首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously showed that 3'-deoxy-cyclic ADP-carbocyclic-ribose (3'-deoxy-cADPcR, 4) is a stable and highly potent analogue of cyclic ADP-ribose (cADPR, 1), a Ca(2+)-mobilizing second messenger. From these results, we designed and synthesized other 3'-modified analogues of cADPcR having a substituent at the 8-position and found that this modification at the 8-position made them partial agonists. Among these compounds, 8-NH(2)-3'-deoxy-cADPcR (10) was identified as a potent partial agonist with an EC(50) value of 17 nM.  相似文献   

2.
We previously showed that 3"-deoxy-cyclic ADP-carbocyclic-ribose (3"-deoxy-cADPcR, 3) is a stable and highly potent analogue of cyclic ADP-ribose (cADPR, 1), a Ca2+ -mobilizing second messenger. From these results, we newly designed another 3"-modified analogues of cADPcR and identified the N1-"xylo"-type carbocyclic analogue, i.e., cADPcX (4), as one of the most potent cADPR-related compounds reported so far.  相似文献   

3.
We designed novel Ca(2+)-mobilizing purine nucleotides, cyclic ADP-carbocyclicribose 4, and its inosine congener 5, and C-glycosidic adenophostin A 6. In the synthesis of cADPR analogs, the intramolecular condensation to form the pyrophosphate linkage should be the key step. We developed an efficient method for forming such an intramolecular pyrophosphate linkage by the activation of the phenylthiophosphate group with I2 or AgNO3. Using this method, we achieved to synthesize the target compounds 4 and 5. The synthesis of C-glycosidic analog 6 of adenophostin A was achieved using a temporary silicon-tethered radical coupling reaction for constructing (3'alpha, 1" alpha)-C-glycosidic structure as the key step.  相似文献   

4.
Incubation of NAD+ with extracts from sea urchin eggs resulted in production of a metabolite which could mobilize intracellular Ca2+ stores of the eggs. In this study we present structural evidence indicating that the metabolite is a cyclized ADP-ribose having an N-glycosyl linkage between the anomeric carbon of the terminal ribose unit and the N6-amino group of the adenine moiety. In view of this structure we propose cyclic ADP-ribose as the common name for the metabolite. The purification procedure for the metabolite consisted of deproteinizing the incubated egg extracts and sequentially chromatographing the extracts through three different high pressure liquid chromatography (HPLC) columns. The homogeneity of the purified metabolite was further verified by HPLC on a Partisil 5 SAX column. Using radioactive precursor NAD+ with label at various positions it was demonstrated that the metabolite was indeed derived from NAD+ and that the adenine ring as well as the adenylate alpha-phosphate were retained in the metabolite whereas the nicotinamide group was removed. This was confirmed by 1H NMR and two-dimensional COSY experiments, which also allowed the identification of all 12 protons on the two ribosyl units as well as the two protons on the adenine ring. From the chemical shifts of the two anomeric protons it was concluded that the C-1 carbons of both ribosyl units were still bonded to nitrogen. The positive and negative ion fast atom bombardment mass spectra showed (M + Na)+, (M - H + 2Na)+, (M - H)-, and (M - 2H + Na)- peaks at m/z 564, 586, 540, and 562, respectively. Exact mass measurements indicated a molecular weight of 540.0526 for (M - H)-. This together with the constraints imposed by the results from NMR, radioactive labeling, and total phosphate determination uniquely specified a molecular composition of C15H21N5O13P2. Analysis by 1H NMR and mass spectroscopy of the only major breakdown product of the metabolite after prolonged incubation at room temperature established that it was ADP-ribose, thus providing strong support for the cyclic structure.  相似文献   

5.
Several cyclic ADP-carbocyclic-ribose analogs 3-10 modified in the N-1-carbocyclic-ribose moiety were synthesized. Their Ca2+-releasing activity was estimated in sea urchin eggs to show that the 3"-deoxy analog 6 shows 5 times more potent activity than cADPcR, but the 2",3"-didieoxy-2",3"-unsunsaturated analog 3 has very weak activity. We also calculated their stable conformation and found that 3 and 6 were significantly different in their stable conformation.  相似文献   

