首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recognition of lipopolysaccharide (LPS), the endotoxin of gram-negative bacteria, by microglia occurs through its binding to specific receptors, cluster of differentiation 14 and toll-like receptor-4. LPS binding to these receptors triggers the synthesis of proinflammatory cytokines that coordinate the brain innate immune response to protect the CNS of the infection. Docosahexaenoic acid (DHA), a n -3 polyunsaturated fatty acid highly incorporated in the brain, is a potent immunomodulator. In this study, we investigated whether DHA modulates LPS receptor localization and, as a consequence, LPS-induced signaling pathway and proinflammatory cytokine production. We demonstrated that DHA, when added exogenously, is specifically enriched in membrane phospholipids, but not in raft lipids of microglial cells. DHA incorporation in membrane impaired surface presentation of LPS receptors cluster of differentiation 14 and toll-like receptor-4, but not their membrane subdomain localization. LPS-induced nuclear factor kappa B activation was inhibited by DHA, hence, LPS-induced proinflammatory cytokine synthesis of interleukin-1β and tumor necrosis factor α was strongly attenuated. We suggest that DHA is highly anti-inflammatory by targeting LPS receptor surface location, therefore reducing LPS action on microglia. This effect represents a new insight by which DHA modulates in the brain the expression of proinflammatory cytokines in response to bacterial product.  相似文献   

2.
Lipopolysaccharide binding protein (LBP) is a 60 kDa acute phase glycoprotein capable of binding to LPS of Gram-negative bacteria and facilitating its interaction with cellular receptors. This process is thought to be of great importance in systemic inflammatory reactions such as septic shock. A peptide corresponding to residues 86-99 of human LBP (LBP86-99) has been reported to bind specifically with high affinity the lipid A moiety of LPS and to inhibit the interaction of LPS with LBP. We identified essential amino acids in LBP86-99 for binding to LPS by using a peptide library corresponding to the Ala-scanning of human LBP residues 86-99. Amino acids Trp91 and Lys92 were indispensable for peptide-LPS interaction and inhibition of LBP-LPS binding. In addition, several alanine-substituted synthetic LBP-derived peptides inhibited LPS-LBP interaction. Substitution of amino acids Arg94, Lys95 and Phe98 by Ala increased the inhibitory effect. The mutant Lys95 was the most active in blocking LPS binding to LBP. These findings emphasize the importance of single amino acids in the LPS binding capacity of small peptides and may contribute to the development of new drugs for use in the treatment of Gram-negative bacterial sepsis.  相似文献   

3.
4.
An imbalance in the matrix metalloproteinase (MMP) : tissue inhibitor of MMP (TIMP) ratio may be associated with tissue injury. Here, we studied the regulation of TIMP and MMP gene expression in primary glial cultures to ascertain the factors involved in the regulation of these genes in conditions of inflammatory neuropathology. Astrocytes were found to basally express TIMP-1 and TIMP-3 mRNA while microglia expressed only TIMP-2 mRNA. TIMP-4 mRNA was not detectable in either cell type. Treatment with interferon-alpha (IFN-alpha), IFN-gamma, interleukin-3 (IL-3), IL-6 or tumor necrosis factor-alpha (TNF-alpha) did not alter expression of the TIMP genes. However, in astrocytes, but not in microglia, serum, IL-1beta or lipopolysaccharide (LPS) evoked a dose- and time-dependent increase in TIMP-1 mRNA and a coincident down-regulation of the TIMP-3 gene. Astrocytes were found to express mRNA constitutively for MMPs -3, -11 and -14. In contrast, microglia expressed only MMP-12 mRNA under basal conditions. IL-1beta enhanced MMP-3 mRNA levels while LPS increased the MMP-3, -9, -12, -13 and -14 mRNAs. Our findings reveal that regulatory control of TIMP and MMP gene expression by glial cells is agonist- and cell-type specific, and suggest that innate immune signals govern the temporal and spatial expression patterns of TIMP and MMP genes in neuroinflammatory conditions of the CNS.  相似文献   

