首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. The predominance of sexuality in eukaryotes remains an evolutionary paradox, given the "two-fold cost of sex" also known as the "cost of males." [Correction added after online publication 29 January 2009: in the preceding sentence, extraneous words were deleted.] As it requires two sexual parents to reproduce and only one parthenogenetic parent, parthenogens should have twice the reproductive rate compared with their sexual counterparts and their genes should spread twice as fast, if all else is equal. Yet, parthenogenesis is relatively rare and considered an evolutionary dead-end, while sexuality is the dominant form of reproduction in multicellular eukaryotes. Many studies have explored short-term benefits of sex that could outweigh its two-fold cost, but few have compared fecundity between closely related sexuals and parthenogens to first verify that "all else is equal" reproductively. We compared six fecundity measures between sexual and parthenogenetic populations of the freshwater snail, Campeloma limum , during a brooding cycle (1 year) across two drainages. Drainages were analyzed separately because of a significant drainage effect. In the Savannah drainage, fecundity was not significantly different between sexuals and parthenogens, even though parthenogens had significantly more empty egg capsules per brood. In the Ogeechee drainage, parthenogens had significantly more egg capsules with multiple embryos and more hatched embryos than sexuals. Taken over 1 year, embryo size was not significantly different between parthenogens and sexuals in either drainage. Given these results and the close proximity of sexual and parthenogenetic populations, it is perplexing why parthenogenetic populations have not completely replaced sexual populations in C. limum.  相似文献   

2.
Transitions from sexual reproduction to parthenogenesis may occur along multiple evolutionary pathways and involve various cytological mechanisms to produce diploid eggs. Here, we investigate routes to parthenogenesis in Timema stick insects, a genus comprising five obligate parthenogens. By combining information from microsatellites and karyotypes with a previously published mitochondrial phylogeny, we show that all five parthenogens likely evolved spontaneously from sexually reproducing species, and that the sexual ancestor of one of the five parthenogens was probably of hybrid origin. The complete maintenance of heterozygosity between generations in the five parthenogens strongly suggests that eggs are produced by apomixis. Virgin females of the sexual species were also able to produce parthenogenetic offspring, but these females produced eggs by automixis. High heterozygosity levels stemming from conserved ancestral alleles in the parthenogens suggest, however, that automixis has not generated the current parthenogenetic Timema lineages but that apomixis appeared abruptly in several sexual species. A direct transition from sexual reproduction to (at least functional) apomixis results in a relatively high level of allelic diversity and high efficiency for parthenogenesis. Because both of these traits should positively affect the demographic success of asexual lineages, spontaneous apomixis may have contributed to the origin and maintenance of asexuality in Timema .  相似文献   

3.
The ubiquity of sexual reproduction is an evolutionary puzzle because asexuality should have major reproductive advantages. Theoretically, transitions to asexuality should confer substantial benefits in population growth and lead to rapid displacement of all sexual ancestors. So far, there have been few rigorous tests of one of the most basic assumptions of the paradox of sex: that asexuals are competitively superior to sexuals immediately after their origin. Here I examine the fitness consequences of very recent transitions to obligate parthenogenesis in the cyclical parthenogenetic rotifer Brachionus calyciflorus. This experimental system differs from previous animal models, since obligate parthenogens were derived from the same maternal genotype as cyclical parthenogens. Obligate parthenogens had similar fitness compared with cyclical parthenogens in terms of the intrinsic rate of increase (calculated from life tables). However, population growth of cyclical parthenogens was predicted to be much lower: sexual female offspring do not contribute to immediate population growth in Brachionus, since they produce either males or diapausing eggs. Hence, if cyclical parthenogens constantly produce a high proportion of sexual offspring, there is a cost of sex, and obligate parthenogens can invade. This prediction was confirmed in laboratory competition experiments.  相似文献   

