首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron beam microscopy and related characterization techniques play an important role in revealing the microstructural, morphological, physical, and chemical information of halide perovskites and their impact on associated optoelectronic devices. However, electron beam irradiation usually causes damage to these beam‐sensitive materials, negatively impacting their device performance, and complicating this interpretation. In this article, the electron microscopy and spectroscopy techniques are reviewed that are crucial for the understanding of the crystallization and microstructure of halide perovskites. In addition, special attention is paid to assessing and mitigating the electron beam‐induced damage caused by these techniques. Since the halide perovskites are fragile, a protocol involving delicate control of both electron beam dose and dose rate, coupled with careful data analysis, is key to enable the acquisition of reliable structural and compositional information such as atomic‐resolution images, chemical elemental mapping and electron diffraction patterns. Limiting the electron beam dose is critical parameter enabling the characterization of various halide perovskites. Novel methods to unveil the mechanisms of device operation, including charge carrier generation, diffusion, and extraction are presented in scanning electron microscopy studies combined with electron‐beam‐induced current and cathodoluminescence mapping. Future opportunities for electron‐beam‐related characterizations of halide perovskites are also discussed.  相似文献   

2.
3.
To achieve high‐efficiency polycrystalline CdTe‐based thin‐film solar cells, the CdTe absorbers must go through a post‐deposition CdCl2 heat treatment followed by a Cu diffusion step. To better understand the roles of each treatment with regard to improving grains, grain boundaries, and interfaces, CdTe solar cells with and without Cu diffusion and CdCl2 heat treatments are investigated using cross‐sectional electron beam induced current, electron backscatter diffraction, and scanning transmission electron microscope techniques. The evolution of the cross‐sectional carrier collection profile due to these treatments that cause an increase in short‐circuit current and higher open‐circuit voltage are identified. Additionally, an increased carrier collection in grain boundaries after either/both of these treatments is revealed. The increased current at the grain boundaries is shown to be due to the presence of a space charge region with an intrinsic carrier collection profile width of ≈350 nm. Scanning transmission electron microscope electron‐energy loss spectroscopy shows a decreased Te and increased Cl concentration in grain boundaries after treatment, which causes the inversion. Each treatment improves the overall carrier collection efficiency of the cell separately, and, therefore, the benefits realized by each treatment are shown to be independent of each other.  相似文献   

4.
5.
6.
Kesterite‐type Cu2ZnSn(S,Se)4 has been extensively studied over the past several years, with researchers searching for promising candidates for indium‐ and gallium‐free inexpensive absorbers in high‐efficiency thin‐film solar cells. Many notable experimental and theoretical studies have dealt with the effects of intrinsic point defects, Cu/Zn/Sn nonstoichiometry, and cation impurities on cell performance. However, there have been few systematic investigations elucidating the distribution of oxygen at an atomic scale and the correlation between oxygen substitution and charge transport despite unavoidable incorporation of oxygen from the ambient atmosphere during thin‐film fabrication. Using energy‐dispersive X‐ray spectroscopy, scanning transmission electron microscopy, and electron energy‐loss spectroscopy, the presence of nanoscale layers is directly demonstrated in which oxygen is substantially substituted for Se, near grain boundaries in polycrystalline Cu2ZnSnSe4 films. Density‐functional theory calculations also show that oxygen substitution remarkably lowers the valence band maximum and subsequently widens the overall bandgap. Consequently, anion modification by oxygen can make a major contribution to the formation of a robust barrier blocking the holes from bulk grains into grain boundaries, thereby efficiently attaining electron?hole separation. The findings provide crucial insights into achieving better energy conversion efficiency in kesterite‐based thin‐film solar cells through optimum control of oxidation during the fabrication process.  相似文献   

7.
ABSTRACT. Trichomonas vaginalis is the most common sexually transmitted protozoan in the world and its resistance to metronidazole is increasing. The purpose of this study was to demonstrate that clinical metronidazole resistance in T. vaginalis does not occur via the same mechanism as laboratory‐induced metronidazole resistance—that is, via hydrogenosome down sizing. Ultrathin sections of this parasite were examined using transmission electron microscopy and the size and area of the cell and hydrogenosomes were compared between drug‐resistant laboratory lines and clinically resistant isolates. Clinical metronidazole‐resistant T. vaginalis had similar‐sized hydrogenosomes as a metronidazole‐sensitive isolate. Inducing metronidazole resistance in both of these isolates caused down sizing of hydrogenosomes. Inducing toyocamycin resistance did not cause any ultrastructural changes to the cell or to the hydrogenosome. No correlation between hydrogenosome number and the drug‐resistant status of T. vaginalis isolates and lines was observed. This report demonstrates that clinical metronidazole resistance is not associated with down‐sized hydrogenosomes, thus indicating that an alternative resistance mechanism is used by T. vaginalis.  相似文献   