5.
Pulmonary surfactant protein D (SP-D) is a member of the collectin family that plays an important role in regulating innate immunity of the lung. We examined the mechanisms by which SP-D modulates lipopolysaccharide (LPS)-elicited inflammatory cell responses. SP-D bound to a complex of recombinant soluble forms of Toll-like receptor 4 (TLR4) and MD-2 with high affinity and down-regulated tumor necrosis factor-alpha secretion and NF-kappaB activation elicited by rough and smooth LPS, in alveolar macrophages and TLR4/MD-2-transfected HEK293 cells. Cell surface binding of both serotypes of LPS to TLR4/MD-2-expressing cells was attenuated by SP-D. In addition, SP-D significantly reduced MD-2 binding to both serotypes of LPS. A chimera containing the N-terminal region and the collagenous domain of surfactant protein A, and the coiled-coil neck and lectin domains of SP-D, was a weak inhibitor of LPS-induced cell responses and MD-2 binding to LPS, compared with native SP-D. The collagenase-resistant fragment consisting of the neck plus the carbohydrate recognition domain of SP-D also was a very weak inhibitor of LPS activation. This study demonstrates that SP-D down-regulates LPS-elicited inflammatory responses by altering LPS binding to its receptors and reveals the importance of the correct oligomeric structure of the protein in this process.  相似文献   

6.
Myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP) have been implicated in membrane-cytoskeletal events underlying cell adhesion, migration, secretion, and phagocytosis. In BV-2 microglial cells, lipopolysaccharide (LPS) elicited a dose-dependent increase in mRNA of both MRP (sixfold) and MARCKS (threefold) with corresponding increases in [3H]myristoylated and immunoreactive protein levels. LPS also produced significant increases in protein kinase C (PKC)-beta twofold and PKC-epsilon (1.5-fold). Pro-inflammatory cytokines produced by activated microglia (IL-1beta, IL-6, TNF-alpha) did not mimic LPS effects on MARCKS or MRP expression when added individually or in combination. LPS and IFN-gamma produced a synergistic induction of iNOS but not MARCKS or MRP. Induction of MARCKS and MRP by LPS was completely blocked by inhibitors of NF-kappaB (PDTC) and protein tyrosine kinases (herbimycin A), partially blocked by the p38 kinase inhibitor SB203580, and unaffected by the MEK inhibitor PD98059. LPS induction of iNOS was considerably more sensitive to all these inhibitors. The Src kinase inhibitor PP2 had no effect, while the closely related inhibitor PP1 actually increased LPS induction of MARCKS and MRP. Our results suggest that MARCKS and MRP may play an important role in LPS-activated microglia, but are not part of the neuroinflammatory response produced by cytokines.  相似文献   

7.
Lipopolysaccharide (LPS) suppressed the primary IgM response of mice to Type III pneumococcal polysaccharide (S3). LPS and S3 had to be given together in order for maximum suppression to occur and suppression was not due to a change in the time of the peak response in mice which received LPS. Suppression was not due to an effect of LPS on T cells since S3 responses of nude mice were suppressed by LPS. LPS did not suppress S3 responses of C3H/HeJ mice and base hyrolysis of LPS destroyed the suppressive effect, i.e., suppression was dependent of B cell mitogenic activity of the LPS. The suppressive effect of LPS was presumably directed against virgin B cells since LPS did not suppress the S3 response of primed mice and did not suppress the development of IgG memory responses to S3.  相似文献   

8.
Bioassay-guided fractionation of the root extract of Asarum sieboldii led to the isolation of the four active compounds (-)-sesamin (1), (2E,4E,8Z,10E)-N-(2-methylpropyl)dodeca-2,4,8,10-tetraenamide (2), kakuol (3), and '3,4,5-trimethoxytoluene' (=1,2,3-trimethoxy-5-methylbenzene; 4), in terms of inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) production. Compounds 1-4 showed potent inhibition of NO production, with IC(50) values in the low nanomolar-to-micromolar range. Also isolated were the known compounds methylkakuol (5), '3,5-dimethoxytoluene', safrole, asaricin, methyleugenol, and (-)-asarinin, which were found to be inactive in the above assay. Among the ten known isolates, compounds 1, 2, and 5 were found for the first time in this plant.  相似文献   