4.
Female‐producing parthenogenesis can be induced by endosymbionts that increase their transmission by manipulating host reproduction. Our literature survey indicates that such endosymbiont‐induced parthenogenesis is known or suspected in 124 host species from seven different arthropod taxa, with Wolbachia as the most frequent endosymbiont (in 56–75% of host species). Most host species (81%, 100 out of 124) are characterized by haplo‐diploid sex determination, but a strong ascertainment bias likely underestimates the frequency of endosymbiont‐induced parthenogenesis in hosts with other sex determination systems. In at least one taxon, hymenopterans, endosymbionts are a significant driver of transitions from sexual to parthenogenetic reproduction, with one‐third of lineages being parthenogenetic as a consequence of endosymbiont infection. Endosymbiont‐induced parthenogenesis appears to facilitate the maintenance of reproductive polymorphism: at least 50% of species comprise both sexual (uninfected) and parthenogenetic (infected) strains. These strains feature distribution differences similar to the ones documented for lineages with genetically determined parthenogenesis, with endosymbiont‐induced parthenogens occurring at higher latitudes than their sexual relatives. Finally, although gamete duplication is often considered as the main mechanism for endosymbiont‐induced parthenogenesis, it underlies parthenogenesis in only half of the host species studied thus far. We point out caveats in the methods used to test for endosymbiont‐induced parthenogenesis and suggest specific approaches that allow for firm conclusions about the involvement of endosymbionts in the origin of parthenogenesis.  相似文献   

5.
Abstract. Stimuli associated with copulatory behavior are often needed to maximize reproductive output in internally fertilized sexual taxa. Although non-pseudogamous parthenogenetic females have no need for sperm, parthenogens descended from sexual ancestors may still require copulatory stimuli to reach their full reproductive potential. Retention of physiological dependence on copulation in parthenogens could facilitate the maintenance of sexual reproduction in species where sexual and parthenogenetic individuals coexist if parthenogens do not receive enough copulatory stimuli to achieve maximal daughter production. A laboratory experiment was conducted to determine whether embryo production in parthenogenetic female snails ( Potamopyrgus antipodarum ) is dependent on male presence. Rather than male presence, this experiment showed that embryo production is affected by the number of coexisting parthenogens. Specifically, parthenogens housed with fewer other parthenogens produced significantly more embryos than parthenogens housed with a greater number of other parthenogens, regardless of male presence and total population size. This result indicates that copulatory dependence is not likely to contribute to the maintenance of sex in P. antipodarum . Instead, it demonstrates that females of P. antipodarum negatively affect each other's reproduction, and suggests that females of P. antipodarum may exert a larger competitive influence than males of P. antipodarum . Moreover, this finding raises the possibility that highly parthenogenetic and consequently female-dense populations of P. antipodarum may experience decreased reproductive output when population size is large and resources are limiting.  相似文献   

6.
Parthenogenesis occurs across a variety of vertebrate taxa. Within squamate reptiles (lizards and snakes), a group for which the largest number of cases has been documented, both obligate and facultative types of parthenogenesis exists, although the obligate form in snakes appears to be restricted to a single basal species of blind snake, Indotyphlops braminus. By contrast, a number of snake species that otherwise reproduce sexually have been found capable of facultative parthenogenesis. Because the original documentation of this phenomenon was restricted to subjects held in captivity and isolated from males, facultative parthenogenesis was attributed as a captive syndrome. However, its recent discovery in nature shifts the paradigm and identifies this form of reproduction as a potentially important feature of vertebrate evolution. In light of the growing number of documented cases of parthenogenesis, it is now possible to review the phylogenetic distribution in snakes and thus identify subtle variations and commonalities that may exist through the characterization of its emerging properties. Based on our findings, we propose partitioning facultative parthenogenesis in snakes into two categories, type A and type B, based on the sex of the progeny produced, their viability, sex chromosome morphology, and ploidy, as well as their phylogenetic position. Furthermore, we introduce a hypothesis (directionality of heterogamety hypothesis) to explain the production of female‐only parthenogens in basal alethinophidian snakes and male‐only parthenogens in caenophidian (advanced) snakes.  相似文献   