8.
Black TiO2 has demonstrated a great potential for a variety of renewable energy technologies. However, its practical application is heavily hindered due to lack of efficient hydrogenation methods and a deeper understanding of hydrogenation mechanisms. Here, a simple and straightforward hot wire annealing (HWA) method is presented to prepare black TiO2 (H–TiO2) nanorods with enhanced photo‐electrochemical (PEC) activity by means of atomic hydrogen [H]. Compared to conventional molecular hydrogen approaches, the HWA shows remarkable effectiveness without any detrimental side effects on the device structure, and simultaneously the photocurrent density of H–TiO2 reaches 2.5 mA cm?2 (at 1.23 V vs reversible hydrogen electrode (RHE)). Due to the controllable and reproducible [H] flux, the HWA can be developed as a standard hydrogenation method for black TiO2. Meanwhile, the relationships between the wire temperatures, structural, optical, and photo‐electrochemical properties are systematically investigated to verify the improved PEC activity. Furthermore, the density functional theory (DFT) study provides a comprehensive insight not only into the highly efficient mechanism of the HWA approach but also its favorably low‐energy‐barrier hydrogenation pathway. The findings will have a profound impact on the broad energy applications of H–TiO2 and contribute to the fundamental understanding of its hydrogenation.  相似文献   

9.
Protein disulfide isomerase (PDI) has fundamental roles in the oxidative folding of proteins in the endoplasmic reticulum (ER) of eukaryotic cells. The study of this molecule has been attracting considerable attention due to its association with other cell functions and human diseases. In leukocytes, such as neutrophils, PDI is involved with cell adhesion, signaling and inflammation. However, the expression of PDI in other leukocytes, such as eosinophils, important cells in inflammatory, allergic and immunomodulatory responses, remains to be defined. Here we used different approaches to investigate PDI expression within human eosinophils. Western blotting and flow cytometry demonstrated high PDI expression in both unstimulated and CCL11/eotaxin-1-stimulated eosinophils, with similar levels in both conditions. By using an immunogold electron microscopy technique that combines better epitope preservation and secondary Fab-fragments of antibodies linked to 1.4-nm gold particles for optimal access to microdomains, we identified different intracellular sites for PDI. In addition to predictable strong PDI labeling at the nuclear envelope, other unanticipated sites, such as secretory granules, lipid bodies and vesicles, including large transport vesicles (eosinophil sombrero vesicles), were also labeled. Thus, we provide the first identification of PDI in human eosinophils, suggesting that this molecule may have additional/specific functions in these leukocytes.  相似文献   

10.
Abstract Parasitism by the endoparasitic wasp Pteromalus puparum (Hymenoptera: Pteromalidae) by using only its associated venom, can suppress the immunal responses of Pieris rapae (Lepidoptera: Pieridae). However, up to now, current knowledge of the mechanisms has been limited. The response of host hemocytes to parasitism was investigated using a combination of light and transmission electron microscopy (TEM). Five hemocyte types, prohemocytes (PRs), granulocytes (GRs), plasmatocytes (PLs), oenocytoids (OEs) and coagulocytes (COs), were observed and characterized from both unparasitized and parasitized Pieris rapae pupae. Light microscopy showed that both GRs and PLs became more round and spread abnormally after parasitism, whereas the shape of other types of hemocytes remained unaffected. In addition, the size of PRs and PLs became larger while OEs became smaller. The proportion of PRs significantly increased after parasitism and that of PLs decreased by 43.9%, but there was no significant increase of GRs and OEs. TEM showed that all types of hemocytes except COs were damaged to various degrees after parasitism, especially resulting in electron opaque cytoplasm and nucleus, fewer cell organelles of rough endoplasmic reticulum, mitochondria and vesicles. Our results indicate that parasitism by P. puparum affects differential hemocyte counts and structures of host hemocytes, particularly for GRs and PLs, which may be the main cause of the parasitoid suppressing host cellular immune responses.  相似文献   