9.
Inflammatory responses of myeloid cells to LPS are mediated through CD14, a glycosylphosphatidylinositol-anchored receptor that binds LPS. Since CD14 does not traverse the plasma membrane and alternatively anchored forms of CD14 still enable LPS-induced cellular activation, the precise role of CD14 in mediating these responses remains unknown. To address this, we created a transmembrane and a glycosylphosphatidylinositol-anchored form of LPS-binding protein (LBP), a component of serum that binds and transfers LPS to other molecules. Stably transfected Chinese hamster ovary (CHO) fibroblast and U373 astrocytoma cell lines expressing membrane-anchored LBP (mLBP), as well as separate CHO and U373 cell lines expressing membrane CD14 (mCD14), were subsequently generated. Under serum-free conditions, CHO and U373 cells expressing mCD14 responded to as little as 0.1 ng/ml of LPS, as measured by NF-kappaB activation as well as ICAM and IL-6 production. Conversely, the vector control and mLBP-expressing cell lines did not respond under serum-free conditions even in the presence of more than 100 ng/ml of LPS. All the cell lines exhibited responses to less than 1 ng/ml of LPS in the presence of the soluble form of CD14, demonstrating that they are still capable of LPS-induced activation. Taken together, these results demonstrate that mLBP, a protein that brings LPS to the cell surface, does not mediate cellular responses to LPS independently of CD14. These findings suggest that CD14 performs a more specific role in mediating responses to LPS than that of simply bringing LPS to the cell surface.  相似文献   

10.
Abstract Recent studies carried out by our group suggest that lysozyme binds to bacterial lipopolysaccharide with a high affinity to produce a complex, and inhibits various biological activities of lipopolysaccharide. Although the basic structure of lipopolysaccharide is independent of the species and strains of Gram-negative bacteria, many structural factors such as O-antigenic polysaccharide, lipid A, substituted groups, and associated molecules, affect the biological activities of lipopolysaccharide. In this study, we prepared lysozyme/lipopolysaccharide complexes using various structures of lipopolysaccharide and compared the activity and physiochemical properties. Native and dansylated lysozyme were found to bind to all tested lipopolysaccharides. The mitogenic activity and TNF production by all tested lipopolysaccharides were significantly reduced by complex formation in vitro. Administration of the complex prepared by various lipopolysaccharides produced significantly less quantities of TNF in the septic shock model. These results suggested that binding of lysozyme to lipopolysaccharide is important for the host both in pathophysiological responses to lipopolysaccharides and in the modification of lipopolysaccharide biological activity.  相似文献   

11.
High-density lipoprotein (HDL) is an abundant plasma lipoprotein that is generally thought to be anti-inflammatory in both health and infectious disease. It binds and neutralizes the bioactivity of the potent bacterial lipids, LPS and lipoteichoic acid, that stimulate host innate immune responses. LPS-binding protein (LBP) plays an important role in augmenting leukocyte responses to LPS, whereas high concentrations of LBP, in the range of those found in plasma, can be inhibitory. We found that native HDL (nHDL) augmented human monocyte responses to LPS in the presence of inhibitory concentrations of LBP as measured by production of TNF and other cytokines. HDL did not stimulate cells in the absence of LPS, and it did not augment responses that were stimulated by IL-1beta or lipoteichoic acid. This activity of HDL was inhibited by trypsin treatment, suggesting that one or more protein constituents of HDL are required. In contrast to nHDL, low-density lipoprotein, and reconstituted HDL did not possess this activity. The total lipoprotein fraction of normal plasma had activity that was similar to that of nHDL, whereas lipoproteins from septic patients with reduced HDL levels had a reduced ability to augment responses to LPS; this activity was restored by adding normal HDL to the patient lipoproteins. Our results demonstrate a novel proinflammatory activity of HDL that may help maintain sensitive host responses to LPS by suppressing the inhibitory activity of LBP. Our findings also raise the possibility that the decline of HDL during sepsis may help control the response to LPS.  相似文献   

12.
Brain ischemia and the following reperfusion are important causes for brain damage and leading causes of brain morbidity and human mortality. Numerous observations exist describing the neuronal damage during ischemia/reperfusion, but the outcome of such conditions towards glial cells still remains to be elucidated.

