首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane-type 1 matrix metalloproteinase (MT1- MMP) localizes at the front of migrating cells and degrades the extracellular matrix barrier during cancer invasion. However, it is poorly understood how the polarized distribution of MT1-MMP at the migration front is regulated. Here, we demonstrate that MT1-MMP forms a complex with CD44H via the hemopexin-like (PEX) domain. A mutant MT1-MMP lacking the PEX domain failed to bind CD44H and did not localize at the lamellipodia. The cytoplasmic tail of CD44H, which comprises interfaces that associate with the actin cytoskeleton, was important for its localization at lamellipodia. Overexpression of a CD44H mutant lacking the cytoplasmic tail also prevented MT1-MMP from localizing at the lamellipodia. Modulation of F-actin with cytochalasin D revealed that both CD44H and MT1-MMP co-localize closely with the actin cytoskeleton, dependent on the cytoplasmic tail of CD44H. Thus, CD44H appears to act as a linker that connects MT1-MMP to the actin cytoskeleton and to play a role in directing MT1-MMP to the migration front. The PEX domain of MT1-MMP was indispensable in promoting cell migration and CD44H shedding.  相似文献   

2.
3.
Hyaluronan (HA) is an extracellular matrix glycosaminoglycan that interacts with cell-surface receptors, including CD44. Although HA usually exists as a high molecular mass polymer, HA of a much lower molecular mass that shows a variety of biological activities can be detected under certain pathological conditions, particularly in tumors. We previously reported that low molecular weight HAs (LMW-HAs) of a certain size range induce the proteolytic cleavage of CD44 from the surface of tumor cells and promote tumor cell migration in a CD44-dependent manner. Here, we show that MIA PaCa-2, a human pancreatic carcinoma cell line, secreted hyaluronidases abundantly and generated readily detectable levels of LMW-HAs ranging from approximately 10- to 40-mers. This occurred in the absence of any exogenous stimulation. The tumor-derived HA oligosaccharides were able to enhance CD44 cleavage and tumor cell motility. Inhibition of the CD44-HA interaction resulted in the complete abrogation of these cellular events. These results are consistent with the concept that tumor cells generate HA oligosaccha-rides that bind to tumor cell CD44 through the expression of their own constitutive hyaluronidases. This enhances their own CD44 cleavage and cell motility, which would subsequently promote tumor progression. Such an autocrine/paracrine-like process may represent a novel activation mechanism that would facilitate and promote the malignant potential of tumor cells.  相似文献   

4.
Membrane type 1 matrix metalloproteinase (MT1-MMP) is a transmembrane MMP that plays important roles in migratory processes underlying tumor invasion and angiogenesis. In addition to its matrix degrading activity, MT1-MMP also contains a short cytoplasmic domain whose involvement in cell locomotion seems important but remains poorly understood. In this study, we show that MT1-MMP is phosphorylated on the unique tyrosine residue located within this cytoplasmic sequence (Tyr(573)) and that this phosphorylation requires the kinase Src. Using phosphospecific antibodies recognizing MT1-MMP phosphorylated on Tyr(573), we observed that tyrosine phosphorylation of the enzyme is rapidly induced upon stimulation of tumor and endothelial cells with the platelet-derived chemoattractant sphingosine-1-phosphate, suggesting a role in migration triggered by this lysophospholipid. Accordingly, overexpression of a nonphosphorylable MT1-MMP mutant (Y573F) blocked sphingosine-1-phosphate-induced migration of Human umbilical vein endothelial cells and HT-1080 (human fibrosarcoma) cells and failed to stimulate migration of cells lacking the enzyme (bovine aortic endothelial cells). Altogether, these findings strongly suggest that the Src-dependent tyrosine phosphorylation of MT1-MMP plays a key role in cell migration and further emphasize the importance of the cytoplasmic domain of the enzyme in this process.  相似文献   

