首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GTP cyclohydrolase I is the rate-controlling enzyme in the production of tetrahydrobiopterin (BH(4)), an essential cofactor for nitric oxide (NO) synthase. Here we show that GTP cyclohydrolase I mRNA was present in unstimulated hepatocytes and was up-regulated 2- to 3-fold concurrently with iNOS induction induced in vivo by LPS injection and in vitro by stimulation with LPS and inflammatory cytokines tumor necrosis factor alpha, interleukin-1 beta, and interferon-gamma. Hepatocyte GTP cyclohydrolase I enzyme activity increased 2-fold in vivo after LPS. This coinduction of GTP cyclohydrolase I resulted in increased total intracellular biopterin which supported induced NO synthesis. The addition of a GTP cyclohydrolase I inhibitor to the stimulated hepatocytes decreased intracellular biopterin levels and resulted in a decrease in NO production. The results show that GTP cyclohydrolase I is up-regulated by certain acute inflammatory conditions. Further, the results indicate that biopterin is essential as a cofactor for induced NO synthase activity in hepatocytes.  相似文献   

2.
Tetrahydrobiopterin (BH4), which is an essential cofactor for nitric oxide synthase (NOS), is generally accepted as an important molecular target for oxidative stress. This study examined whether hydrogen peroxide (H(2)O(2)), one of the reactive oxygen species (ROS), affects the BH4 level in vascular endothelial cells (ECs). Interestingly, the addition of H(2)O(2) to ECs markedly increased the BH4 level, but not its oxidized forms. The H(2)O(2)-induced increase in the BH4 level was blocked by the inhibitor of GTP-cyclohydrolase I (GTPCH), which is the rate-limiting enzyme of BH4 synthesis. Moreover, H(2)O(2) induced the expression of GTPCH mRNA, and the inhibitors of protein synthesis blocked the H(2)O(2)-induced increase in the BH4 level. The expression of the inducible isoform of NOS (iNOS) was slightly induced by the treatment with H(2)O(2). Additionally, the L-citrulline formation from L-arginine, which is the marker for NO synthesis, was stimulated by the treatment with H(2)O(2), and the H(2)O(2)-induced L-citrulline formation was strongly attenuated by NOS or GTPCH inhibitor. These results suggest that H(2)O(2) induces BH4 synthesis via the induction of GTPCH, and the increased BH4 is coupled with NO production by coinduced iNOS. H(2)O(2) appears to be one of the important signaling molecules to regulate the BH4-NOS system.  相似文献   

3.
Nitric oxide (NO) synthesis is induced in vascular smooth muscle cells by lipopolysaccharide (LPS) where it appears to mediate a variety of vascular dysfunctions. In some cell types tetrahydrobiopterin (BH4) synthesis has also been found to be induced by cytokines. Because BH4 is a cofactor for NO synthase, we investigated whether BH4 synthesis is required for LPS-induced NO production in rat aortic smooth muscle cells (RASMC). The total biopterin content (BH4 and more oxidized states) of untreated RASMC was below our limit of detection. However, treatment with LPS caused a significant rise in biopterin levels and an induction of NO synthesis; both effects of LPS were markedly potentiated by interferon-gamma. 2,4-Diamino-6-hydroxypyrimidine (DAHP), a selective inhibitor of GTP cyclohydrolase I, the rate-limiting enzyme for de novo BH4 synthesis, completely abolished the elevated biopterin levels induced by LPS. DAHP also caused a concentration-dependent inhibition of LPS-induced NO synthesis. Inhibition of NO synthesis by DAHP was reversed by sepiapterin, an agent which circumvents the inhibition of biopterin synthesis by DAHP by serving as a substrate for BH4 synthesis via the pterin salvage pathway. The reversal by sepiapterin was overcome by methotrexate, an inhibitor of the pterin salvage pathway. Sepiapterin, and to a lesser extent BH4, dose-dependently enhanced LPS-induced NO synthesis, indicating that BH4 concentration limits the rate of NO production by LPS-activated RASMC. Sepiapterin also caused LPS-induced NO synthesis to appear with an abbreviated lag period phase, suggesting that BH4 availability also limits the onset of NO synthesis. In contrast to the stimulation of LPS-induced NO synthesis, observed when sepiapterin was given alone, sepiapterin became a potent inhibitor of NO synthesis in the presence of methotrexate. This is attributable to a direct inhibitory action of sepiapterin on GTP cyclohydrolase I, an activity which is only revealed after blocking the metabolism of sepiapterin to BH4. Further studies with sepiapterin, methotrexate, and N-acetylserotonin (an inhibitor of the BH4 synthetic enzyme, sepiapterin reductase) indicated that the BH4 is synthesized in RASMC predominantly from GTP; however, a lesser amount may derive from pterin salvage. We demonstrate that BH4 synthesis is an absolute requirement for induction of NO synthesis by LPS in vascular smooth muscle. Our findings also suggest that pterin synthesis inhibitors may be useful for the therapy of endotoxin- and cytokine-induced shock.  相似文献   