7.
Sexual reproduction involves many costs. Therefore, females acquiring a capacity for parthenogenetic (or asexual) reproduction will gain a reproductive advantage over obligately sexual females. In contrast, for males, any trait coercing parthenogens into sexual reproduction (male coercion) increases their fitness and should be under positive selection because parthenogenesis deprives them of their genetic contribution to future generations. Surprisingly, although such sexual conflict is a possible outcome whenever reproductive isolation is incomplete between parthenogens and the sexual ancestors, it has not been given much attention in the studies of the maintenance of sex. Using two mathematical models, I show here that the evolution of male coercion substantially favours the maintenance of sex even though a female barrier against the coercion can evolve. First, the model based on adaptive-dynamics theory demonstrates that the resultant antagonistic coevolution between male coercion and a female barrier fundamentally ends in either the prevalence of sex or the co-occurrence of two reproductive modes. This is because the coevolution between the two traits additionally involves sex-ratio selection, that is, an increase in parthenogenetic reproduction leads to a female-biased population sex ratio, which will enhance reproductive success of more coercive males and directly promotes the evolution of the coercion among males. Therefore, as shown by the individual-based model, the establishment of obligate parthenogenesis in the population requires the simultaneous evolution of strong reproductive isolation between males and parthenogens. These findings should shed light on the interspecific diversity of reproductive modes as well as help to explain the prevalence of sexual reproduction.  相似文献   

8.
Cyclical parthenogens, which combine asexual and sexual reproduction, are good models for research into the ecological and population processes affecting the evolutionary maintenance of sex. Sex in cyclically parthenogenetic rotifers is necessary for diapausing egg production, which is essential to survive adverse conditions between planktonic growing seasons. However, within a planktonic season sexual reproduction prevents clonal proliferation. Hence, clones with a low propensity for sex should be selected, becoming dominant in the population as the growing season progresses. In this context, we studied the dynamics of the heritable variation in propensity for sexual reproduction among clones of a Brachionus plicatilis rotifer population in a temporary Mediterranean pond during the period the species occurred in plankton. Clonal isolates displayed high heritable variation in their propensity for sex. Moreover, the frequency of clones with low propensity for sex increased during the growing season, which supports the hypothesized short‐term selection for low investment in sex within a growing season. These results demonstrate (1) the inherent instability of the cyclical parthenogenetic life cycle, (2) the cost of sexual reproduction in cyclical parthenogens where sex produces diapausing eggs and (3) the role of the association between sexual reproduction and diapause in maintaining sex in these cyclical parthenogens.  相似文献   

9.
The problem of the maintenance of anisogamous sex is addressed by considering the effect of fertilization on the fitness of parthenogenetic females when such fertilization yields inviable triploid progeny. We consider four types of parthenogenesis: (i) apomixis, (ii) homogametic amphimixis, (iii) heterogametic amphimixis, and (iv) homogametic automixis. Homozygous sexual populations are genetically stable if males or selection eliminate the excess females produced by heterozygous parthenogenetic genotypes. Homozygous parthenogenetic populations are stable if the parthenogenetic output of homozygotes exceeds that of heterozygotes. In turn, sex can only invade heterozygous parthenogenetic populations when sexual output of parthenogens is larger than their parthenogenetic output. The existence of interior stable equilibria generally requires the instability of at least one boundary and some degree of heterosis. In a two-locus model, we study the evolution of mechanisms protecting either sex or parthenogenesis in reproductively polymorphic populations. We find that males do not respond to the presence of parthenogenesis in such a way as to eliminate it, but parthenogenesis is subject to selective pressures increasing reproductive isolation, and thus the success of parthenogenesis. The results suggest that reproductively polymorphic populations are ephemeral.  相似文献   

10.
1. The evolutionary advantages that have driven the evolution of sex are still very much debated, and a number of benefits of parthenogenesis over sexual reproduction have been proposed. In particular, parthenogenetic individuals are thought to exhibit higher probabilities of establishment following arrival in new, isolated habitats such as islands. 2. One notable example of parthenogenesis occurring in islands is the damselfly Ischnura hastata, an American species that has colonised the Azores archipelago, where the populations consist only of females. This is the only known example of parthenogenesis within the insect order Odonata. 3. Here, two island populations of I. hastata were studied, one in the Galapagos and one in Cuba, to test whether island colonisation is consistently associated with parthenogenesis in this species. Field capture–mark–recapture studies and laboratory rearing of field‐collected eggs were undertaken in both areas. 4. Sex ratios in the field were found to be heavily female‐biased among mature individuals; however, fertility rates of field‐collected eggs were high, and the sex ratios in the laboratory did not differ from 1 : 1. Data from laboratory rearing showed that shorter larval development times and shorter adult life spans in males result in protandry, which might explain the skewed sex ratios in the field. 5. These findings are consistent with sex differences in key demographic parameters which could predispose I. hastata to parthenogenesis. However, the Azores population of I. hastata remains the only documented case of asexual reproduction in this insect group.  相似文献   

