首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pregnenolone and dehydroepiandrosterone (DHEA) are sex hormone precursors and neuroprotective steroids. Effects of pregnenolone and DHEA may be in part mediated by their conversion to testosterone and by the consecutive conversion of testosterone to estradiol by the enzyme aromatase. This enzyme is induced in reactive astrocytes after different forms of neurodegenerative lesions and the resultant local production of estradiol in the brain has been shown to be neuroprotective. The participation of aromatase in the neuroprotective effect of pregnenolone and DHEA has been assessed in this study. The protective effect of different doses (12.5, 25, 50, and 100 mg/kg) of pregnenolone or DHEA, against systemic kainic acid (7 mg/kg b.w.), was assessed on hippocampal hilar neurons in gonadectomized Wistar male rats. To determine whether the neuroprotective effect of pregnenolone and DHEA was dependent on their conversion to estradiol, the aromatase inhibitor fadrozole (4.16 mg/ml) was administered using subcutaneous osmotic minipumps. The number of Nissl-stained neurons in the hilus of the dentate gyrus of the hippocampal formation was estimated by the optical disector method. The administration of kainic acid resulted in a significant decrease in the number of hilar neurons compared to rats injected with vehicles. Pregnenolone and DHEA showed a dose-dependent protective effect of hilar neurons against kainic acid. The administration of the aromatase inhibitor fadrozole blocked the neuroprotective effect of pregnenolone and DHEA. These findings suggest that estradiol formation by aromatase mediates neuroprotective effects of pregnenolone and DHEA against excitotoxic-induced neuronal death in the hippocampus.  相似文献   

2.
We examined whether resveratrol increases insulin-like growth factor-I (IGF-I) production in the hippocampus by stimulating sensory neurons in the gastrointestinal tract, thereby improving cognitive function in mice. Resveratrol increased calcitonin gene-related peptide (CGRP) release from dorsal root ganglion (DRG) neurons isolated from wild-type (WT) mice. Increases in tissue levels of CGRP, IGF-I, and IGF-I mRNA and immunohistochemical expression of IGF-I were observed in the hippocampus at 3 weeks after oral administration of resveratrol in WT mice. Significant enhancement of angiogenesis and neurogenesis was observed in the dentate gyrus of the hippocampus in these animals (P<.01). Improvement of spatial learning in the Morris water maze was observed in WT mice after administration of resveratrol. None of the effects of resveratrol observed in WT mice were seen after resveratrol administration in CGRP-knockout (CGRP−/−) mice. Although red wine containing 20 mg/L of resveratrol produced effects similar to those of resveratrol administrationl in WT mice, neither red wine containing 3.1 mg/L of resveratrol nor white wine exhibited such effects in WT mice. Resveratrol was undetectable in the hippocampus of WT mice administered resveratrol and red wine containing 20 mg/L of resveratrol. These observations strongly suggest that resveratrol increases hippocampal IGF-I production via sensory neuron stimulation in the gastrointestinal tract, thereby improving cognitive function in mice.  相似文献   

3.
Spine density in the hippocampus changes during the estrus cycle and is dependent on the activity of local aromatase, the final enzyme in estrogen synthesis. In view of the abundant gonadotropin-releasing hormone receptor (GnRH-R) messenger RNA expression in the hippocampus and the direct effect of GnRH on estradiol (E2) synthesis in gonadal cells, we asked whether GnRH serves as a regulator of hippocampal E2 synthesis. In hippocampal cultures, E2 synthesis, spine synapse density, and immunoreactivity of spinophilin, a reliable spine marker, are consistently up-regulated in a dose-dependent manner at low doses of GnRH but decrease at higher doses. GnRH is ineffective in the presence of GnRH antagonists or aromatase inhibitors. Conversely, GnRH-R expression increases after inhibition of hippocampal aromatase. As we found estrus cyclicity of spine density in the hippocampus but not in the neocortex and GnRH-R expression to be fivefold higher in the hippocampus compared with the neocortex, our data strongly suggest that estrus cycle-dependent synaptogenesis in the female hippocampus results from cyclic release of GnRH.  相似文献   