4.
Induction of the inducible isoform of nitric oxide (NO) synthase (iNOS) in the myocardium is implicated as a mechanism in the development of cardiac depression in immune activated states associated with an enhanced release of cytokines, such as septic shock. We evaluated the in vivo synthesis of NO and tetrahydrobiopterin (BH4), a cofactor of NOS, in the heart tissue using a model of LPS injection in rats (LPS: 10 mg/kg, i.v.). In control rats, iNOS activity or iNOS mRNA in the heart was negligible. Three hours after LPS administration, a marked induction of iNOS mRNA and activity was observed in the heart. A significant increase in BH4 content and GTP cyclohydrolase mRNA abundance was also observed in the heart from LPS-treated rats. Our results demonstrate induction of NO synthesis and parallel increase in BH4 concentration in the heart of rats after LPS treatment in vivo and may provide molecular evidence responsible for the increased production of BH4 which may up-regulate iNOS activity in the heart in vivo. (Mol Cell Biochem 166: 177-181, 1997)  相似文献   

5.
6.
Tetrahydrobiopterin (BH4) is one of the cofactors of nitric oxide synthase (NOS), and the synthesis of BH4 is induced as well as inducible NOS (iNOS) by lipopolysaccharide (LPS) and/or cytokines. BH4 has a protective effect against the cytotoxicity induced by nitric oxide (NO) and/or reactive oxygen species in various types of cells. The purpose of this study was to examine whether or not an excess of BH4 is present during the production of NO by iNOS in LPS-treated de-endothelialized rat aorta. Addition of LPS (10 microg/ml) to the aorta bath solution caused L-arginine (L-Arg)-induced relaxation from 1.5 hr after the addition of LPS in de-endothelialized rat aorta pre-contracted with 30 mM KCl. The L-Arg-induced relaxation was prevented by NOS inhibitors. BH4 content also increased from 3 hr after the addition of LPS. mRNAs of iNOS and GTP cyclohydrolase I (GTPCH), a rate-limiting enzyme of BH4 synthesis, were increased from 1.5 hr after addition of LPS. Although the expression of iNOS and GTPCH mRNAs was observed in the media, the expression levels in the media were much lower than those in the adventitia. Ten millimolar 2,4-diamino-6-hydroxypyrimidine (DAHP), an inhibitor of GTPCH, strongly reduced L-Arg-induced relaxation, and decreased BH4 content to below the basal level in LPS-treated aorta, whereas 0.5 mM DAHP reduced the LPS-induced increase in BH4 content to the basal level but did not affect L-Arg-induced relaxation. The inhibition of L-Arg-induced relaxation by 10 mM DAHP was overcome by the addition of BH4 (10 microM). These results suggest that although BH4 is essential for NO production from iNOS, the increase in BH4 content above the basal level is not needed for eliciting L-Arg-induced relaxation by the treatment with LPS. Thus, an excess amount of BH4 may be synthesized during NO production by iNOS in LPS-treated rat aorta.  相似文献   

