首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The consequences of elevated temperature on body shape were investigated by comparing European perch Perca fluviatilis from the Forsmark area of the Baltic Sea to P. fluviatilis from a nearby Biotest enclosure. The Biotest is a man‐made enclosure within the Baltic Sea that has received warm water from a nuclear power plant since 1980, resulting in temperatures that are elevated 5–10° C relative to the surrounding Baltic Sea. Sampled fish ranged from young‐of‐the‐year to 14 years. Geometric morphometrics and multivariate statistical analysis revealed significant morphological differences between individuals of P. fluviatilis from these two habitats. Most importantly, relative shape changed with size, with small individuals of P. fluviatilis from Biotest being characterized by a deeper body shape and a larger caudal peduncle than the smaller Baltic individuals. In large specimens, smaller differences were found with Biotest individuals being more slender than Baltic individuals. These results show that, in order to have a full understanding of the biological effects of elevated temperatures, studies that cover the entire size range of organisms will be important. Apart from the direct influence of temperature on growth rate and body shape, other ecological factors affected by temperature are discussed as possible contributors to the observed differences between the two populations.  相似文献   

2.
Aim Hidden diversity within an invasive ‘species’ can mask both invasion pathways and confound management goals. We assessed taxonomic status and population structure of the monkey goby Neogobius fluviatilis across Eurasia, comparing genetic variation across its native and invasive ranges. Location Native populations were analysed within the Black and Caspian Sea basins, including major river drainages (Dnieper, Dniester, Danube, Don and Volga rivers), along with introduced locations within the upper Danube and Vistula river systems. Methods DNA sequences and 10 nuclear microsatellite loci were analysed to test genetic diversity and divergence patterns of native and introduced populations; phylogenetic analysis of mtDNA cytochrome b and nuclear RAG‐1 sequences assessed taxonomic status of Black and Caspian Sea lineages. Multivariate analysis of morphology was used to corroborate phylogenetic patterns. Population genetic structure within each basin was evaluated with mtDNA and microsatellite data using FST analogues and Bayesian assignment tests. Results Phylogenetic analysis of mitochondrial and nuclear sequences discerned a pronounced genetic break between monkey gobies in the Black and Caspian Seas, indicating a long‐term species‐level separation dating to c. 3 million years. This pronounced separation further was confirmed from morphological and population genetic divergence. Bayesian inference showed congruent patterns of population structure within the Black Sea basin. Introduced populations in the Danube and Vistula River basins traced to north‐west Black Sea origins, a genetic expansion pattern matching that of other introduced Ponto‐Caspian gobiids. Main conclusions Both genetic and morphological data strongly supported two species of monkey gobies that were formerly identified as subspecies: N. fluviatilis in the Black Sea basin, Don and Volga Rivers, and the Kumo‐Manych Depression, and Neogobius pallasi in the Caspian Sea and Volga River delta. Genetic origins of introduced N. fluviatilis populations indicated a common invasion pathway shared with other introduced Ponto‐Caspian fishes and invertebrates.  相似文献   

3.
Recent studies showing consequences of species’ genetic diversity on ecosystem performance raise the concern of how key ecosystem species are genetically structured. The bladder wrack Fucus vesiculosus L. is a dominant species of macroalga in the northern Atlantic, and it is particularly important as a habitat‐forming species in the Baltic Sea. We examined the genetic structure of populations of F. vesiculosus with a hierarchical approach from a within‐shore scale (10 m) to a between‐seas scale (Baltic Sea–Skagerrak, 800 km). Analysis of five microsatellite loci showed that population differentiation was generally strong (average FST = 12%), being significant at all spatial scales investigated (101, 103, 104–5, 106 m). Genetic differentiation between seas (Baltic Sea and Skagerrak) was substantial. Nevertheless, the effects of isolation by distance were stronger within seas than between seas. Notably, Baltic summer‐reproducing populations showed a strong within‐sea, between‐area (70 km) genetic structure, while Baltic autumn‐reproducing populations and Skagerrak summer‐reproducing populations revealed most genetic diversity between samples within areas (<1 km). Despite such differences in overall structure, Baltic populations of summer‐ and autumn‐reproducing morphs did not separate in a cluster analysis, indicating minor, if any, barriers to gene flow between them. Our results have important implications for management and conservation of F. vesiculosus, and we raise a number of concerns about how genetic variability should be preserved within this species.  相似文献   