Microglia are resident macrophages in the brain. In this study, we investigated the anoxia/reoxygenation caused damage to a microglial cell line via determination of energy metabolism, free radical production by dichlorofluorescein fluorescence and nitric oxide production by Griess reagent. Consequences of oxidant production were determined by measurements of protein oxidation and lipid peroxidation, as well. By using site-specific antioxidants and inhibitors of various oxidant-producing pathways, we identified major sources of free radical production in the postanoxic microglial cells. The protective influences of these compounds were tested by measurements of cell viability and apoptosis. Although, numerous free radical generating systems may contribute to the postanoxic microglial cell damage, the xanthine oxidase- and the cyclooxygenase-mediated oxidant production seems to be of major importance.  相似文献   

13.
Summary At low cell density, the proliferative response of B cells to lipopolysaccharide (LPS) is not detectable. We investigated under these experimental conditions the role of several cell populations on the LPS-induced B-cell proliferation. The addition to murine B cells of irradiated peripheral blood leukocytes (PBL) from the C3H/ HeJ mouse strain, or of culture supernatants of these cells, efficiently restored a response to LPS. Similar results were also obtained with irradiated PBL from other mouse strains and from rabbits. The activities of the culture supernatants were not significantly modified when the PBL were depleted of adherent cells or of Thy-1.2 positive cells, thus suggesting that the active factors were secreted neither by T cells, nor by monocytes.Abbreviations BSS balanced salt solution - ConA concanavalin A - EBMR enhancement of B-cell mitogenic response - J-B, J-T, J-Th, J-MØ, J-PBL, J-RBC splenic bone marrow-derived lymphocytes, splenic thymus-derived lymphocytes, thymocytes, splenic macrophages, peripheral blood leukocytes, red blood cells, obtained from the LPS-non-responding C3H/ HeJ-Pas mouse strain - R-PBL peripheral blood leukocytes obtained from the LPS-responding C3H/ He-Pas mouse strain - LPS lipopolysaccharide - MO macrophages - PBL peripheral blood leukocytes  相似文献   

14.
The addition of low doses of the cationic polypeptide antibiotic, polymyxin B (PB), to cultures of mouse spleen cells inhibits lipopolysaccharide-(LPS) induced DNA synthesis but not that stimulated by PPD, PHA, or Con A. Inhibition is stoichiometric; the mitogenic response is suppressed by 50% at a weight ratio of PB:LPS of 0.055 to 1. Furthermore, PB-LPS complexes have a much reduced mitogenic capacity. These complexes inhibit the mitogenic response of spleen cells to unmodified LPS but not to PPD, Con A, or PHA. The inhibitory activity of PB is less effective when added after LPS is mixed with responding cells, achieving 50% inhibition when addition is made at 4 to 6 hr. Time course experiments indicate that partial inhibition is a reflection of a lower rate of DNA synthesis. Thus, PB inhibition of LPS mitogenesis apparently occurs as a result of formation of PB-LPS complexes with reduced mitogenic capacity. Specific inhibition by the complexes of mitogenesis induced by native LPS suggests that the inactive complex may bind to B cells but is unable to trigger them.  相似文献   

15.
To gain insight in immuno-endocrine communication in teleosts the physiological effects of interleukin 1 and bacterial lipopolysaccharide in teleosts were investigated. Tilapia (Oreochromis mossambicus) were treated with murine interleukin 1 and E. coli lipopolysaccharide in vivo, and lipopolysaccharide was administered to pituitary lobes and head kidneys in vitro. The integument of the fish appeared to be a sensitive target for the preparations tested, since proliferation of chloride cells and of epidermal mucous cells was observed as well as an increase in epidermal thickness. These effects may relate to an acute phase-like reaction caused by the treatments. Lipopolysaccharide administration furthermore resulted in an increase in plasma free fatty acids levels. Lipopolysaccharide, but not interleukin 1, stimulated the interrenal axis of the fish, as judged by the increase in cortisol production measured in superfusion of head kidneys. In addition to these in vivo effects, lipopolysaccharide also displayed several effects in vitro. Pituitary adrenocorticotropic hormone, as well as -melanocyte stimulating hormone, release was inhibited, and the head kidney responsiveness to adrenocorticotropic hormone was inhibited after pretreatment of the tissue with the E. coli product. This latter effect coincided with the release of an unidentified -melanocyte stimulating hormone immunoreactive fraction by the head kidneys which could be stimulated by lipopolysaccharide. The data strongly support the notion that the immune system is involved in adaptive regulations in teleosts, and that immuno-endocrine interactions are phylogenetically old mechanisms.Abbreviations ACTH adrenocorticotropic hormone - AUC area under the curve - FFA free fatty acids - HPLC high-performance liquid chromatography - IL-1 interleukin 1 - LPS lipopolysaccharide/endotoxin - -MSH alpha melanocyte stimulating hormone - NIL neurointermediate lobe - POMC proopiomelanocortin - RIA radioimmunoassay - RPD rostral pars distalis  相似文献   