7.
Studies on the effect of ascorbic acid on inducible nitric oxide synthase (iNOS) activity are few and diverse, likely to be dependent on the species of cells. We investigated a role of ascorbic acid in iNOS induction and nitric oxide (NO) generation in mouse macrophage cell line RAW 264.7. Although interferon- (IFN-) gamma alone produced NO end products, ascorbic acid enhanced NO production only when cells were synergistically stimulated with IFN-gamma plus Escherichia coli lipopolysaccharide (LPS). Ascorbate neither enhanced nor decreased the expression of iNOS protein in RAW 264.7 cells, in contrast to the reports that ascorbic acid augments iNOS induction in a mouse macrophage-like cell line J774.1 and that ascorbate suppresses iNOS induction in rat skeletal muscle endothelial cells. Intracellular levels of tetrahydrobiopterin (BH4), a cofactor for iNOS, were increased by ascorbate in RAW 264.7 cells. However, ascorbate did not increase GTP cyclohydrolase I mRNA, the main enzyme at the critical steps in the BH4 synthetic pathway, expression levels and activity. Sepiapterin, which supplies BH4 via salvage pathway, more efficiently enhanced NO production if ascorbate was added. These data suggest that enhanced activation of iNOS by ascorbic acid is mediated by increasing the stability of BH4 in RAW 264.7 cells.  相似文献   

8.
We have previously reported that cultured murine brain endothelial cells (MBE) produce large quantities of nitric oxide (NO) after activation with interferon-gamma in combination with any of several immunoactivators including: bacterial endotoxin, tumor necrosis factor and interleukin-1. Since endothelial cells are the first example of a cell-type which may possess both a constitutive and an inducible type of NO synthase, it was of interest to compare the requirements of these two enzyme activities. Induction of NO synthesis in MBE by cytokines was abolished by the protein synthesis inhibitor, cycloheximide, and by 2,4-diamino-6-hydroxypyridine (DAHP), a selective inhibitor of GTP cyclohydrolase I, the rate-limiting enzyme for de novo synthesis of tetrahydrobiopterin (THB). In the presence of DAHP, NO synthesis was restored by sepiapterin (SEP), a substrate for the alternative pathway of THB synthesis occurring via pterin salvage. Moreover, SEP increased NO synthesis to greater than 150% of control values, suggesting that THB availability is rate-limiting for NO synthesis by cytokine-induced MBE. Methotrexate, an inhibitor of the pterin salvage pathway of THB synthesis, completely reversed the stimulation of NO synthesis by sepiapterin. Thus, cytokine-induced MBE NO synthase appears to have an absolute requirement for THB as cofactor. In additional studies we found that NO synthesis by cytokine-activated MBE was inhibited by NG-monosubstituted arginine analogs with a rank-order of potency NH2 greater than CH3 greater than NO2, in contrast with the rank-order of NO2 greater than NH2 greater than CH3 previously described for inhibition of the constitutive endothelial cell enzyme. Using a kinetic assay for NO synthase activity, based on oxidation of myoglobin heme-iron, we have found that these rank orders of potency also apply to cytosol preparations of cytokine-induced and untreated endothelial cells, respectively. Further differences between constitutive and cytokine-induced NO synthase were observed with regard to calmodulin requirements. Whereas constitutive NO synthase was potently inhibited by the calmodulin antagonists mellitin and trifluoperazine, cytokine-induced NO synthase was unaffected. In summary, NO synthesis by cytokine-activated MBE is THB-dependent, calmodulin-independent and inhibited by NG-substituted arginine analogs with a rank-order profile distinct from that for untreated endothelial cells but identical to that for cytokine-activated macrophages.  相似文献   

9.
Tetrahydrobiopterin: biochemistry and pathophysiology   总被引:2,自引:0,他引:2  
BH4 (6R-L-erythro-5,6,7,8-tetrahydrobiopterin) is an essential cofactor of a set of enzymes that are of central metabolic importance, including four aromatic amino acid hydroxylases, alkylglycerol mono-oxygenase and three NOS (NO synthase) isoenzymes. Consequently, BH4 is present in probably every cell or tissue of higher organisms and plays a key role in a number of biological processes and pathological states associated with monoamine neurotransmitter formation, cardiovascular and endothelial dysfunction, the immune response and pain sensitivity. BH4 is formed de novo from GTP via a sequence of three enzymatic steps carried out by GTP cyclohydrolase I, 6-pyruvoyltetrahydropterin synthase and sepiapterin reductase. An alternative or salvage pathway involves dihydrofolate reductase and may play an essential role in peripheral tissues. Cofactor regeneration requires pterin-4a-carbinolamine dehydratase and dihydropteridine reductase, except for NOSs, in which the BH4 cofactor undergoes a one-electron redox cycle without the need for additional regeneration enzymes. With regard to the regulation of cofactor biosynthesis, the major controlling point is GTP cyclohydrolase I. BH4 biosynthesis is controlled in mammals by hormones and cytokines. BH4 deficiency due to autosomal recessive mutations in all enzymes, except for sepiapterin reductase, has been described as a cause of hyperphenylalaninaemia. A major contributor to vascular dysfunction associated with hypertension, ischaemic reperfusion injury, diabetes and others, appears to be an effect of oxidized BH4, which leads to an increased formation of oxygen-derived radicals instead of NO by decoupled NOS. Furthermore, several neurological diseases have been suggested to be a consequence of restricted cofactor availability, and oral cofactor replacement therapy to stabilize mutant phenylalanine hydroxylase in the BH4-responsive type of hyperphenylalaninaemia has an advantageous effect on pathological phenylalanine levels in patients.  相似文献   