11.
Bias‐dependent mechanisms of reversible and irreversible electrochemical processes on a (La0.5Sr0.5)2CoO4±δ modified (LaxSr1‐x)CoO3‐ surface are studied using dynamic electrochemical strain microscopy (D‐ESM). The reversible oxygen reduction/evolution process is activated at voltages as low as 3–4 V and the degree of transformation increases linearly with applied bias. The irreversible processes associated with static surface deformation become apparent above 10–12 V. Post‐mortem focused‐ion milling combined with atomic resolution scanning transmission electron microscopy and electron energy loss spectroscopy is used to establish the mechanisms of irreversible transformations and attribute it to amorphization of the top layer of material. These studies both establish the framework for probing irreversible electrochemical processes in solids and illustrate rich spectrum of electrochemical transformations underpinning electrocatalytic activity in cobaltites.  相似文献   

12.
13.
Compartmentalization of eukaryotic cells is created and maintained through membrane rearrangements that include membrane transport and organelle biogenesis. Three‐dimensional reconstructions with nanoscale resolution in combination with protein localization are essential for an accurate molecular dissection of these processes. The yeast Saccharomyces cerevisiae is a key model system for identifying genes and characterizing pathways essential for the organization of cellular ultrastructures. Electron microscopy studies of yeast, however, have been hampered by the presence of a cell wall that obstructs penetration of resins and cryoprotectants, and by the protein dense cytoplasm, which obscures the membrane details. Here we present an immuno‐electron tomography (IET) method, which allows the determination of protein distribution patterns on reconstructed organelles from yeast. In addition, we extend this IET approach into a correlative light microscopy‐electron tomography procedure where structures positive for a specific protein localized through a fluorescent signal are resolved in 3D. These new investigative tools for yeast will help to advance our understanding of the endomembrane system organization in eukaryotic cells.   相似文献   

14.
15.
16.
Atomic‐resolution imaging of halide perovskites (HPs) using transmission electron microscopy (TEM) is challenging because of the sensitivity of their structures to the electron beam. In this article, recent achievements in this area are reviewed, covering both all‐inorganic and organic–inorganic hybrid HPs, with an emphasis on the specific imaging conditions that have proven to be effective in avoiding electron beam‐induced structural damage. The discussion focusses on the total electron dose that HPs can bear before being damaged and the effects of different imaging modes, accelerating voltages, and temperatures. The crucial role of a direct‐detection electron‐counting camera in reducing the required electron dose is outlined, which is indispensable for imaging extremely sensitive organic–inorganic hybrid perovskites. In addition to reviewing published works, the results of initial attempts to perform atomic‐resolution elemental mapping for an all‐inorganic HP and image a hybrid HP using scanning TEM are introduced. The preparation of a TEM specimen from macroscopic crystals or devices of HPs, which is very important for practical applications but has not yet received attention, is also discussed. This article aims to provide guidance on the acquisition of atomic‐resolution TEM images of HPs and inspire the development of more imaging technologies for sensitive materials.  相似文献   

17.
Extracellular accumulation of transthyretin (TTR) variants in the form of fibrillar amyloid deposits is the pathological hallmark of familial amyloidotic polyneuropathy (FAP). The TTR Leu55Pro variant occurs in the most aggressive forms of this disease. Inhibition of TTR wild-type (WT) and particularly TTR Leu55Pro fibril formation is of interest as a potential therapeutic strategy and requires a thorough understanding of the fibril assembly mechanism. To this end, we report on the in vitro assembly properties as observed by transmission electron microscopy (TEM), atomic force microscopy (AFM) and quantitative scanning transmission electron microscopy (STEM) for both TTR WT fibrils produced by acidification, and TTR Leu55Pro fibrils assembled at physiological pH. The morphological features and dimensions of TTR WT and TTR Leu55Pro fibrils were similar, with up to 300 nm long, 8 nm wide fibrils being the most prominent species in both cases. Other species were evident; 4-5 nm wide fibrils, 9-10 nm wide fibrils and oligomers of various sizes. STEM mass-per-length (MPL) measurements revealed discrete fibril types with masses of 9.5 and 14.0(+/-1.4) KDa/nm for TTR WT fibrils and 13.7, 18.5 and 23.2(+/-1.5) kDa/nm for TTR Leu55Pro fibrils. These MPL values are consistent with a model in which fibrillar TTR structures are composed of two, three, four or five elementary protofilaments, with each protofilament being a vertical stack of structurally modified TTR monomers assembled with the 2.9 nm axial monomer-monomer spacing indicated by X-ray fibre diffraction data. Ex vivo TTR amyloid fibrils were examined. From their morphological appearance compared to these, the in vitro assembled TTR WT and Leu55Pro fibrils examined may represent immature fibrillar species. The in vitro system operating at physiological pH for TTR Leu55Pro and the model presented for the molecular arrangement of TTR monomers within fibrils may, therefore, describe early fibril assembly events in vivo.  相似文献   