5.
Cells are regulated by many different means, and there is more and more evidence emerging that changes in the microenvironment greatly affect cell function. MT1-MMP is a type I transmembrane proteinase which participates in pericellular proteolysis of extracellular matrix (ECM) macromolecules. The enzyme is cellular collagenase essential for skeletal development, cancer invasion, growth, and angiogenesis. MT1-MMP promotes cell invasion and motility by pericellular ECM degradation, shedding of CD44 and syndecan1, and by activating ERK. Thus MT1-MMP is one of the factors that influence the cellular microenvironment and thereby affect cell-signaling pathways and eventually alters cellular behavior. As a proteinase, MT1-MMP is regulated by inhibitors, but it also requires formation of a homo-oligomer complex, localization to migration front of the cells, and internalization to become a "functionally active" cell function modifier. Developing new means to inhibit "functional activity" of MT1-MMP may be a new direction to establish treatments for the diseases that MT1-MMP mediates such as cancer and rheumatoid arthritis.  相似文献   

6.
The role of MT2-MMP in cancer progression remains to be elucidated in spite of many reports on MT1-MMP. Using a human fibrosarcoma cell, HT1080 and a human gastric cancer cell, TMK-1, endogenous expression of MT1-MMP or MT2-MMP was suppressed by siRNA induction to examine the influence of cancer progression in vitro and in vivo. In HT1080 cells, positive both in MT1-MMP and MT2-MMP, the migration as well as the invasion was impaired by MT1-MMP or MT2-MMP suppression. Also cell proliferation in three dimensional (3D) condition was inhibited by MT1-MMP or MT2-MMP suppression and tumor growth in the nude mice transplanted with tumor cells were reduced either MT1-MMP or MT2-MMP suppression with a prolongation of survival time in vivo. MT2-MMP suppression induces more inhibitory effects on 3D proliferation and in vivo tumor growth than MT1-MMP. On the other hand, TMK-1 cells, negative in MT1-MMP and MMP-2 but positive in MT2-MMP, all the migratory, invasive, and 3D proliferative activities in TMK-1 are decreased only by MT2-MMP suppression. These results indicate MT2-MMP might be involved in the cancer progression more than or equal to MT1-MMP independently of MMP-2 and MT1-MMP.  相似文献   

7.
Processing of the laminin-5 (Ln-5) gamma 2 chain by membrane-type-1 matrix metalloproteinases (MT1-MMP) promotes migration and invasion of epithelial and tumor cells. We previously demonstrated that MT1-MMP cleaves the rat gamma 2 chain at two sites, producing two major C-terminal fragments of 100 (gamma 2') and 80 (gamma 2 x) kDa and releasing a 30-kDa fragment containing epidermal growth factor (EGF)-like motifs (domain III (DIII) fragment). The DIII fragment bound the EGF receptor (EGF-R) and stimulated cell scattering and migration. However, it is not yet clear whether human Ln-5 is processed in a similar fashion to rat Ln-5 because one of the two MT1-MMP cleavage sites present in rat gamma 2 is not found in human gamma 2. To identify the exact cleavage site for MT1-MMP in human Ln-5, we purified both the whole molecule as well as a monomeric form of human gamma 2 that is frequently expressed by malignant tumor cells. Like rat Ln-5, both the monomer of gamma 2, as well as the gamma 2 derived from intact Ln-5, were cleaved by MT1-MMP in vitro, generating C-terminal gamma 2' (100 kDa) and gamma 2 x (85 kDa) fragments and releasing DIII fragments (25 and 27k Da). In addition to the conserved first cleavage site used to generate gamma 2', two adjacent cleavage sites (Gly(559)-Asp(560) and Gly(579)-Ser(580)) were found that could generate the gamma 2 x and DIII fragments. Two of the three EGF-like motifs present in the rat DIII fragment are present in the 27-kDa human fragment, and like the rat DIII, this fragment can promote breast carcinoma cell migration by engaging the EGF-R. These results suggest that MT1-MMP processing of Ln-5 in human tumors may stimulate the EGF-R, resulting in increased tumor cell scattering and migration that could possibly increase their metastatic potential.  相似文献   