10.
Several studies have already demonstrated that oxidized- LDL decreases nitric oxide (NO) generation by cytokine-stimulated macrophages. However, the mechanisms of such an inhibition have not been yet elucidated. NO generation by inducible nitric oxide synthase (iNOS) is dependent on the presence of cofactors for NO generation, tetrathydrobiopterin (BH4) among them. The NO generation by these cells is also regulated by some endogenous inhibitors, like TGF-beta. Therefore, the aim of our recent study was to investigate the influence of ox-LDL on the expression of iNOS and GTP cyclohydrolase I (GTP-CH I), the key enzyme involved in the BH4 synthesis as well as the ox-LDL effect on TGF-beta expression in rat macrophages stimulated with IFNgamma (250 U/ml) and LPS (500 ng/ml). Macrophages, activated in this way, express iNOS, GTP-CH I, and TGF-beta mRNA. This expression was inhibited when the macrophages were preincubated for 24 hours with ox-LDL (100 microg/ml). Quantitative PCR revealed about 10-fold inhibition of iNOS gene expression by ox-LDL. As a consequence of down-regulation of iNOS and GTP-CH I genes, almost 3-fold diminished generation of NO2- by rat macrophages was observed. An inhibition of the TGFbeta mRNA expression was also found. Our studies indicate that decreased NO generation by ox-LDL treated macrophages may be the result of the diminished expression of both iNOS and GTP-CH I genes. This effect may be mediated by the activity of certain endogenous inhibitors of gene expression, however, our studies exclude the TGF-beta as a candidate for this activity.  相似文献   

11.
Synthesis of 6(R)-5,6,7,8-tetrahydrobiopterin (BH(4)), a required cofactor for inducible nitric-oxide synthase (iNOS) activity, is usually coordinately regulated with iNOS expression. In C6 glioma cells, tumor necrosis factor-alpha (TNF-alpha) concomitantly potentiated the stimulation of nitric oxide (NO) and BH(4) production induced by IFN-gamma and interleukin-1beta. Expression of both iNOS and GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme in the BH(4) biosynthetic pathway, was also markedly increased, as were their activities and protein levels. Ceramide, a sphingolipid metabolite, may mediate some of the actions of TNF-alpha. Indeed, we found that bacterial sphingomyelinase, which hydrolyzes sphingomyelin and increases endogenous ceramide, or the cell permeable ceramide analogue, C(2)-ceramide, but not C(2)-dihydroceramide (N-acetylsphinganine), significantly mimicked the effects of TNF-alpha on NO production and iNOS expression and activity in C6 cells. Surprisingly, although TNF-alpha increased BH(4) synthesis and GTPCH activity, neither BH(4) nor GTPCH expression was affected by C(2)-ceramide or sphingomyelinase in IFN-gamma- and interleukin-1beta-stimulated cells. It is likely that increased BH(4) levels results from increased GTPCH protein and activity in vivo rather than from reduced turnover of BH(4), because the GTPCH inhibitor, 2,4-diamino-6-hydroxypyrimidine, blocked cytokine-stimulated BH(4) accumulation. Moreover, expression of the GTPCH feedback regulatory protein, which if decreased might increase GTPCH activity, was not affected by TNF-alpha or ceramide. Treatment with the antioxidant pyrrolidine dithiocarbamate, which is known to inhibit NF-kappaB and sphingomyelinase in C6 cells, or with the peptide SN-50, which blocks translocation of NF-kappaB to the nucleus, inhibited TNF-alpha-dependent iNOS mRNA expression without affecting GTPCH mRNA levels. This is the first demonstration that cytokine-stimulated iNOS and GTPCH expression, and therefore NO and BH(4) biosynthesis, may be regulated by discrete pathways. As BH(4) is also a cofactor for the aromatic amino acid hydroxylases, discovery of distinct mechanisms for regulation of BH(4) and NO has important implications for its specific functions.  相似文献   