11.
A unique reproductive system has previously been described in Wasmannia auropunctata, a widespread invasive ant species, where males are produced clonally, female queens are parthenogens, and female workers are produced sexually. However, these findings were mostly based on samples originating from only a limited part of the native range of the species in South America. We used microsatellite markers to uncover the reproductive modes displayed by a large number of nests collected in various invasive W. auropunctata populations introduced 40 years ago into New Caledonia, where the species now forms a single 450-km-long supercolony. Although the main reproduction system in New Caledonia remained clonality for both male and female reproductives, we found evidence of rare sexual reproduction events that led to the production of both new queen and male clonal lineages. All clonal lineages observed in New Caledonia potentially derived from sexual reproduction, recombination, and mutation events from a single female and a single male genotype. Hence, the male and female gene pools are not strictly separated in New Caledonia and the two sexes do not follow independent evolutionary trajectories. Our results also suggest genetic determination for both parthenogenesis and caste. We discuss the evolutionary implications of the emergence of sex in the clonal reproduction system of introduced populations of W. auropunctata.  相似文献   

12.
Transitions to asexuality have occurred in many animals and plants, yet the biological mechanisms causing such transitions have often remained unclear. Cyclical parthenogens, such as cladocerans, rotifers or aphids often give rise to obligate asexual lineages. In many rotifers, chemical signals that accumulate during population crowding trigger the induction of sexual stages. In this study, I tested two hypotheses on the origin of obligate parthenogenesis in the rotifer Brachionus calyciflorus: (i) that obligate parthenogens have lost the responsiveness to the sexual signal; and (ii) that obligate parthenogens have lost the ability to produce the sexual signal. Pairwise cross-induction assays among three obligate parthenogenetic strains and two cyclically parthenogenetic (sexual) strains were used to test these hypotheses. I found that obligate parthenogens can induce sexual reproduction in sexual strains, but not vice versa. This demonstrates that obligate parthenogens do still produce the sexual signal, but have lost responsiveness to that signal.  相似文献   

13.
Some theories for the maintenance of sexual reproduction indicate that parthenogens may persist if there is high clonal diversity and high dispersal rates. Using allozymic variation, we report on the origin, clonal diversity and population structure of hybrid and spontaneous parthenogens from south-eastern United States populations of the freshwater snail Campeloma. Independent origins of triploid hybrid parthenogens in the Florida panhandle occurred by hybridization between an Atlantic coastal species (C. limum or C. floridense) and the Florida sexual species (C. geniculum). Allozyme genotypic diversity is similar between these hybrid parthenogens and sexuals. Diploid spontaneous parthenogens originated multiple times from nonlocal C.limum sexual populations in Atlantic coastal rivers, and levels of genotypic diversity are significantly higher in sexual C. limum. How parthenogens originate, the degree of clonal diversity, and their subsequent dispersal influence whether basic assumptions of evolution-of-sex models are met.  相似文献   

14.
In cyclical parthenogens such as aphids, cladocerans and rotifers, the coupling between sexual reproduction and the production of resting stages (diapausing eggs) imposes strong constraints on the timing of sex. Whereas induction of sex is generally triggered by environmental cues, the response to such cues may vary across individuals according to genetic and nongenetic factors. In this study, we explored genetic and epigenetic causes of variation for the propensity for sex using a collection of strains from a Spanish population of monogonont rotifers (Brachionus plicatilis) in which variation for the threshold population density at which sex is induced (mixis threshold) had been documented previously. Our results show significant variation for the mixis threshold among 20 clones maintained under controlled conditions for 15 asexual generations. The effect of the number of clonal generations since hatching of the diapausing egg on the mixis ratio (proportion of sexual offspring produced) was tested on 4 clones with contrasted mixis thresholds. The results show a negative correlation between the mixis threshold and mixis ratio, as well as a significant effect of the number of clonal generations since fertilization, sex being repressed during the first few generations after hatching of the diapausing egg.  相似文献   