4.
5.
The expression of aromatase, the enzyme that catalyzes the biosynthesis of estrogens from precursor androgens, is increased in the brain after injury, suggesting that aromatase may be involved in neuroprotection. In the present study, the effect of inactivating aromatase has been assessed in a model of neurodegeneration induced by the systemic administration of neurotoxins. Domoic acid, at a dose that is not neurotoxic in intact male mice, induced significant neuronal loss in the hilus of the hippocampal formation of mice with reduced levels of aromatase substrates as a result of gonadectomy. Furthermore, the aromatase substrate testosterone, as well as its metabolite estradiol, the product of aromatase, were able to protect hilar neurons from domoic acid. In contrast, dihydrotestosterone, the 5 alpha-reduced metabolite of testosterone and a nonaromatizable androgen, was not. These findings suggest that aromatization of testosterone to estradiol may be involved in the neuroprotective action of testosterone in this experimental model. In addition, aromatase knock-out mice showed significant neuronal loss after injection of a low dose of domoic acid, while control littermates did not, indicating that aromatase deficiency increases the vulnerability of hilar neurons to neurotoxic degeneration. The effect of aromatase on neuroprotection was also tested in male rats treated systemically with the specific aromatase inhibitor fadrozole and injected with kainic acid, a well characterized neurotoxin for hilar neurons in the rat. Fadrozole enhanced the neurodegenerative effect of kainic acid in intact male rats and this effect was counterbalanced by the administration of estradiol. Furthermore, the neuroprotective effect of testosterone against kainic acid in castrated male rats was blocked by fadrozole. These findings suggest that neuroprotection by aromatase is due to the formation of estradiol from its precursor testosterone. Finally, a role for local cerebral aromatase in neuroprotection is indicated by the fact that intracerebral administration of fadrozole enhanced kainic acid induced neurodegeneration in the hippocampus of intact male rats. These findings indicate that aromatase deficiency decreases the threshold for neurodegeneration and that local cerebral aromatase is neuroprotective. Brain aromatase may therefore represent a new target for therapeutic approaches to neurodegenerative diseases.  相似文献   

6.
7.
Diabetes mellitus (DM) is associated with increased risk of impaired cognitive function. Diabetic neuropathy is one of the most common and important complications of DM. Estrogens prevent neuronal loss in experimental models of neurodegeneration and accelerate nerve regeneration. Aromatase catalyzes the conversion of androgens to estrogens and expressed in a variety of tissues including neurons. Although insulin is known to regulate the activity of aromatase there is no study about the effects of diabetes on this enzyme. Present study was designed to investigate the effects of experimental diabetes on aromatase expression in nervous system. Gender-based differences were also investigated. Rats were injected with streptozotocin to induce diabetes. At the end of 4 and 12 weeks sciatic nerve and hippocampus homogenates were prepared and evaluated for aromatase proteins. Aromatase expressions in sciatic nerves of both genders were decreased in 4 weeks of diabetes, but in 12 weeks the enzyme levels were increased in females and reached to control levels in male animals. Aromatase levels were not altered in hippocampus at 4 weeks but increased at 12 weeks in female diabetic rats. No significant differences were observed at enzyme levels of hippocampus in male diabetic rats. Insulin therapy prevented all diabetes-induced changes. In conclusion, these results indicated for the first time that, DM altered the expression of aromatase both in central and peripheral nervous systems. Peripheral nervous system is more vulnerable to damage than central nervous system in diabetes. These effects of diabetes differ with gender and compensatory neuroprotective mechanisms are more efficient in female rats.  相似文献   