16.
Lipopolysaccharide (LPS)‐induced inflammatory factors production by the cerebral cortical glial cells in two sides of the murine brain are different. To determine if microglial cells, a subset of glial cells, are involved in asymmetric production, interleukin‐6 (IL‐6), interleukin‐1β (IL‐1β) and nitric oxide (NO) responses to LPS by microglial cells in the right and left cerebral cortices were examined. Primary microglial cells were isolated from BALB/C neonatal mice, treated with LPS (10 µg ml?1) for 24 h and examined for IL‐6, IL‐1β and NO production. At untreated state, the levels of IL‐6, IL‐1β and NO showed no statistical difference between left and right. However, after LPS treatment, the levels of IL‐6, IL‐1β and NO for the right microglial cells was statistically significant higher than the left (P < 0·05). Our results denote that enhanced production of IL‐6, IL‐1β and NO after LPS treatment in microglia is directly proportional to their basal‐state levels, and right cortical microglia produce higher levels of IL‐6, IL‐1β and NO than left cortical microglia. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Secretory leukocyte protease inhibitor (SLPI), a potent serine protease inhibitor, has been shown to suppress macrophage responses to bacterial lipopolysaccharide (LPS). SLPI contains two topologically superimposable domains. Its C-terminal domain binds and inhibits target proteases. It is not clear whether SLPI's anti-protease function plays a role in the LPS-inhibitory action of SLPI. Four single amino acid substitution mutants of SLPI, M73G, M73F, M73E and M73K, were generated. Wild type SLPI is a potent inhibitor of chymotrypsin and elastase. Mutants M73G and M73F selectively lost inhibitory function towards chymotrypsin and elastase, respectively, whereas mutants M73K and M73E inhibited neither elastase nor chymotrypsin. Macrophage cell lines were established from RAW264.7 cells to stably express each SLPI mutant. Expression of the SLPI protease inhibition mutants suppressed NO and TNF production in response to LPS in a similar fashion as wild type SLPI. Expression of truncated forms of SLPI, containing only its N-terminus or its C-terminus, was similarly sufficient to confer inhibition of LPS responses. Thus, the LPS-inhibitory action of SLPI is independent of its anti-protease function.  相似文献   

18.
Aims: To determine the effect of lipopolysaccharide (LPS) for the prevention of infection by Aeromonas hydrophila in rainbow trout (Oncorhynchus mykiss Walbaum) fingerlings. Methods and Results: Rainbow trout fingerlings were fed with 0 mg (= controls), 1·875 mg, 3·75 mg, 7·5 mg and 15 mg of LPS per 100 g of commercial feed for 14 days before experimental challenge with A. hydrophila. The results revealed a reduction in mortalities to 5% in the two lowest doses and 15% in the group, which received 15 mg LPS per 100 g of feed, compared with 45% mortalities in the control. LPS exerted a powerful oxidative burst effect and was a potent mediator of phagocytic, lysozyme, bactericidal and antiprotease activities and total protein. However, whereas there were increases in specific growth rate (SGR), feed conversion ratio (FCR) and protein efficiency ratio (PER) in LPS‐treated fish, the data were not significantly (P > 0·05) different. Conclusions: LPS was effective at preventing disease caused by A. hydrophila and in stimulating the innate immune response of rainbow trout. Significance and Impact of the Study: The results of this study highlight the role of LPS in fish disease control.  相似文献   

19.
A challenge for studies involving microglia cultures is obtaining sufficient cells for downstream experiments. Macrophage colony-stimulating factor (M-CSF) has been used to improve yield of microglia in culture. However, the effects of M-CSF on activation profiles of microglia cultures are still unclear. Microglia activation is characterised by upregulation of co-stimulatory molecules and an inflammatory phenotype. The aim of this study is to demonstrate whether M-CSF supplementation alters microglial responses in resting and activated conditions. Microglia derived from mixed glia cultures and the BV-2 microglia cell line were cultivated with/without M-CSF and activated with lipopolysaccharide (LPS) and beta amyloid (Aβ). We show M-CSF expands primary microglia without affecting microglial responses to LPS and Aβ, as shown by the comparable expression of MHC class II and CD40 to microglia grown without this growth factor. M-CSF supplementation in BV-2 cells had no effect on nitric oxide (NO) production. Therefore, M-CSF can be considered for improving microglia yield in culture without introducing activation artefacts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号