many target species, particularly groupers, snappers and emperors, were rare or absent and the low abundance of big fishes was consistent with over-harvesting. Similarly a low density of butterfly fishes and angelfishes is likely related to the supply for marine aquaria in Vietnam and overseas. This study provides an important baseline against which the success of present and future MPA management initiatives may be assessed.  相似文献   

5.
Kerry  J. T.  Bellwood  D. R. 《Coral reefs (Online)》2016,35(1):245-252

Competition among large reef fishes for shelter beneath tabular structures provides a rare opportunity to study competition in a species-rich environment. The system permits a detailed study of localised competition with major implications for coral reefs with respect to human impacts including climate change. Using underwater video cameras, this study examined competition among 30 species of large reef fishes (from nine families) for access to shelter provided by 26 tabular structures, which may be the highest reported diversity of vertebrates competing for a single resource. Mean concentrations of fishes under tabular structures were also among the highest biomass recorded on reefs (4.71 kg m−2). A generated dominance hierarchy for the occupation of shelter appeared to be primarily driven by the size of fishes. In contrast to previous studies, fishes higher in the hierarchy tended to exhibit the lowest levels of aggression. However, size difference between fishes was found to be strongly negatively correlated with the proportion of aggressive interactions (R 2 = 0.971, P < 0.0001). The strong competition for the shade provided by these corals highlights concerns about future shifts in the structure of large reef fish communities as corals are lost. This is particularly concerning given the critical functional roles played by certain species of large reef fishes that utilise tabular structure for shelter and which occupy the lower ranks of the dominance hierarchy.

  相似文献   

6.
Although the global decline in coral reef health is likely to have profound effects on reef associated fishes, these effects are poorly understood. While declining coral cover can reduce the abundance of reef fishes through direct effects on recruitment and/or mortality, recent evidence suggests that individuals may survive in disturbed habitats, but may experience sublethal reductions in their condition. This study examined the response of 2 coral associated damselfishes (Pomacentridae), Chrysiptera parasema and Dascyllus melanurus, to varying levels of live coral cover. Growth, persistence, and the condition of individuals were quantified on replicate coral colonies in 3 coral treatments: 100% live coral (control), 50% live coral (partial) and 0% live coral (dead). The growth rates of both species were directly related to the percentage live coral cover, with individuals associated with dead corals exhibiting the slowest growth, and highest growth on control corals. Such differences in individual growth between treatments were apparent after 29 d. There was no significant difference in the numbers of fishes persisting or the physiological condition of individuals between different treatments on this time-scale. Slower growth in disturbed habitats will delay the onset of maturity, reduce lifetime fecundity and increase individual's vulnerability to gape-limited predation. Hence, immediate effects on recruitment and survival may underestimate the longer-term impacts of declining coral on the structure and diversity of coral-associated reef fish communities.  相似文献   

7.
In spite of their ecological and economic importance, reef fishes from the coast of Oaxaca, Mexico are rarely studied, therefore precluding their management and conservation. In order to identify the set of habitat characteristics/environmental conditions that predict major shifts in fish assemblages in space and time, a stationary census (5′, φ = 5 m) was conducted on a semi‐monthly basis from 2006 to 2009 at patch reefs along the coast. Habitat configuration was gathered using 25 m long point‐intersect transects (data every 25 cm), recording all underlying coral species and substrate characteristics (rocks, sand, algal mats, rubble or dead corals). Recorded were 65 452 fishes grouped in 11 orders, 36 families, 65 genera and 89 species. Labridae (nine species), Pomacentridae (eight species) and Serranidae (seven species) were the most frequent families. Abundance is severely skewed among species; four species Thalassoma lucasanum, Chromis atrilobata, Apogon pacificus and Stegastes acapulcoensis comprise nearly 59% of the fish abundance, 11 species contribute 30%, whereas most of the species (75) can be considered as rare since they contribute <1% each to the total. Species richness and family‐level assemblage composition are similar to those recorded elsewhere in the eastern Pacific. Non‐parametric multivariate analysis of variance demonstrated that changes of diversity metrics might be associated with environmental differences on the scale of hundreds of meters to kilometers, as well as coupled with major changes on oceanographic variables throughout time, exerting meaningful changes on reef‐related fish assemblages.  相似文献   