12.
Tetrahydrobiopterin (BH4) acts as an important co-factor for endothelial nitric oxide synthase (eNOS). Glucocorticoids have been shown to inhibit expression of the rate-limiting enzyme for tetrahydrobiopterin synthesis, GTP cyclohydrolase, in other cell types. We hypothesized that endothelium-dependent vasodilator responses would be blunted in rats made hypertensive with dexamethasone. Further, we hypothesized that treatment of rat vascular segments with dexamethasone would result in attenuation of endothelial function accompanied by decreased GTP cyclohydrolase expression. We report that endothelium-dependent relaxation responses to the calcium ionophore A23187 are reduced in aortic rings from dexamethasone-hypertensive rats compared with sham values. Dexamethasone incubation abolishes contraction to Nomega-nitro-L-arginine (L-NNA, 10(-5) M) in endothelium-intact aortic rings, and inhibits expression of GTP cyclohydrolase. We conclude that inhibition of BH4 synthesis by glucocorticoid regulation of GTP cyclohydrolase expression may contribute to reduced endothelium-dependent vasodilation characteristic of glucocorticoid-induced hypertension.  相似文献   

13.
14.
GTP cyclohydrolase I feedback regulatory protein (GFRP) mediates feedback inhibition of GTP cyclohydrolase I activity by 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4), which is an essential cofactor for key enzymes producing catecholamines, serotonin, and nitric oxide as well as phenylalanine hydroxylase. GFRP also mediates feed-forward stimulation of GTP cyclohydrolase I activity by phenylalanine at subsaturating GTP levels. These ligands, BH4 and phenylalanine, induce complex formation between one molecule of GTP cyclohydrolase I and two molecules of GFRP. Here, we report the analysis of ligand binding using the gel filtration method of Hummel and Dreyer. BH4 binds to the GTP cyclohydrolase I/GFRP complex with a Kd of 4 microM, and phenylalanine binds to the protein complex with a Kd of 94 microM. The binding of BH4 is enhanced by dGTP. The binding stoichiometrics of BH4 and phenylalanine were estimated to be 10 molecules of each per protein complex, in other words, one molecule per subunit of protein, because GTP cyclohydrolase I is a decamer and GFRP is a pentamer. These findings were corroborated by data from equilibrium dialysis experiments. Regarding ligand binding to free proteins, BH4 binds weakly to GTP cyclohydrolase I but not to GFRP, and phenylalanine binds weakly to GFRP but not to GTP cyclohydrolase I. These results suggest that the overall structure of the protein complex contributes to binding of BH4 and phenylalanine but also that each binding site of BH4 and phenylalanine may be primarily composed of residues of GTP cyclohydrolase I and GFRP, respectively.  相似文献   

15.
Tetrahydrobiopterin (BH4) is a required cofactor for the synthesis of NO by NOS. Bioavailability of BH4 is a critical factor in regulating the balance between NO and superoxide production by endothelial NOS (eNOS coupling). Crystal structures of the mouse inducible NOS oxygenase domain reveal a homologous BH4-binding site located in the dimer interface and a conserved tryptophan residue that engages in hydrogen bonding or aromatic stacking interactions with the BH4 ring. The role of this residue in eNOS coupling remains unexplored. We overexpressed human eNOS W447A and W447F mutants in novel cell lines with tetracycline-regulated expression of human GTP cyclohydrolase I, the rate-limiting enzyme in BH4 synthesis, to determine the importance of BH4 and Trp-447 in eNOS uncoupling. NO production was abolished in eNOS-W447A cells and diminished in cells expressing W447F, despite high BH4 levels. eNOS-derived superoxide production was significantly elevated in W447A and W447F versus wild-type eNOS, and this was sufficient to oxidize BH4 to 7,8-dihydrobiopterin. In uncoupled, BH4-deficient cells, the deleterious effects of W447A mutation were greatly exacerbated, resulting in further attenuation of NO and greatly increased superoxide production. eNOS dimerization was attenuated in W447A eNOS cells and further reduced in BH4-deficient cells, as demonstrated using a novel split Renilla luciferase biosensor. Reduction of cellular BH4 levels resulted in a switch from an eNOS dimer to an eNOS monomer. These data reveal a key role for Trp-447 in determining NO versus superoxide production by eNOS, by effects on BH4-dependent catalysis, and by modulating eNOS dimer formation.  相似文献   