4.
Pelophylax esculentus is a hybridogenetic frog originating from matings between P. ridibundus (RR) and P. lessonae (LL). Typically, diploid hybrids (LR) live in sympatry with one of their parental species, upon which they depend for successful reproduction. In parts of their range, however, pure hybrid populations can be found. These hybrid populations have achieved reproductive independence from their parental species by using triploid hybrids (LLR, LRR) rather than LL and RR as their sexual hosts. These different breeding systems also entail differences in reproduction (clonal versus sexual) and hence offer the opportunity to study how genetic diversity is affected by reproductive mode, population structure and geographic location. We investigated 33 populations in the Scania region (South Sweden) and 18 additional populations from Northern and Central Europe. Within both genomes (L, R), genetic variability increases with the potential for recombination and declines from the main species distribution area southeast of the Baltic Sea to the fringe populations northwest of the Baltic Sea. Within the main study area in Scania, genetic diversity is low and decreases from a core area to the periphery. Genetic differentiation between Scania populations is small but significant and best explained by ‘isolation by distance’. Despite the low genetic variability within the discrete genomes, all‐hybrid P. esculentus populations in southern Sweden are apparently not suffering from direct negative fitness effects. This is probably because of its somatic hybrid status, which increases diversity through the combination of genomes from two species.  相似文献   

5.
In many marine fish species, genetic population structure is typically weak because populations are large, evolutionarily young and have a high potential for gene flow. We tested whether genetic markers influenced by natural selection are more efficient than the presumed neutral genetic markers to detect population structure in Atlantic herring (Clupea harengus), a migratory pelagic species with large effective population sizes. We compared the spatial and temporal patterns of divergence and statistical power of three traditional genetic marker types, microsatellites, allozymes and mitochondrial DNA, with one microsatellite locus, Cpa112, previously shown to be influenced by divergent selection associated with salinity, and one locus located in the major histocompatibility complex class IIA (MHC-IIA) gene, using the same individuals across analyses. Samples were collected in 2002 and 2003 at two locations in the North Sea, one location in the Skagerrak and one location in the low-saline Baltic Sea. Levels of divergence for putatively neutral markers were generally low, with the exception of single outlier locus/sample combinations; microsatellites were the most statistically powerful markers under neutral expectations. We found no evidence of selection acting on the MHC locus. Cpa112, however, was highly divergent in the Baltic samples. Simulations addressing the statistical power for detecting population divergence showed that when using Cpa112 alone, compared with using eight presumed neutral microsatellite loci, sample sizes could be reduced by up to a tenth while still retaining high statistical power. Our results show that the loci influenced by selection can serve as powerful markers for detecting population structure in high gene-flow marine fish species.  相似文献   

6.
H.-P. Buinheim  G. Faya 《Genetica》1982,59(3):177-190
Phenotypic and genetic variation was studied in two of the four European subspecies of the marine isopod Idotea baltica; the Mediterranean I. b. basteri and the Baltic I. b. baltica. Spatial and temporal patterns of colour polymorphism were analysed in northern Adriatic and western Baltic Sea populations. Pronounced differences in phenotype composition were observed between populations of both subspecies as seen in the distribution of various colour variants bilineata, lineata, flavafusca and several combined forms). Compared with Adriatic samples, western Baltic Sea populations show higher phenotypic diversity. To obtain an estimate of the degree of genetic divergence between the subspecies, 12 gene-enzyme systems were investigated electrophoretically. The results obtained indicate a relatively high level of genetic variation; I. b. basteri from the nothern Adriatic tends to be more polymorphic and more heterozygous than I. b. baltica from the western Baltic. Both subspecies share identical electrophoretic mobilities of the homologous enzyme proteins examined; however, in allelic composition they exhibit significant differences at approximately half the number of loci scored. The genetic distance (Nei's D) measured at the subspecific level was 0.04. Amounts and geographical patterns of variation, observed both in colour phenotype and electrophoretic variation, are considered.  相似文献   