6.
The synthesis and biological evaluation as potential urotensin-II receptor antagonists of a series of 5-arylfuran-2-carboxamide derivatives 1, bearing a 4-(3-chloro-4-(piperidin-4-yloxy)benzyl)piperazin-1-yl group, are described. The results of a systematic SAR investigation of furan-2-carboxamides with C-5 aryl groups possessing a variety of aryl ring substituents led to identification of the 3,4-difluorophenyl analog 1y as a highly potent UT antagonist with an IC50 value of 6?nM. In addition, this substance was found to display high metabolic stability, and low hERG inhibition and cytotoxicity, and to have an acceptable PK profile.  相似文献   

7.
In electrically non-excitable cells, one major source of Ca2+ influx is through the store-operated (or Ca2+ release-activated Ca2+) channel by which the process of emptying the intracellular Ca2+ stores results in the activation of Ca2+ channels in the plasma membrane. Using both whole-cell patch-clamp and Ca2+ imaging technique, we describe the electrophysiology mechanism underlying formyl-peptide receptor like 1 (FPRL1) linked to intracellular Ca2+ mobilization. The FPRL1 agonists induced Ca2+ release from the endoplasmic reticulum and subsequently evoked ICRAC-like currents displaying fast inactivation in K562 erythroleukemia cells which expresses FPRL1, but had almost no effect in K562 cells treated with FPRL1 RNA-interference and HEK293 cells which showed no FPRL1 expression. The currents were impaired after either complete store depletion by the sarco/endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin, or after inhibition of PLC by U73122. Our results present the first evidence that FPRL1 is a potent mediator in the activation of CRAC channels.  相似文献   

8.
A series of new uracil nucleotide analogs (monophosphates, triphosphates, and phosphonates) was synthesized, in which the ribose moiety was replaced by acyclic chains, including branched or linear alkyl or dialkylether linkers. 1-ω-Bromoalkyluracil derivatives (2) were converted to the corresponding alcohols by treatment with sodium hydroxide and subsequently phosphorylated using phosphorus oxychloride followed by hydrolysis to yield the monophosphates, or by coupling with diphosphate to form the triphosphates. Reaction of 2 with triethyl phosphite followed by deprotection with trimethylsilyl bromide led to the ω-phosphonylalkyluracil derivatives. These products could be further phosphorylated by converting them into their imidazolides and subsequent treatment with diphosphate yielding the corresponding UTP analogs. Nucleoside analogs with an oxygen atom in the 2′-position, which are more similar to the natural ribosides, were synthesized from silylated uracil and trimethylsilyl iodide-treated 1,3-dioxolane, or 1,3-dioxane, respectively, and subsequently phosphorylated by standard procedures. The nucleotide analogs were investigated in a functional assay at NG108-15 cells, a neuroblastoma × glioma hybrid cell line which expresses the UTP- and ATP-activated nucleotide receptor subtype P2Y2. The acyclic nucleotide analogs were generally weaker ligands than UTP, and—in contrast to UTP—they were antagonistic. The most potent compound was diphosphoric 5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)pentylphosphonic anhydride (5c) with an IC50 value of 92 μM showing that the replacement of the α-phosphate by phosphonate, which leads to enhanced stability, was well tolerated.  相似文献   

9.
In order to develop orally active CCR5 antagonists, 1-propyl- or 1-isobutyl-1-benzazepine derivatives containing a sulfoxide moiety have been designed, synthesized, and evaluated for their biological activities. Sulfoxide compounds containing a 2-pyridyl group were first investigated, which led to discovering that the presence of a methylene group between the sulfoxide moiety and 2-pyridyl group was necessary for increased inhibitory activity in a binding assay. After further chemical modification, it was found that replacement of the pyridyl group with an imidazolyl or 1,2,4-triazolyl group enhanced activity in the binding assay and that S-sulfoxide compounds were more active than R-isomers. Particularly, compounds (S)-4r, (S)-4s, and (S)-4w exhibited highly potent CCR5 antagonistic activities (IC50=1.9, 1.7, 1.6 nM, respectively) and inhibitory effects (IC50=1.0, 2.8, 7.7 nM, respectively) in the HIV-1 envelope mediated membrane fusion assay, together with good pharmacokinetic properties in rats. In addition, we established the synthesis of (S)-4r and (S)-4w by asymmetric oxidation with titanium-(S)-(-)-1,1'-bi-2-naphthol complex.  相似文献   