8.
Hippocampal neurons are capable of synthesizing estradiol de novo. Estradiol synthesis can be suppressed by aromatase inhibitors and by knock-down of steroid acute regulatory protein (StAR), whereas elevated levels of substrates of steroidogenesis enhance estradiol synthesis. In rat hippocampal cultures, the expression of estrogen receptors (ERs) and synaptic proteins, as well as synapse density, correlated positively with aromatase activity, regardless of whether the cultures originated from males or females. All effects induced by the inhibition of aromatase activity were rescued by application of estradiol to the cultures. In vivo, however, systemic application of letrozole, an aromatase inhibitor, induced synapse loss in female rats, but not in males. Furthermore, in the female hippocampus, density of spines and spine synapses varied with the estrus cycle. In addressing this in vivo-in vitro discrepancy, we found that gonadotropin-releasing hormone (GnRH) regulated estradiol synthesis via an aromatase-mediated mechanism and consistently regulated spine synapse density and the expression of synaptic proteins. Along these lines, GnRH receptor density was higher in the hippocampus than in the cortex and hypothalamus, and estrus cyclicity of spinogenesis was found in the hippocampus, but not in the cortex. Since GnRH receptor expression also varies with the estrus cycle, the sexual dimorphism in estrogen-regulated spine synapse density in the hippocampus very likely results from differences in the GnRH responsiveness of the male and the female hippocampus. This article is part of a Special Issue entitled 'Neurosteroids'.  相似文献   

9.
Inhibition of ovarian aromatase by prolactin in vivo   总被引:1,自引:0,他引:1  
Ovarian aromatase activity was inhibited by prolactin treatment in both cycling rats and immature gonadotropin-primed animals. Cycling rats were injected s.c. with prolactin (4 mg/kg BW) beginning on diestrus 1. Aromatase activity in the largest follicles on diestrus 2 and on proestrus was reduced relative to controls. None of the prolactin-treated animals had ovulated when examined on the expected estrus morning. In other experiments, the immature pregnant mare's serum gonadotropin (PMSG)-primed rat was used as a model for the cycling rat. Microsomal aromatase activity but not the activity of the C17-21 lyase was reduced in ovaries of animals injected with prolactin [6 IU (200 micrograms)/rat] 48 h after PMSG administration and sacrificed 4 h later. Furthermore, aromatase activity was significantly increased when endogenous prolactin was inhibited by bromocryptine (CB-154). The effect of LH treatment, on the other hand, was to increase both aromatase and lyase activities. However, prolactin pretreatment did not consistently prevent the LH-induced increase in aromatase activity. The results suggest that inhibition of ovulation by prolactin is mediated, at least in part, by direct inhibition of aromatase activity.  相似文献   

10.
To investigate the effect of three red wines (RWs) from different growing areas and made from different grapes on asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, in young and senescent human endothelial cells (ECs). All RWs decreased ADMA levels, but 2-fold concentration of German RW was necessary to reach the same effect on ADMA compared to Italian RW and French RW without affecting the cell viability and morphology. The ADMA-lowering effect of RW was increased in senescent compared to young cells, accompanied by enhanced activity of the metabolizing enzyme: dimethylarginine dimethylaminohydrolase (DDAH) II, whereas the same amount in the upregulated protein expression of DDAH II and the downregulated protein expression of the synthesizing enzyme: protein arginine methyltransferase 1 was revealed. These effects were associated with decreased 8-iso-prostaglandin F and peroxynitrite formation, enhanced protein expression of NAD+-dependent class III histone deacetylase sirtuin (SIRT) 1, and downregulated protein expression of histone senescence factor p53. Blockade of SIRT1 activity abolished the effect of red wine on ADMA. These data are the first demonstration that RW by activating SIRT1 impairs synthesis and increases metabolism of ADMA. This effect of RW is accentuated in senescent cells probably due to enhanced DDAH activity.  相似文献   

11.
Indirubin and its derivatives have been reported to exhibit anti-cancer and anti-inflammatory activities. Recently, some of its derived analogs have been shown to have neuroprotective potential. Endoplasmic reticulum (ER) stress has been demonstrated to contribute to the pathogenesis of various neurodegenerative diseases, whereas the effects of indirubin derivatives on ER stress-induced cell death have not been addressed. In the present study, a series of 44 derivatives of indirubin was prepared to search for a novel class of neuroprotective agents against ER stress-induced neuronal death. The MTT reduction assay indicated that tunicamycin (TM), an inducer of ER stress, significantly decreased the viability of hippocampal neuronal HT22 cells. Among the compounds tested, eight showed significant inhibitory activity against TM-induced cell death. Western blot analysis showed that application of these analogs to the cells simultaneously with TM reduced the TM-induced expression of CHOP, an established mediator of ER stress. Our results suggest that the preventive effect of these indirubin derivatives against ER stress-induced neuronal death may be due, at least in part, to attenuation of the CHOP-dependent signaling system.  相似文献   