8.
为评估三亚珊瑚礁国家级自然保护区珊瑚礁生态系统的健康状况, 本文选取东岛、鹿回头、大东海3个站位调查了珊瑚礁群落、珊瑚礁鱼类和大型底栖动物。通过对比分析历史资料、珊瑚礁现场生态调查与监测及组织专家评审, 筛选出一、二级指标并设置权重, 使用综合指数计算了三亚珊瑚礁保护区珊瑚礁生态系统健康指数。结果显示, 三亚珊瑚礁保护区内共有造礁珊瑚10科21属37种, 软珊瑚3种, 造礁珊瑚覆盖率和软珊瑚覆盖率分别为14.31%和0.19%, 其中鹿回头造礁珊瑚覆盖率最高, 为21.58%。珊瑚礁鱼类共14科28属36种, 其中, 雀鲷科的种类数最多, 为11种。鹿回头4 m断面珊瑚礁鱼类密度最大, 为154尾/300 m2。砗磲和龙虾极少发现, 珊瑚天敌核果螺多见。东岛、鹿回头、大东海珊瑚礁生态系统健康状况均处于“一般”。本文所采用的方法是结合常规珊瑚礁监测可获得的指标进行评价, 简便易操作, 通过在三亚珊瑚礁保护区的实践, 能够很好地反映珊瑚礁生态系统现状及其健康状况, 科研和业务化监测部门均可应用。  相似文献   

9.
Movement of coral reef fishes across marine reserve boundaries subsequent to their initial settlement from the plankton will affect the ability of no-take reserves to conserve stocks and to benefit adjacent fisheries. However, the mobility of most exploited reef species is poorly known. We tagged 1443 individuals of 35 reef fish species captured in Antillean fish traps in the Barbados Marine Reserve and adjacent non-reserve over a two-month period. Trapping and visual surveys were used to monitor the movements of these fish during the trapping period and the subsequent two months. Estimates of distances moved were corrected for the spatial distribution of sampling effort and for the number of recaptures of individual fish. Recapture rates for individual species ranged from 0–100% (median=38%). Species mobility estimated by recapture and resighting were highly correlated. Most species were strongly site attached, with the majority of recaptures and resightings occurring at the site of tagging. However, only one of 59 tagged jacks (Caranx latus, C. ruber) was ever resighted, suggesting emigration from the study area. All species were occasionally recorded away from the sites where they had been tagged (20–500m), and several species, including surgeonfish, Acanthurus bahianus, A. coeruleus, filefish, Cantherhines pullus, butterflyfish, Chaetodon striatus, angelfish Holocanthus tricolor and parrotfish, Sparisoma viride, ranged widely within reefs. In contrast, few movements were observed between reefs separated by more than 20m of sand and rubble, and no emigration from the Reserve was recorded. Most reef fishes vulnerable to Antillean traps appear sufficiently site-attached to benefit from reserves. However, many species move over a wide enough area to take them out of small reserves on continuous reef. Use of natural home range boundaries could minimize exposure of fishes in reserves to mortality from adjacent fisheries.  相似文献   

10.
Increasing ocean temperatures due to global warming are predicted to have negative effects on coral reef fishes. El Niño events are associated with elevated water temperatures at large spatial (1000s of km) and temporal (annual) scales, providing environmental conditions that enable temperature effects on reef fishes to be tested directly. We compared remote sensing data of sea surface temperature (SST) anomalies, surface current flow and chlorophyll‐a (Chl‐a) concentration with monthly patterns in larval supply of coral reef fishes in nearshore waters around Rangiroa Atoll (French Polynesia) from January 1996 to March 2000. This time included an intense El Niño (April 1997–May 1998) event between two periods of La Niña (January–March 1996 and August 1998–March 2000) conditions. There was a strong relationship between the timing of the El Niño event, current flow, ocean productivity (as measured by Chl‐a) and larval supply. In the warm conditions of the event, there was an increase in the SST anomaly index up to 3.5 °C above mean values and a decrease in the strength of the westward surface current toward the reef. These conditions coincided with low concentrations of Chl‐a (mean: 0.06 mg m?3, SE ± 0.004) and a 51% decline in larval supply from mean values. Conversely, during strong La Niña conditions when SST anomalies were almost 2 °C below mean values and there was a strong westward surface current, Chl‐a concentration was 150% greater than mean values and larval supply was 249% greater. A lag in larval supply suggested that productivity maybe affecting both the production of larvae by adults and larval survival. Our results suggest that warming temperatures in the world's oceans will have negative effects on the reproduction of reef fishes and survival of their larvae within the plankton, ultimately impacting on the replenishment of benthic populations.  相似文献   

11.
Synopsis Obligate coral-dwelling hawkfishes have been hypothesized to be monogamous. This hypothesized mating system is at odds with what is known of those of other cirrhitids. Neocirrhites armatus, which inhabits Pocillopora spp. corals, and Oxycirrhites typus, which inhabits gorgonians and antipatharian corals, were examined for evidence of a monogamous mating system. Life history criteria that favor monogamy in reef fishes (Barlow 1986) were examined for these two species. Facultative monogamy was found in both. In this mating system, males are limited in their ability to acquire and maintain females, and thus have only a single mate, but may acquire additional females if conditions for doing so are favorable.  相似文献   