10.
Serotonin (5-hydroxytryptamine, 5-HT) is an important signaling molecule in the central nervous system (CNS) and in non-neuronal tissues and organs. Serotonin mediates a positive chronotropic and inotropic response through 5-HT4 receptors in the atrium and ventricle of the heart. Recent investigations have revealed increased expression of the 5-HT4(b) isoform in cardiomyocytes of chronic arrhythmic and failing hearts, and that the use of 5-HT4 receptor antagonists may be beneficial for treating these conditions. The 5-HT4 receptor possesses a transmembrane (TM) binding site important for ligand affinity and recognition, as well as a capacity to accommodate bulky ligands. A new series of peripherally-acting 5-HT4 receptor antagonists were prepared by combining the acidic biphenyl group from the class of angiotensin II receptor blockers (ARBs) with the SB207266 (piboserod) scaffold. The new compounds were pharmacologically evaluated and carboxylic acid 21 was identified as a potent and promising 5-HT4 receptor antagonist with moderate affinity for the AT1 receptor. The permeability of carboxylic acid 21 in a Caco-2 assay was low and the corresponding prodrug esters 23af were therefore prepared. The pharmacokinetics of methyl ester 20 and n-butyl ester 23c were evaluated in a rat model, revealing incomplete metabolism to carboxylic acid 21. However, methyl ester 20 is a potent 5-HT4 receptor antagonist with binding affinities in the low picomolar range. Methyl ester 20 has promising oral bioavailability and pharmacokinetics and may target 5-HT4 receptors in both CNS and peripheral organs.  相似文献   

11.
The synthesis and optimization of a cyclopentane-based hNK1 antagonist scaffold 3, having four chiral centers, will be discussed in the context of its enhanced water solubility properties relative to the marketed anti-emetic hNK1 antagonist EMEND (Aprepitant). Sub-nanomolar hNK1 binding was achieved and oral activity comparable to Aprepitant in two in vivo models will be described.  相似文献   

12.
A metabolite with intracellular Ca2+-mobilizing activity can be produced by incubating NAD+ with extracts from sea urchin eggs. Structural determination indicates it is a cyclized ADP-ribose, and we have proposed cyclic ADP-ribose as a common name for it. In this study, we addressed the question of how widespread is the occurrence of the synthesizing enzyme for this NAD+ metabolite. Incubation of NAD+ with extracts prepared from rabbit liver resulted in a progressive increase in Ca2+ release activity which was monitored by a biological assay using sea urchin egg homogenates. The half-maximal concentration of NAD+ required was about 1 mM. The reaction was stereospecific, and the extracts were sensitive to protease treatment and heat, as well as alkaline pH of about 9.0, indicating the reaction was catalyzed by a protein. The active metabolite was purified by an identical high pressure liquid chromatography (HPLC) procedure used for cyclic ADP-ribose. Functionally, the liver metabolite behaved similarly to cyclic ADP-ribose. Both discharged the same Ca2+ stores in sea urchin egg homogenates with the same half-maximal effective concentrations. Both were active in inducing the cortical exocytosis reaction when microinjected into sea urchin eggs. That they are indeed identical compounds was demonstrated by structural analyses showing that they coeluted on a Partisil 5 SAX HPLC column and had identical 1H NMR spectra. Mass spectrometry indicated a mass of 540.0529 for the molecular ion (M - H)- of the liver metabolite, which was identical to within 0.74 ppm of cyclic ADP-ribose. Furthermore, their collisional activated decomposition mass spectra were virtually superimposable. Extracts from rabbit brain, heart, spleen, and kidney were all active in producing similar Ca2+-releasing metabolites which could be isolated by the same HPLC procedure and had similar elution times on both the mixed mode and the Partisil 5 SAX column. It is therefore apparent that the synthesizing enzyme for cyclic ADP-ribose is a very common enzyme.  相似文献   

13.
Truncated phosphonated C-1'-branched N,O-nucleosides have been synthesized in good yields by 1,3-dipolar cycloaddition methodology, starting from N-methyl-C-(diethoxyphosphoryl)nitrone 7. Preliminary biological assays show that β-anomers are able to inhibit HIV in vitro infection at concentrations in the micromolar range. Higher SI values with respect to AZT indicated that the compounds were endowed with low cytotoxicity.  相似文献   

14.
Novel NPY-Y5 antagonist FR73966 was discovered by screening of our in-house chemical library. The analogues were prepared by application of parallel synthesis techniques. Some of the resulting 2-oxobenzothiazolin-3-acetic acid derivatives exhibited nanomolar binding affinity for human NPY-Y5 receptors.  相似文献   