12.
It is becoming increasingly evident that ingested products, such as wine, may have profound effects on the therapeutic efficacy of certain drugs. As various xeno- and endobiotics are organic cations, the purpose of our study was to examine the modulation of organic cations intestinal apical uptake by red (RW) and white wine (WW). For this purpose, we used RW, WW, the same alcohol-free wines, phenolic compounds and ethanol. The uptake of the organic cation 1-methyl-4-phenylpyridinium (MPP+) was evaluated in Caco-2 cells, an intestinal epithelial cell model. RW and alcohol-free RW increased 3H-MPP+ apical uptake, although the effect of alcohol-free RW was less pronounced. On the other hand, WW and alcohol-free WW decreased the organic cation uptake but the effect of alcohol-free WW was more pronounced. Our results show that the total content in phenolic compounds was 7 times higher, and the dialysis index was about 4 times higher in RW compared to WW. Ethanol, in the same concentration found in wine, caused a significant decrease in 3H-MPP+ apical uptake. The solution containing high molecular weight compounds from dialyzed RW increased 3H-MPP+ apical uptake. In conclusion, the results suggest that RW may increase and WW may reduce the intestinal absorption of organic cations present in the diet, such as drugs or vitamins (e.g. thiamine and riboflavin). As ethanol alone decreased the uptake of MPP+, and alcohol-free RW and WW had a lower potency than intact wine upon the transport, the presence of ethanol is probably important for the solubilisation/bioavailability of the components endowed with the transport modulating activity.  相似文献   

13.
Protective properties of moderate wine consumption against cancers, cardiovascular, metabolic and degenerative diseases have been reported in various clinical studies. Here, we analysed the effect of red wine (RW) and white wine (WW) on myelination using an in vitro embryonic co-culture mouse model. The total amount of myelin was found to be significantly increased after RW and WW treatment, while only RW significantly increased the number of internodes. Both types of wine increased rat Schwann cell- (rSC) expression of the NAD+-dependent deacetylase sirtuin-two-homolog 2 (Sirt2), a protein known to be involved in myelination.Detailed chemical analysis of RW revealed a broad spectrum of anthocyanins, piceids, and phenolics, including resveratrol (RSV). In our assay system RSV in low concentrations induced myelination. Furthermore RSV raised intracellular glutathione concentrations in rSCs and in co-cultures and therefore augmented antioxidant capacity.We conclude that wine promotes myelination in a rodent in vitro model by controlling intracellular metabolism and SC plasticity. During this process, RSV exhibits protective properties; however, the fostering effect on myelinaton during exposure to wine appears to be a complex interaction of various compounds.  相似文献   

14.
Discovery of estrogen receptors (ER) in the central nervous system and the ability of estrogens to modulate neural circuitry and act as neurotrophic factors, suggest a therapeutic role of this steroid. To gain better understanding of the specificity and cellular mechanisms involved in estrogen-mediated neuroprotection, a mouse hippocampal neuronal cell line (HT22) was evaluated. Earlier reports indicated this cell line was devoid of ERs. Contrary to these findings, characterization of HT22 cells using RT-PCR, immunoblot, immunocytochemical, and radioligand binding techniques revealed endogenous expression of ER. The predominant subtype appeared to be ERalpha with functional activity confirmed using an ERE-tk-luciferase assay. The ability of an ER antagonist, ICI-182780, to block the neuroprotective effects of estrogens confirmed ER was involved mechanistically in neuroprotection. In conclusion, HT22 cells express functional ERalpha or a closely related ER enabling this cell line to be used to profile estrogens for neuroprotective properties acting via an ER-dependent mechanism.  相似文献   