15.
The monogonont rotifer Lecane inermis is commonly known as a facultative parthenogen. Unexpectedly, among numerous lineages we isolated from wastewater treatment plants (WWTP), only one was capable of sexual reproduction. We investigated why sex was so rare among L. inermis in WWTP. The reproductive modes of lineages derived from the sexual lineage were examined. Among all lineages, the fraction of those reproducing only asexually for 14 d was 0.39. In the subsequent round, the fraction of asexual lineages reached 0.61. The population growth rate of the parthenogenetic lineages was significantly higher than that of the sexual lineages. We simulated the fate of rotifer populations in WWTP by removing 10% of the experimental cultures each day. After 10 d of these conditions, the mean number of females was greater in parthenogenetic than in sexual lineages. After 20 d, only solitary dormant eggs remained in the sexual lineages. It therefore appears that the loss of sex may be attributed to the specific conditions of the WWTP. When there is no risk of desiccation and no need for dormancy, the fast‐growing parthenogens outcompete lineages investing in costly sex. Furthermore, even if some resting eggs were deposited, they would be washed out from the system with the excess sludge.  相似文献   

16.
Parthenogenetic development of unfused gametes is commonly observed in laboratory cultures among various brown algal taxa. There is, however, little information on the contribution of parthenogenesis to the reproduction of field populations. In this study, we investigated whether parthenogenesis is present in a sexual population of the isogamous brown alga Scytosiphon with a 1:1 sex ratio. In culture, both female and male gametes showed higher mortality and slower development compared to zygotes. More than 90% of surviving partheno‐germlings formed parthenosporophytes irrespective of the culture conditions tested. Therefore, if parthenogenesis occurs in the field, most unfused gametes are expected to form parthenosporophytes. Contrary to this expectation, parthenosporophytes were rare in the field population. We collected 126 sporophytic thalli and isolated and cultured a unilocular sporangium from each of them. We confirmed that cultures of 120 unilocular sporangia produced both female and male gametophytes by the observation of zygotes or amplification of PCR‐based sex markers indicating that these sporangia originated from zygotic sporophytes. Only females were detected in cultures from two sporangia and only males from four sporangia suggesting that these sporangia originated from parthenosporophytes. In the Scytosiphon population, although parthenogenesis is observable in culture, our results demonstrate that the contribution of parthenogenesis to reproduction is small (≤4.8%) compared to sexual reproduction. Unfused gametes may not survive to form mature parthenosporophytes in significant numbers in the field partly due to their higher mortality and slower development compared from zygotes.  相似文献   

17.
Worldwide, parthenogenetic reproduction has evolved many times in the stick insects (Phasmatidae). Many parthenogenetic stick insects show the distribution pattern known as geographic parthenogenesis, in that they occupy habitats that are at higher altitude or latitude compared with their sexual relatives. Although it is often assumed that, in the short term, parthenogenetic populations will have a reproductive advantage over sexual populations; this is not necessarily the case. We present data on the distribution and evolutionary relationships of sexual and asexual populations of the New Zealand stick insect, Clitarchus hookeri. Males are common in the northern half of the species’ range but rare or absent elsewhere, and we found that most C. hookeri from putative‐parthenogenetic populations share a common ancestor. Female stick insects from bisexual populations of Clitarchus hookeri are capable of parthenogenetic reproduction, but those insects from putative‐parthenogenetic populations produced few offspring via sexual reproduction when males were available. We found similar fertility (hatching success) in mated and virgin females. Mated females produce equal numbers of male and female offspring, with most hatching about 9–16 weeks after laying. In contrast, most eggs from unmated females took longer to hatch (21–23 weeks), and most offspring were female. It appears that all C. hookeri females are capable of parthenogenetic reproduction, and thus could benefit from the numerical advantage this yields. Nevertheless, our phylogeographic evidence shows that the majority of all‐female populations over a wide geographic area originate from a single loss of sexual reproduction.  相似文献   