15.
16.
The Ca2+-mobilizing actions of ADP, ATP and epidermal growth factor (EGF) and their interaction with glucagon were studied in a perfused liver system incorporating a Ca2+-selective electrode. ADP (1-100 microM), ATP (1-100 microM) and EGF (10-50 nM) all induced a net efflux, followed by a net uptake of Ca2+ in the intact liver. The co-administration of glucagon (or of cyclic AMP) with these agents resulted in a synergistic potentiation of the Ca2+ uptake response in a way which resembles the synergism observed when glucagon is administered with phenylephrine, vasopressin or angiotensin [Altin & Bygrave (1986) Biochem J. 238, 653-661]. The inability of diltiazem, verapamil and nifedipine to inhibit the Ca2+-influx response suggests that the stimulation of Ca2+ influx does not occur through voltage-sensitive Ca2+ channels. By contrast, the synergistic effects of glucagon in the stimulation of Ca2+ influx are inhibited by 10 mM-neomycin, and a lowering of the extracellular pH to 6.8. Simultaneous measurements of perfusate Ca2+ and pH changes suggest that the Ca2+ influx response is not mediated by a Ca2+/H+ exchange. The inability of neomycin and low extracellular pH to inhibit the refilling of the hormone-sensitive pool of Ca2+, after the administration of Ca2+-mobilizing agents alone, provides evidence for the existence in liver of at least two Ca2+-influx pathways, or mechanisms for regulating Ca2+ influx.  相似文献   

17.
The recognition mode of adenophostin A at the D-myo-inositol 1,4, 5-trisphosphate [Ins(1,4,5)P(3)] receptor was investigated. Comparison of conformations of Ins(1,4,5)P(3) and adenophostin A by using the combination of NMR and molecular mechanics (MM) calculations demonstrated that adenophostin A adopted a moderately extended conformation regarding the distance between the 2'-phosphoryl group and the 3' ',4' '-bisphosphate motif, as suggested previously [Wilcox, R. A. et al. (1995) Mol. Pharmacol. 47, 1204-1211]. Based on the nuclear Overhauser effect (NOE) observed between 3'-H and 1' '-H and on MM calculations, the molecular shape of adenophostin A proved to be an extended form at least in solution, in contrast to Wilcox's compactly folded, preliminary hairpin model. GlcdR(2,3',4')P(3), an adenophostin analogue without adenine moiety, was found to be less potent than adenophostin A and almost equipotent to Ins(1,4,5)P(3). We propose the possibility that (i) the optimal spatial arrangement of the three phosphoryl groups and/or (ii) the interaction of the adenine moiety of adenophostin A with the putative binding site, if it exists in the vicinity of the Ins(1,4,5)P(3)-binding site, might account for the exceptional potency of adenophostin A.  相似文献   

18.
19.
(1S,2R)-1-Phenyl-2-[(S)-1-aminopropyl]-N,N-diethylcyclopropanecarboxamide (PPDC, 4a), which is a conformationally restricted analogue of antidepressant milnacipran [(±)-1], is a new class of potent noncompetitive NMDA receptor antagonists. A series of PPDC analogues modified at the 1-phenyl moiety, that is, the analogue 6 lacking 1-phenyl group, the 1-(fluorophenyl) analogues 4b,c,d, the 1-(methylphenyl) analogues 4e–g and the 1-(naphthyl) analogues 4h,i were synthesized. Analogue 6, lacking the 1-phenyl group, was completely inactive showing that the aromatic moiety is essential for the NMDA receptor binding. Among the analogues synthesized, the 1-o-fluorophenyl and 1-m-fluorophenyl analogues 4b and 4c showed potent affinities for the NMDA receptor [IC50=0.16±0.001 μM (4b), 0.15±0.02 μM (4c)], which were improved to some extent compared to those of the parent compound PPDC (IC50=0.20±0.02 μM). On the other hand, compounds 4b and 4c showed none of the 5-HT-uptake inhibitory effect, while PPDC turned out to be a weak 5-HT-uptake inhibitor.  相似文献   

20.
Design, synthesis and structure-activity relationships for 3,4-dihydro-2(1H)-quinazolinone derivatives with the inhibitory activities of the Na(+)/Ca(2+) exchanger are discussed. These studies based on lead compound 1a lead to the discovery of a structurally novel and highly potent inhibitor against the Na(+)/Ca(2+) exchanger 4f (SM-15811), which directly inhibited the Na(+)-dependent Ca(2+) influx via the Na(+)/Ca(2+) exchanger in cardiomyocytes with a high potency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号