12.
Live corals are the key habitat forming organisms on coral reefs, contributing to both biological and physical structure. Understanding the importance of corals for reef fishes is, however, restricted to a few key families of fishes, whereas it is likely that a vast number of fish species will be adversely affected by the loss of live corals. This study used data from published literature together with independent field based surveys to quantify the range of reef fish species that use live coral habitats. A total of 320 species from 39 families use live coral habitats, accounting for approximately 8 % of all reef fishes. Many of the fishes reported to use live corals are from the families Pomacentridae (68 spp.) and Gobiidae (44 spp.) and most (66 %) are either planktivores or omnivores. 126 species of fish associate with corals as juveniles, although many of these fishes have no apparent affiliation with coral as adults, suggesting an ontogenetic shift in coral reliance. Collectively, reef fishes have been reported to use at least 93 species of coral, mainly from the genus Acropora and Porities and associate predominantly with branching growth forms. Some fish associate with a single coral species, whilst others can be found on more than 20 different species of coral indicating there is considerable variation in habitat specialisation among coral associated fish species. The large number of fishes that rely on coral highlights that habitat degradation and coral loss will have significant consequences for biodiversity and productivity of reef fish assemblages.  相似文献   

13.
Branching corals, like many in the genus Acropora, provide structurally complex habitats for reef fishes and other organisms. Fluctuations in the abundance, distribution and characteristics of thicket-forming staghorn Acroporids may contribute to changes in the abundance and species composition of reef fishes due to changes in the availability of shelter habitat and food. Farming damselfishes of the genus Stegastes can occur in high abundances in staghorn corals and actively defend food and nest space against organisms that threaten these resources. Here we assess the value of staghorn as habitat for fishes in the central South Pacific, and how the presence of territorial farming damselfishes may influence the assemblage of fishes that associate with staghorn corals. Surveys of 185 Acropora pulchra patches located in the lagoons surrounding the island of Moorea, French Polynesia revealed 85 species of fish from 25 families. Total fish abundance and species richness values ranged from no fish on a patch to a high of 275 individuals and 26 species. Patch area was the most important characteristic in explaining variation in attributes of the fish assemblage, with other characteristics explaining little of the species composition or trophic structure. Behavioral observations revealed that farming damselfishes were most aggressive toward corallivores, herbivores, and egg predators, while they ignored most carnivores and omnivores. Despite this pattern, we observed positive covariance between Stegastes and the group of fishes that elicited the strongest aggressive response when the effect of patch area was removed, suggesting these fishes remain drawn to the resources produced or enhanced by Stegastes on A. pulchra.  相似文献   

14.
Seven coral reef communities were defined on Shiraho fringing reef, Ishigaki Island, Japan. Net photosynthesis and calcification rates were measured by in situ incubations at 10 sites that included six of the defined communities, and which occupied most of the area on the reef flat and slope. Net photosynthesis on the reef flat was positive overall, but the reef flat acts as a source for atmospheric CO2, because the measured calcification/photosynthesis ratio of 2.5 is greater than the critical ratio of 1.67. Net photosynthesis on the reef slope was negative. Almost all excess organic production from the reef flat is expected to be effused to the outer reef and consumed by the communities there. Therefore, the total net organic production of the whole reef system is probably almost zero and the whole reef system also acts as a source for atmospheric CO2. Net calcification rates of the reef slope corals were much lower than those of the branching corals. The accumulation rate of the former was approximately 0.5 m kyr−1 and of the latter was ~0.7–5 m kyr−1. Consequently, reef slope corals could not grow fast enough to keep up with or catch up to rising sea levels during the Holocene. On the other hand, the branching corals grow fast enough to keep up with this rising sea level. Therefore, a transition between early Holocene and present-day reef communities is expected. Branching coral communities would have dominated while reef growth kept pace with sea level rise, and the reef was constructed with a branching coral framework. Then, the outside of this framework was covered and built up by reef slope corals and present-day reefs were constructed.  相似文献   

15.
Scleractinian coral recruitment patterns were studied at depths of 9, 18, 27 and 37 m on the east and west walls of Salt River submarine canyon, St. Croix, U.S. Virgin Islands, by censusing coral juveniles which settled on experimental settling plates placed on the reef for 3–26 months as well as coral juveniles within quadrats on the reef. The most common species in the juvenile population within quadrats were Agaricia agaricites, Porites astreoides, Madracis decactis, Stephanocoenia michelinii, and A. lamarcki. The only species settling on settling plates were Agaricia spp., Madracis decactis, Porites spp., Stephanocoenia michelinii and Favia fragum. A total of 271 corals settled on 342 plates, with 51% of the juveniles on the east wall and 49% on the west wall. Of these 34% settled on horizontal surfaces and 66% on vertical surfaces. Based on results from quadrats, Agaricia agaricites and Porites astreoides had high recruitment rates relative to their abundance on the reef. In contrast, Agaricia lamarcki, Montastraea annularis, M. cavernosa and Siderastrea siderea had high amounts of cover compared to their abundance as juveniles within quadrats. The mean number of juveniles per m2 within quadrats ranged from 3 to 42. In general, there was a decrease in the mean number of juveniles and the number of species with depth. Total number of juveniles on settling plates was highest at 18 m on both walls. The largest number within quadrats was at 18 m on the east wall, followed by 9 m and 18 m on the west wall. High rates of coral recruitment tended to be associated with low algal biomass and relatively high grazing pressure by urchins and fishes.  相似文献   