18.
Allozyme studies of the cladoceran Daphnia pulex have shown that most populations reproduce by obligate parthenogenesis, although some cyclically parthenogenetic populations remain throughout the southern portion of its range. Clonal diversity within the obligate parthenogens is extremely high and has been attributed to the polyphyletic origin of asexuality. Specifically, it has been proposed that the clonal diversity in the obligate parthenogens was generated via the spread of a sex-limited meiosis suppressor through populations of a cyclically parthenogenetic ancestor. In this study, analysis of polymorphism of restriction-endonuclease sites in the mitochondrial genome, in conjunction with allozyme analysis, was used to determine whether obligate parthenogenesis has a monophyletic or polyphyletic origin in D. pulex. An allozyme survey of 77 populations from Ontario and Michigan was first conducted to determine breeding systems and levels of clonal diversity (Hebert et al., 1989). Mitochondrial-DNA variation was then surveyed in one isolate of each clone from each population reproducing by obligate parthenogenesis and in 2–4 isolates from each population reproducing by cyclic parthenogenesis. Seventeen restriction enzymes were used in this analysis. Thirty-five mitochondrial genotypes were found among the 36 obligate clones (as identified by allozyme analysis), while 17 mitochondrial genotypes were identified among 40 cyclic isolates from 14 populations. Five mitochondrial genotypes were found in both groups. Parsimony and phenetic-clustering methods were used to construct trees showing the genetic relationship among mitochondrial genotypes. The results clearly show that obligate parthenogenesis had a polyphyletic origin in this species. The close relationship between cyclic and obligate parthenogens in the Great Lakes region suggests that many obligate clones have recently been derived from cyclic populations and that the generation of clones is still occurring in this area. Patterns of clonal diversity based on the joint consideration of allozyme and mitochondrial-DNA data are discussed.  相似文献   

19.
Some individuals of the cladoceran crustacean, Daphnia pulex, reproduce by cyclic parthenogenesis, while others are obligate parthenogens. Cyclic parthenogenesis is the primitive breeding system; the transition to obligate parthenogenesis has been linked to sex-limited meiosis-suppression. Detailed study of patterns of breeding-system distribution and clonal diversity is justified because D. pulex is the first species in which the loss of sex has been related to this mechanism. The present study investigated the genotypic characteristics of 10 D. pulex populations from each of 22 sites in the Great Lakes watershed. This analysis revealed that populations reproducing by cyclic parthenogenesis were uncommon and restricted to southern sites. Most populations reproduced by obligate parthenogenesis, with the electrophoretic survey revealing an average of three clones per pond and 145 unique clones over the watershed. A combinatorial analysis was used to examine the relationships between clone discovery in the asexual populations and both sample size and genetic-sampling intensity. This analysis showed that the few clones found in individual ponds were readily discriminated, while diversity on a regional scale was underestimated. These methods provide a quantitative basis for assessing the level of clonal diversity in asexual populations and in asexually transmitted segments of the genome.  相似文献   

20.
Because of the twofold cost of sex, genes conferring asexual reproduction are expected to spread rapidly in sexual populations. However, in reality this simple prediction is often confounded by several complications observed in natural systems. Motivated by recent findings in the Cape honey bee and in the parasitoid wasp Lysiphlebus fabarum, we explore through mathematical models the spread of a recessive, parthenogenesis inducing allele in a haplodiploid population. The focus of these models is on the intricate interactions between the mode of parthenogenesis induction through automixis and complementary sex determination (CSD) systems. These interactions may result in asexual production of diploid male offspring and the spread of the parthenogenesis-inducing allele through these males. We demonstrate that if parthenogenetic females produce a substantial proportion of male offspring, this may prevent the parthenogenesis-inducing allele from spreading. However, this effect is weakened if these diploid males are at least partially fertile. We also predict a degradation of multilocus CSD systems during the spread of parthenogenesis, following which only a single polymorphic CSD locus is maintained. Finally, based on empirical parameter estimates from L. fabarum we predict that male production in parthenogens is unlikely to prevent the eventual loss of sexual reproduction in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号