15.
Stansin 6 a tetrasaccharide resin glycoside isolated from the root of Ipomoea stans was evaluated as anticonvulsant and neuroprotective in kainic acid-induced seizures of rats. Intraperitoneal injection of kainic acid (10 mg/kg) induced typical behavioral seizures such as wet dog shakes and limbic seizures, and histopathological changes in the hippocampus (degeneration and loss of pyramidal cells in CA1 to CA4 areas). Stansin 6 (10–80 mg/kg) had no effect on the behavior of rats and did not induce hippocampal damage. Pretreatment with stansin 6 inhibited convulsions in rats from kainic acid-induced seizures, reduced the degeneration pattern in the CA3 region, decreased astrocytic reactivity, and reduced the expression of IL-1β and TNF-α induced by kainic acid. These results suggest that stansin 6 possesses neuroprotective and anticonvulsant activities.  相似文献   

16.
In order to study the regulation of aromatase activity by androgens in cultured fibroblasts derived from genital skin of normal prepubertal boys, aromatase activity was evaluated in the presence of various concentrations of non-aromatizable androgen DHT(5 alpha-dihydrotestosterone). The estrogen formation was assayed by an enzymatic method, after 24 h incubation of the cells with 10(-6) M androstenedione. Aromatase activity was stimulated 3- to 20-fold by DHT at concentrations 10(-10) and 10(-9) M. It was necessary to preincubate the cells with DHT for 48 h in order to bring about this stimulation. The stimulatory effect was not significant after preincubation for only 24 h. The basal value of aromatase activity was in the range of 8 +/- 1.2 pmol/mg protein/day (mean +/- SEM), while the maximal stimulation 1043 +/- 46 pmol/mg protein/day was obtained at the concentration of 10(-8) M DHT. This stimulation was partially blocked with cyproterone acetate at level of 20 +/- 4 pmol/mg protein/day; stimulation of aromatase activity by DHT could thus be mediated by the androgen receptor. This stimulatory effect was prevented by incubation of the cells with cycloheximide or actinomycin D, suggesting that DHT acts to increase aromatase activity in cultured fibroblasts by inducing the synthesis of new proteinaceous material. In vitro regulation of aromatase activity by androgens could contribute to a new approach to the extraglandular formation of estrogen.  相似文献   

17.
Rats were kindled through nonmagnetic electrodes stereotaxically implanted into the medial septum. Concentrations of cyclic AMP and cyclic GMP were measured by radioimmunoassay in seven brain regions after microwave fixation during the development and expression of kindled seizures. Hippocampal concentrations were similar to untreated controls (cyclic GMP level in the left and right hippocampus, 0.66 +/- 0.04 and 0.68 +/- 0.07 pmol/mg of protein, respectively; cyclic AMP, 9.4 +/- 0.9 and 9.6 +/- 0.8 pmol/mg of protein, respectively), in kindled animals that were not stimulated, and in naive animals in response to septal stimulation, in spite of the presence in the latter group of bilateral hippocampal afterdischarges. Animals that failed to develop kindling and kindled animals that failed to have a seizure in response to stimulation also showed no change in cyclic nucleotide concentrations in any brain region. Kindled animals that developed a seizure following stimulation showed significant elevations in levels of both cyclic GMP and cyclic AMP in hippocampus and in several other brain regions. A single naive animal that had a seizure in response to its first stimulation also appeared to have elevated concentrations of both cyclic nucleotides in hippocampus. These data suggest that the elevation in levels of both cyclic GMP and cyclic AMP during kindled seizures is associated with seizure development rather than with the generation of afterdischarges or with the kindling engram.  相似文献   