7.
The European river lamprey Lampetra fluviatilis and the European brook lamprey Lampetra planeri (Block 1784) are classified as a paired species, characterized by notably different life histories but morphological similarities. Previous work has further shown limited genetic differentiation between these two species at the mitochondrial DNA level. Here, we expand on this previous work, which focused on lamprey species from the Iberian Peninsula in the south and mainland Europe in the north, by sequencing three mitochondrial marker regions of Lampetra individuals from five river systems in Ireland and five in southern Italy. Our results corroborate the previously identified pattern of genetic diversity for the species pair. We also show significant genetic differentiation between Irish and mainland European lamprey populations, suggesting another ichthyogeographic district distinct from those previously defined. Finally, our results stress the importance of southern Italian L. planeri populations, which maintain several private alleles and notable genetic diversity.  相似文献   

8.
The North Sea–Baltic Sea transition zone constitutes a boundary area for the kelp species Saccharina latissima due to a strong salinity gradient operating in the area. Furthermore, the existence of S. latissima there, along Danish waters, is fairly patchy as hard bottom is scarce. In this study, patterns of genetic diversity of S. latissima populations were evaluated along the salinity gradient area of Danish waters (here designated brackish) and were compared to reference sites (here designated marine) outside the gradient area, using microsatellite markers. The results showed that the S. latissima populations were structured into two clusters corresponding to brackish versus marine sites, and that gene flow was reduced both between clusters and between populations within clusters. In addition, results provided empirical evidence that marginal populations of S. latissima in the salinity gradient area exhibited a distinct genetic structure when compared to marine ones. Brackish populations were less diverse, more related, and showed increased differentiation over distance compared to marine populations. The isolation of the brackish S. latissima populations within the salinity gradient area of Danish waters in conjunction with their general low genetic diversity makes these populations vulnerable to ongoing environmental and climate change, predicted to result in declining salinity in the Baltic Sea area that may alter the future distribution and performance of S. latissima in the area.  相似文献   

9.
10.
B. Mayr  M. Kalat  P. Ráb  M. Lambrou 《Genetica》1987,75(3):199-205
The chromosomes of the European Percidae (Lucioperca lucioperca L., Gymnocephalus cernuus L., Gymnocephalus schraetser L. and Perca fluviatilis L.) were analyzed by means of silver staining chromomycin A3/distamycin A/DAPI and DAPI/actinomycin D fluorescence banding techniques. The nucleolus organizer regions (NORs) were localized at the satellite stalks of chromosome no. 16 in Lucioperca lucioperca and Perca fluviatilis, and of chromosome no. 18 in both Gymnocephalus species. Bright chromomycin A3 fluorescence clusters were associated with them.Bright distamycin A-DAPI and DAPI/actinomycin D heterochromatic blocks were detected in Lucioperca lucioperca and the Gymnocephalus species.  相似文献   

11.
The genetic relationships of a population of brook lamprey Lampetra planeri from Spain were analysed using a fragment of the mitochondrial non-coding region in order to describe its relationships with other European Lampetra populations. DNA sequences were obtained from ten larvae, all corresponding to a single private haplotype. Its closest haplotype differed by five mutations and was found in several samples of Lampetra fluviatlis, both from the North Sea and the Baltic. These results argue for the great conservation value of this brook lamprey population, likely originated from L. fluviatilis ancestors.  相似文献   

12.
This study investigates the genetic structure of an eukaryotic microorganism, the toxic dinoflagellate Alexandrium ostenfeldii, from the Baltic Sea, a geologically young and ecologically marginal brackish water estuary which is predicted to support evolution of distinct, genetically impoverished lineages of marine macroorganisms. Analyses of the internal transcribed spacer (ITS) sequences and Amplified Fragment Length Polymorphism (AFLP) of 84 A. ostenfeldii isolates from five different Baltic locations and multiple external sites revealed that Baltic A. ostenfeldii is phylogenetically differentiated from other lineages of the species and micro-geographically fragmented within the Baltic Sea. Significant genetic differentiation (F ST) between northern and southern locations was correlated to geographical distance. However, instead of discrete genetic units or continuous genetic differentiation, the analysis of population structure suggests a complex and partially hierarchic pattern of genetic differentiation. The observed pattern suggests that initial colonization was followed by local differentiation and varying degrees of dispersal, most likely depending on local habitat conditions and prevailing current systems separating the Baltic Sea populations. Local subpopulations generally exhibited low levels of overall gene diversity. Association analysis suggests predominately asexual reproduction most likely accompanied by frequency shifts of clonal lineages during planktonic growth. Our results indicate that the general pattern of genetic differentiation and reduced genetic diversity of Baltic populations found in large organisms also applies to microscopic eukaryotic organisms.  相似文献   