16.
Many coral reef fishes exhibit distinct ontogenetic shifts in habitat use while some species settle directly in adult habitats, but there is not any general explanation to account for these differences in settlement strategies among coral reef fishes. This study compared distribution patterns and habitat associations of juvenile (young of the year) butterflyfishes to those of adult conspecifics. Three species, Chaetodon auriga, Chaetodon melannotus, and Chaetodon vagabundus, all of which have limited reliance on coral for food, exhibited marked differences in habitat association of juvenile versus adult individuals. Juveniles of these species were consistently found in shallow-water habitats, whereas adult conspecifics were widely distributed throughout a range of habitats. Juveniles of seven other species (Chaetodon aureofasciatus, Chaetodon baronessa, Chaetodon citrinellus, Chaetodon lunulatus, Chaetodon plebeius, Chaetodon rainfordi, and Chaetodon trifascialis), all of which feed predominantly on live corals, settled directly into habitat occupied by adult conspecifics. Butterflyfishes with strong reliance on corals appear to be constrained to settle in habitats that provide access to essential prey resources, precluding their use of distinct juvenile habitats. More generalist butterflyfishes, however, appear to utilize distinct juvenile habitats and exhibit marked differences in the distribution of juveniles versus adults.  相似文献   

17.
18.
Synopsis We carried out the first experimental study testing an elasmobranchs ability to return home. We displaced juvenile lemon sharks,Negaprion brevirostris, 4–16 km from their observed home ranges at Bimini Islands, Bahamas during daylight and at night. We tracked all sharks except one back to the Bimini Islands and most returned to their home ranges observed before displacement. Even sharks displaced to a site closer to another island with suitable habitat for young lemon sharks returned to their home ranges at Bimini Islands. Sharks displayed a preferred compass direction (PCD) toward the east as their first swimming direction after release, suggesting an innate sense of direction. This bearing was followed shortly afterwards by a home-oriented direction. Swimming speeds prior to reaching shore were approximately twice as fast than the usual cruising speed reported for juvenile lemon sharks. The return of young (0–2 years), inexperienced sharks to their original home range indicate high site fidelity and an ability to home.  相似文献   

19.
The deep fore-reef at Enewetak has been examined from the submersible Makali'i. Green algae grow to about-150 m at photon flux densities of approximately 1 Em-2s-1. Halimeda cover is 50% at many sites down to-90 m. Halimeda populations are important within the zone of scleractinian corals down to about-65 m, while a Halimeda zone with low coral cover or lacking corals between-65 m and-150 m probably is an important source of reef carbonate. Halimedas of the deep fore-reef, like those of the lagoon, constitute an important structural component in reef building. Other calcareous green algae such as Tydemania are less important on the deep fore-reef, but growth of coralline red algae continues to over-200m. Halimeda diversity is high down to near the base of the euphotic zone.  相似文献   

20.
Increasing sediment onto coral reefs has been identified as a major source of habitat degradation, and yet little is known about how it affects reef fishes. In this study, we tested the hypothesis that sediment-enriched water impairs the ability of larval damselfish to find suitable settlement sites. At three different experimental concentrations of suspended sediment (45, 90, and 180 mg l−1), pre-settlement individuals of two species (Pomacentrus amboinensis and P. moluccensis) were not able to select their preferred habitat. In a clear water environment (no suspended sediment), both species exhibit a strong preference for live coral over partially dead and dead coral, choosing live coral 70 and 80% of the time, respectively. However, when exposed to suspended sediment, no habitat choice was observed, with individuals of both species settling on live coral, partially dead, and dead coral, at the same frequency. To determine a potential mechanism underlying these results, we tested chemosensory discrimination in sediment-enriched water. We demonstrated that sediment disrupts the ability of this species to respond to chemical cues from different substrata. That is, individuals of P. moluccensis prefer live coral to dead coral in clear water, but in sediment-enriched water, chemical cues from live and dead coral were not distinguished. These results suggest that increasing suspended sediment in coral reef environments may reduce settlement success or survival of coral reef fishes. A sediment-induced disruption of habitat choice may compound the effects of habitat loss on coral reefs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号