18.
Mitochondrial division inhibitor 1 (mdivi-1), a selective inhibitor of the mitochondrial fission protein dynamin-related protein 1, has been proposed to have a neuroprotective effect on hippocampal neurons in animal models of epilepsy. However, the effect of mdivi-1 on epileptic neuronal death in vitro remains unknown. Therefore, we investigated the effect of mdivi-1 and the underlying mechanisms in the hippocampal neuronal culture (HNC) model of acquired epilepsy (AE) in vitro. We found that mitochondrial fission was increased in the HNC model of AE and inhibition of mitochondrial fission by mdivi-1 significantly decreased neuronal apoptosis induced by AE. In addition, mdivi-1 pretreatment significantly attenuated oxidative stress induced by AE characterized by decrease of reactive oxygen species (ROS) production and malondialdehyde level and by increase of superoxide dismutase activity. Moreover, mdivi-1 pretreatment significantly decreased endoplasmic reticulum (ER) stress markers glucose-regulated protein 78, C/EBP homologous protein expression and caspase-3 activation. Altogether, our findings suggest that mdivi-1 protected against AE-induced hippocampal neuronal apoptosis in vitro via decreasing ROS-mediated oxidative stress and ER stress.  相似文献   

19.
Parturition in the pregnant sheep is preceded by an abrupt alteration in placental steroid metabolism causing a shift from progesterone to estrogen production. This change is believed to be a consequence of the prepartum rise in cortisol in the fetal circulation and involves increases in activities of the enzymes steroid 17 alpha-hydroxylase (cytochrome P-450(17)alpha), steroid C-17,20-lyase, and possibly aromatase. We have investigated the activity levels of aromatase and 17 alpha-hydroxylase in placental microsomes in late pregnancy and dexamethasone-induced labor. Over the gestational period of 118-140 days basal levels of placental aromatase were relatively constant [mean value (+/- SD) of 5.6 +/- 1.6 pmol min-1 mg microsomal protein-1 (n = 10)]. Steroid 17 alpha-hydroxylase activity was undetectable [less than 0.5 pmol min-1 mg microsomal protein-1 (n = 7)]. In six animals in labor induced with infusion of dexamethasone into the fetus, placental aromatase activity had a mean value of 14.0 +/- 2.5 pmol min-1 mg protein-1; placental steroid 17 alpha-hydroxylase, measured in four of the animals, had a mean (+/- SD) activity of 319 +/- 58 pmol min-1 mg microsomal protein-1. Immunoblotting of placental microsomal preparations with specific antibodies to cytochrome P-450(17)alpha and NADPH-cytochrome P-450-reductase indicated that the glucocorticoid-induced activity of 17 alpha-hydroxylase was associated with increased content of cytochrome P-450(17)alpha. Northern blotting with a cDNA probe for cytochrome P-450(17)alpha showed that glucocorticoid increased the levels of mRNA for the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.

Aims

Melatonin possesses various pharmacological effects including neuroprotective effects against brain ischemia. Post-ischemic increases in matrix metalloproteinase-9 (MMP-9) expression and activity mainly contribute to neuronal damage by degradation of the extracellular matrix. This study was designed to examine whether melatonin has a neuroprotective effect and an influence on MMP-9 in transient global brain ischemia.

Main methods

Mice were subjected to 20 min of global brain ischemia and sacrificed 72 h later. Melatonin (30 mg/kg) was administered 30 min before and 2 h after ischemia as well as once daily until sacrifice.

Key findings

Hippocampal pyramidal cell damage after ischemia was significantly decreased by melatonin. As observed by zymography, melatonin inhibited the increase of MMP-9 activity after ischemia. In the brain sections, the increased gelatinase activity was mainly observed in the hippocampus after ischemia and melatonin also reduced gelatinase activity. The laminin and NeuN expression levels were reduced in the hippocampal CA1 and CA2 regions after ischemia, and melatonin reduced laminin degradation and neuronal loss. A TUNEL assay demonstrated that there were TUNEL-positive cells in the hippocampus and the number of TUNEL-positive cells was significantly decreased by melatonin. There was no difference in the ischemia-induced hippocampal neuronal damage between the vehicle- and melatonin-treated groups of MMP-9 knock-out mice.

Significance

These data demonstrate that melatonin suppressed the occurrence of neuronal injury, which might be partly due to its inhibitory effects on MMP-9 in addition to its anti-oxidative effects. MMP-9 may be an important key target of melatonin in neuroprotection against global ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号