13.
The euryhaline gastropod Theodoxus fluviatilis is found in northern Germany in freshwater or in brackish water habitats in the Baltic Sea. Previous studies have revealed that individuals from both habitats are not distinguishable by morphological characters or by sequence comparison of DNA encoding 16S RNA or cytochrome C. As reported in this study, animals collected in the two habitats differ substantially in their physiological ability to adapt to different salinities. Comparison of accumulation rates of ninhydrin-positive substances (NPS) in foot muscle upon transfer of animals to higher medium salinities revealed that brackish water animals were perfectly able to mobilize NPS, while freshwater animals had only limited ability to do so. In an attempt to explore whether this difference in physiology may be caused by genetic differentiation, we compared protein expression patterns of soluble foot muscle proteins using 2D gel electrophoresis and silver staining. Of the 40 consistently detected protein spots, 27 showed similar levels in protein expression in animals collected from freshwater or brackish water habitats, respectively. In 12 spots, however, protein concentration was higher in brackish water than in freshwater animals. In four of these spots, expression levels followed increases or decreases in medium salinities. In a different set of 4 of these 12 spots, protein levels were always higher in brackish water as compared to freshwater animals, regardless of their physiological situation (14 days in artificial pond water or in medium with a salinity of 16‰). The remaining 4 of the 12 spots had complex expression patterns. Protein levels of the remaining single spot were generally higher in freshwater animals than in brackish water animals. These expression patterns may indicate that freshwater and brackish water animals of T. fluviatilis belong to different locally adapted populations with subtle genetic differentiation.  相似文献   

14.
Aim The brackish water mysid, Neomysis integer, is one of the most common mysid species along the coasts of the north‐east Atlantic. In the present study, the phylogeographical patterns were examined throughout the distribution range of N. integer. In particular, the latitudinal trends in genetic diversity and the distribution of genetic variation were examined in order to elucidate the imprints of the Pleistocene glaciations. Location North‐east Atlantic coasts from the Baltic Sea to the south of Spain. Methods A total of 461 specimens from 11 populations were analysed by means of single‐stranded conformation polymorphism analysis combined with DNA sequencing of a fragment of the mitochondrial cytochrome c oxidase I gene. The genetic structure was examined by using a progression of phylogenetic, demographic and population genetic analyses to elucidate not only the geographical structure, but also the evolutionary history producing that structure. Results The levels of genetic diversity were relatively uniform throughout the distribution range, with the exception of a decline at the northern and southern edges of distribution. A high heterogeneity was observed between the populations analysed (global ΦST = 0.787). This is caused by the disparate distribution of the cytochrome oxidase I haplotypes, with several population‐specific haplotypes. A clear genetic break (2.4% sequence divergence) occurred between the southernmost Guadalquivir population and all other populations. Main conclusions The present study corroborates the expectations of the genetic patterns typically observed in an estuarine species. The within‐population variability was low, whereas a significant (moderate to high) divergence was observed between populations. Phylogeographical analysis revealed that northern populations within the English Channel, North Sea and Baltic Sea are characterized by several widespread haplotypes, while the Irish population and all sites south of the Bay of Biscay consist solely of unique haplotypes. This pattern, combined with the relative high levels of genetic diversity, could be indicative for the presence of a glacial refugium in the English Channel region. Under this scenario N. integer must have survived the Last Glacial Maximum in the palaeoriver system present in that region.  相似文献   

15.
16.
Population genetic structure of mussels from the Baltic Sea   总被引:2,自引:0,他引:2  
In a macrogeographic survey, the population genetic structure of mussels from various regions of the Baltic Sea, a large semi-enclosed brackish-water basin, was examined with reference toMytilus edulis andM. galloprovincialis samples from the North Sea, Irish coast and southern Portugal. Electrophoretically detectable variation was analysed at 6 polymorphic enzyme loci (Ap, Est-D, Lap-2, Odh, Pgi andPgm). Evidence was provided of a remarkably large amount of biochemical genetic differentiation among ecologically and morphologically divergent mussel populations in the Baltic. Patterns of allele frequencies in low-salinity populations from the area of the Baltic Proper were demonstrated to be widely homogeneous but contrast strongly with those of the western Baltic, the latter resembling populations from marine habitats of the North Sea. Associated with a pronounced salinity gradient, the spatial heterogeneity in gene-pool structure is indicated by steep clines of allele frequency changes in the area of the eastern Danish isles. The adaptive significance of the observed allozymic variation is suggested. From genetic distance estimates, the subdivision of population structure is discussed in relation to the significant amount of differentiation detected withinMytilus populations to date and to the evolutionary time required for the divergence of Baltic mussel populations. The allozymic data provide evidence for the genetic distinctiveness of mussels from the low-salinity areas of the Baltic. Their position at the specific or subspecific level of classification requires further consideration.  相似文献   