16.
GTP cyclohydrolase I feedback regulatory protein (GFRP) mediates the feedback inhibition of GTP cyclohydrolase I activity by (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) through protein complex formation. Since guanine and BH4 have a common pyrimidine ring structure, we examined the inhibitory effect of guanine and its analogs on the enzyme activity. Guanine, 8-hydroxyguanine, 8-methylguanine, and 8-bromoguanine inhibited the enzyme activity in a GFRP-dependent and pH-dependent manner and induced complex formation between GTP cyclohydrolase I and GFRP. The type of inhibition by this group is a mixed type. All these properties were shared with BH4. In striking contrast, inhibition by 8-azaguanine and 8-mercaptoguanine was GFRP-independent and pH-independent. The type of inhibition by 8-azaguanine and 8-mercaptoguanine was a competitive type. The two compounds did not induce complex formation between the enzyme and GFRP. These results demonstrate that guanine compounds of the first group bind to the BH4-binding site of the GTP cyclohydrolase I/GFRP complex, whereas 8-azaguanine and 8-mercaptoguanine bind to the active site of the enzyme. Finally, the possible implications in Lesch-Nyhan syndrome and Parkinson diseases of the inhibition of GTP cyclohydrolase I by guanine and 8-hydroxyguanine are discussed.  相似文献   

17.
Ascorbic acid has been shown to stimulate endothelial nitric oxide (NO) synthesis in a time- and concentration-dependent fashion without affecting NO synthase (NOS) expression or l-arginine uptake. The present study investigates if the underlying mechanism is related to the NOS cofactor tetrahydrobiopterin. Pretreatment of human umbilical vein endothelial cells with ascorbate (1 microm to 1 mm, 24 h) led to an up to 3-fold increase of intracellular tetrahydrobiopterin levels that was concentration-dependent and saturable at 100 microm. Accordingly, the effect of ascorbic acid on Ca(2+)-dependent formation of citrulline (co-product of NO) and cGMP (product of the NO-activated soluble guanylate cyclase) was abolished when intracellular tetrahydrobiopterin levels were increased by coincubation of endothelial cells with sepiapterin (0.001-100 microm, 24 h). In contrast, ascorbic acid did not modify the pterin affinity of endothelial NOS, which was measured in assays with purified tetrahydrobiopterin-free enzyme. The ascorbate-induced increase of endothelial tetrahydrobiopterin was not due to an enhanced synthesis of the compound. Neither the mRNA expression of the rate-limiting enzyme in tetrahydrobiopterin biosynthesis, GTP cyclohydrolase I, nor the activities of either GTP cyclohydrolase I or 6-pyruvoyl-tetrahydropterin synthase, the second enzyme in the de novo synthesis pathway, were altered by ascorbate. Our data demonstrate that ascorbic acid leads to a chemical stabilization of tetrahydrobiopterin. This was evident as an increase in the half-life of tetrahydrobiopterin in aqueous solution. Furthermore, the increase of tetrahydrobiopterin levels in intact endothelial cells coincubated with cytokines and ascorbate was associated with a decrease of more oxidized biopterin derivatives (7,8-dihydrobiopterin and biopterin) in cells and cell supernatants. The present study suggests that saturated ascorbic acid levels in endothelial cells are necessary to protect tetrahydrobiopterin from oxidation and to provide optimal conditions for cellular NO synthesis.  相似文献   