18.
Three linear peptides incorporating d ‐Phe‐2‐Abz as the turn motif are reported. Peptide 1 , a hydrophobic β‐hairpin, served as a proof of principle for the design strategy with both NMR and CD spectra strongly suggesting a β‐hairpin conformation. Peptides 2 and 3, designed as amphipathic antimicrobials, exhibited broad spectrum antimicrobial activity, with potency in the nanomolar range against Staphylococcus aureus. Both compounds possess a high degree of selectivity, proving non‐haemolytic at concentrations 500 to 800 times higher than their respective minimal inhibitory concentrations (MICs) against S. aureus. Peptide 2 induced cell membrane and cell wall disintegration in both S. aureus and Pseudomonas aeruginosa as observed by transmission electron microscopy. Peptide 2 also demonstrated moderate antifungal activity against Candida albicans with an MIC of 50 μM. Synergism was observed with sub‐MIC levels of amphotericin B (AmB), leading to nanomolar MICs against C. albicans for peptide 2 . Based on circular dichroism spectra, both peptides 2 and 3 appear to exist as a mixture of conformers with the β‐hairpin as a minor conformer in aqueous solution, and a slight increase in hairpin population in 50% trifluoroethanol, which was more pronounced for peptide 3 . NMR spectra of peptide 2 in a 1:1 CD3CN/H2O mixture and 30 mM deuterated sodium dodecyl sulfate showed evidence of an extended backbone conformation of the β‐strand residues. However, inter‐strand rotating frame Overhauser effects (ROE) could not be detected and a loosely defined divergent hairpin structure resulted from ROE structure calculation in CD3CN/H2O. The loosely defined hairpin conformation is most likely a result of the electrostatic repulsions between cationic strand residues which also probably contribute towards maintaining low haemolytic activity.  相似文献   

19.
The solid electrolyte interphase (SEI) spontaneously formed on anode surfaces as a passivation layer plays a critical role in the lithium dissolution and deposition upon discharge/charge in lithium ion batteries and lithium‐metal batteries. The formation kinetics and failure of the SEI films are the key factors determining the safety, power capability, and cycle life of lithium ion and lithium‐metal batteries. Since SEI films evolve with the volumetric and interfacial changes of anodes, it is technically challenging in experimental study of SEI kinetics. Here operando observations are reported of SEI formation, growth, and failure at a high current density by utilizing a mass‐sensitive Cs‐corrected scanning transmission electron microscopy. The sub‐nano‐scale observations reveal a bilayer hybrid structure of SEI films and demonstrate the radical assisted SEI growth after the SEI thickness beyond the electron tunneling regime. The failure of SEI films is associated with rapid dissolution of inorganic layers when they directly contact with the electrolyte in broken SEI films. The initiation of cracks in SEI films is caused by heterogeneous volume changes of the electrodes during delithiation. These microscopic insights have important implications in understanding SEI kinetics and in developing high‐performance anodes with the formation of robust SEI films.  相似文献   

20.
Chinese sturgeon Acipenser sinensis, a cartilaginous ganoid, is a ‘living fossil’ on a deeply isolated evolutionary branch. A cell line was established from Chinese sturgeon tail‐fin tissue (CSTF) . These epithelial CSTF cells grew well in Dulbecco’s modified Eagle’s medium at 25° C. Karyotypic analysis revealed a normal diploid karyotype with 2n= 264 and large numbers of punctate chromosomes. A strain of frog iridoviruses [Rana grylio virus (RGV)] was used to test the susceptibility of this cell line to infection. Infection was confirmed by cytopathic effect, immunofluorescence and electron‐microscope observations, which detected the viral antigens or particles in the cytoplasm of RGV‐infected cells. Molecular analysis further suggested that c. 550 bp DNA fragment could be cloned from the RGV‐infected CSTF cells’ DNA with major capsid protein gene polymerase chain reaction primers. Furthermore, after transfection with pEGFP vector DNA, the CSTF cell line produced significant fluorescent signals indicating its utility in exogenous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号