17.
The growth, reproduction and condition of adults of the three dominant fish species (roach, Rutilus rutilus, (L.); perch, Perca fluviatilis, L. and ruffe, Gymnocephalus cernuus, (L.)) in the eutrophic Lake Aydat were studied over one year cycle. Compared to published data, the growth of R. rutilus and G. cernuus was about average, while that of P. fluviatilis was below average. Comparing to literature, the fecundity of R. rutilus and G. cernuus was low but their oocytes were large. In contrast, P. fluviatilis had a high fecundity but small oocytes. At the end of summer, an abrupt decrease in the condition was recorded only for perch, probably due to stress as a result of environmental conditions. The sex-ratio was in favour of females for the three studied species but, in contrast to G. cernuus, the sex-ratio of R. rutilus and P. fluviatilis increased significantly also with age. It is concluded that Lake Aydat is a more favourable environment for R. rutilus and G. cernuus than for P. fluviatilis.  相似文献   

18.
We have investigated the local and regional scale genetic structure of Siberian primrose (Primula nutans) populations in Northern Europe. The genetic diversity and structure of fifteen populations sampled from the Bothnian Bay in Finland, the Barents Sea in Norway and the White Sea in Russia were assessed using eleven microsatellite markers. We investigated the distribution of genetic variation within and between populations, and studied the local genetic structure using spatial autocorrelation analysis. We found very low genetic and allelic diversity in the Bothnian Bay and Barents Sea populations, and only slightly higher in the White Sea population. The level of genetic differentiation between the regions was very high, whereas differentiation between the populations within the regions was moderate. We found no spatial structuring of populations in any region suggesting efficient dispersal on a local scale. Clonal reproduction seemed to have no effect on genetic structure.  相似文献   

19.
The unusual yellow‐finned morph of European perch Perca fluviatilis found in Lake Constance suffers more severely from macroparasite infections, including the tapeworm Triaenophorus nodulosus and the gill worm Ancyrocephalus percae, than conspecifics elsewhere. Microsatellite analysis of yellow‐finned P. fluviatilis and red‐finned variant recently discovered in Lake Constance revealed significant genetic differentiation. Red‐finned P. fluviatilis and fish with mixed fin colour, suggested backcrosses between red and yellow‐finned colour morphs, exhibit better resilience to parasite infection, suggesting that the inability of the yellow‐finned morph to reject macroparasites may have a genetic basis.  相似文献   

20.
Information on spatial and temporal patterns of genetic diversity is a prerequisite to understanding the demography of populations, and is fundamental to successful management and conservation of species. In the sea, it has been observed that oceanographic and other physical forces can constitute barriers to gene flow that may result in similar population genetic structures in different species. Such similarities among species would greatly simplify management of genetic biodiversity. Here, we tested for shared genetic patterns in a complex marine area, the Baltic Sea. We assessed spatial patterns of intraspecific genetic diversity and differentiation in seven ecologically important species of the Baltic ecosystem—Atlantic herring (Clupea harengus), northern pike (Esox lucius), European whitefish (Coregonus lavaretus), three-spined stickleback (Gasterosteus aculeatus), nine-spined stickleback (Pungitius pungitius), blue mussel (Mytilus spp.), and bladderwrack (Fucus vesiculosus). We used nuclear genetic data of putatively neutral microsatellite and SNP loci from samples collected from seven regions throughout the Baltic Sea, and reference samples from North Atlantic areas. Overall, patterns of genetic diversity and differentiation among sampling regions were unique for each species, although all six species with Atlantic samples indicated strong resistence to Atlantic-Baltic gene-flow. Major genetic barriers were not shared among species within the Baltic Sea; most species show genetic heterogeneity, but significant isolation by distance was only detected in pike and whitefish. These species-specific patterns of genetic structure preclude generalizations and emphasize the need to undertake genetic surveys for species separately, and to design management plans taking into consideration the specific structures of each species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号