18.
J. Neurochem. (2012) 122, 1211-1218. ABSTRACT: In this study, we used the GTP cyclohydrolase I-deficient mice, i.e., hyperphenylalaninemic (hph-1) mice, to test the hypothesis that the loss of tetrahydrobiopterin (BH(4) ) in cerebral microvessels causes endothelial nitric oxide synthase (eNOS) uncoupling, resulting in increased superoxide anion production and inhibition of endothelial nitric oxide signaling. Both homozygous mutant (hph-1(-/-) ) and heterozygous mutant (hph-1(+/-) mice) demonstrated reduction in GTP cyclohydrolase I activity and reduced bioavailability of BH(4) . In the cerebral microvessels of hph-1(+/-) and hph-1(-/-) mice, increased superoxide anion production was inhibited by supplementation of BH(4) or NOS inhibitor- L- N(G) -nitro arginine-methyl ester, indicative of eNOS uncoupling. Expression of 3-nitrotyrosine was significantly increased, whereas NO production and cGMP levels were significantly reduced. Expressions of antioxidant enzymes namely copper and zinc superoxide dismutase, manganese superoxide dismutase, and catalase were not affected by uncoupling of eNOS. Reduced levels of BH(4) , increased superoxide anion production, as well as inhibition of NO signaling were not different between the microvessels of male and female mice. The results of our study are the first to demonstrate that, regardless of gender, reduced BH(4) bioavailability causes eNOS uncoupling, increases superoxide anion production, inhibits eNOS/cGMP signaling, and imposes significant oxidative stress in the cerebral microvasculature.  相似文献   

19.
Tetrahydrobiopterin (BH4) is an essential co-factor for endothelial nitric oxide synthase enzymatic activity. GTP cyclohydrolase I (GTPCH I) is the rate-limiting enzyme in BH4 synthesis. This study set out to test the hypothesis that in vivo gene transfer of GTPCH I to endothelial cells could increase bioavailability of BH4, enhance biosynthesis of nitric oxide and thereby enhance endothelium-dependent relaxations mediated by nitric oxide. In vivo gene transfer was carried out by adenovirus (Ad)-mediated delivery into rabbit carotid arteries. Each artery was transduced by 20-min intraluminal incubation of 10(9) plaque-forming units of Ad-encoding GTPCH I (AdGTPCH) or beta-galactosidase as a control. The rabbits were euthanized 72 h later, and vasomotor function of isolated arteries was assessed by isometric force recording. GTPCH I enzymatic activity, BH4, and oxidized biopterin levels were detected with the use of HPLC, and cGMP was measured with the use of radioimmunoassay. Expression of recombinant proteins was detected predominantly in endothelial cells. Both GTPCH I activity and BH4 levels were increased in arteries transduced with AdGTPCH. However, contraction to phenylephrine (10(-5) to 10(-9) M), endothelium-dependent relaxation to acetylcholine (10(-5) to 10(-9) M) and cGMP levels were not significantly affected by increased expression of GTPCH I. Our results suggest that expression of GTPCH I in vascular endothelium in vivo increases intracellular concentration of BH4. However, under physiological conditions, it appears that this increase does not affect nitric oxide production in endothelial cells of the carotid artery.  相似文献   

20.
Shear stress, imposed on the vascular endothelium by circulating blood, critically sustains vascular synthesis of nitric oxide (NO). Endothelial NO synthase (eNOS) activity is determined by heat shock protein 90 (HSP90), caveolin-1, and the cofactor tetrahydrobiopterin (BH4). To determine whether increased blood flow concomitantly upregulates eNOS and GTP cyclohydrolase I (GTPCH I, the rate-limiting enzyme in BH4 biosynthesis), an aortocaval fistula model in the rat was employed wherein aortic blood flow is enhanced proximal but decreased distal to the fistula. Eight weeks after the creation of the aortocaval fistula, the proximal and distal aortic segments were harvested; sham-operated rats served as controls. Vasomotor function was assessed by isometric force recording. Expression of eNOS, HSP90, caveolin-1, Akt, phosphorylated eNOS (eNOS-Ser1177), and GTPCH I were determined by Western blot analysis. Biosynthesis of BH4 and GTPCH-I activity was examined by HPLC. In the aortic segments exposed to increased flow, contractions to KCl and phenylephrine were reduced, whereas endothelium-dependent relaxations were not affected compared with sham-operated or aortic segments with reduced blood flow. Expression of eNOS, caveolin-1, phosphorylated Akt, and eNOS-Ser1177 was enhanced in aortas exposed to increased blood flow. High flow augmented levels of cGMP and BH4 and increased expression of GTPCH I. In aggregate, these findings provide the first demonstration in vivo that coordinated vascular upregulation of eNOS, and GTPCH I accompanies increased blood flow. This induction of GTPCH I increases BH4 production, thereby optimizing the generation of NO by eNOS and thus the adaptive, vasorelaxant response required in sustaining increased blood flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号