8.
Membrane type 1 matrix metalloproteinase (MT1-MMP) is a type I transmembrane MMP shown to play a critical role in normal development and in malignant processes. Emerging evidence indicates that MT1-MMP is regulated by a process of ectodomain shedding. Active MT1-MMP undergoes autocatalytic processing on the cell surface, leading to the formation of an inactive 44-kDa fragment and release of the entire catalytic domain. Analysis of the released MT1-MMP forms in various cell types revealed a complex pattern of shedding involving two major fragments of 50 and 18 kDa and two minor species of 56 and 31-35 kDa. Protease inhibitor studies and a catalytically inactive MT1-MMP mutant revealed both autocatalytic (18 kDa) and non-autocatalytic (56, 50, and 31-35 kDa) shedding mechanisms. Purification and sequencing of the 18-kDa fragment indicated that it extends from Tyr(112) to Ala(255). Structural and sequencing data indicate that shedding of the 18-kDa fragment is initiated at the Gly(284)-Gly(285) site, followed by cleavage between the conserved Ala(255) and Ile(256) residues near the conserved methionine turn, a structural feature of the catalytic domain of all MMPs. Consistently, a recombinant 18-kDa fragment had no catalytic activity and did not bind TIMP-2. Thus, autocatalytic shedding evolved as a specific mechanism to terminate MT1-MMP activity on the cell surface by disrupting enzyme integrity at a vital structural site. In contrast, functional data suggest that the non-autocatalytic shedding generates soluble active MT1-MMP species capable of binding TIMP-2. These studies suggest that ectodomain shedding regulates the pericellular and extracellular activities of MT1-MMP through a delicate balance of active and inactive enzyme-soluble fragments.  相似文献   

9.
Membrane type-1 matrix metalloproteinase (MT1-MMP) shedding of the signaling and adhesion CD44 receptor plays a significant role in stimulating cancer cells locomotion. Similarly, and unexpectedly, MT1-MMP-dependent shedding of CD44 plays an equally significant role in regulating the adhesion to the pancreatic vasculature and also in the concomitant transendothelial migration and intra-islet homing of the diabetogenic, cytotoxic, T cells. Inactivation of the T cell MT1-MMP functionality by clinically tested, synthetic inhibitors leads to an extended immobilization of the T killer cells on the pancreatic vasculature and, subsequently, to immunosuppression because of the cessation of the T cell transmigration and homing. Injections of insulin jointly with an MT1-MMP inhibitor stimulated the regeneration of functional, insulin-producing, beta-cells in acutely diseased non-obese diabetic (NOD) mice. After insulin injections were suspended and inhibitor injections continued, diabetic NOD mice maintained mild hyperglycemia and did not require further insulin injections for survival. Overall, these data provide a substantive mechanistic rationale for clinical trials of the inhibitors of MT1-MMP in human type 1 diabetes.  相似文献   

10.
MT1-MMP (membrane type 1-matrix metalloproteinase) plays important roles in cell growth and tumor invasion via mediating cleavage of MMP2/gelatinase A and a variety of substrates including type I collagen. BST-2 (bone marrow stromal cell antigen 2) is a membrane tetherin whose expression dramatically reduces the release of a broad range of enveloped viruses including HIV from infected cells. In this study, we provided evidence that both transient and IFN-α induced BST-2 could decrease the activity of MMP2 via binding to cellular MT1-MMP on its C-terminus and inhibiting its proteolytic activity; and finally block cell growth and migration. Zymography gel and Western blot experiments demonstrated that BST-2 decreased MMP2 activity, but no effect on the expression of MMP2 and MT1-MMP genes. Confocal and immunoprecipitation data showed that BST-2 co-localized and interacted with MT1-MMP. This interaction inhibited the proteolytic enzyme activity of MT1-MMP, and blocked the activation of proMMP2. Experimental results of C-terminus deletion mutant of MT1-MMP showed that activity of MMP2 was no change and also no interaction existed between the mutant and BST-2 after co-transfection with the mutant and BST-2. It meant that C-terminus of MT1-MMP played a key role in the interaction with BST-2. In addition, cell growth in 3D type I collagen gel lattice and cell migration were all inhibited by BST-2. Taken together, BST-2, as a membrane protein and a tetherin of enveloped viruses, was a novel inhibitor of MT1-MMP and could be considerable as an inhibitor of cancer cell growth and migration on clinic.  相似文献   

11.
Itoh Y 《IUBMB life》2006,58(10):589-596
Controlled cell migration is a fundamental and critical event in many physiological processes. However once control is lost, cell migration facilitates disease progression such as seen in cancer metastasis, atherosclerosis, and rheumatoid arthritis. One of the critical proteinases involved in cell migration is membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP-14). MT1-MMP degrades extracellular matrix to make a path for cells to migrate, sheds cell surface molecules to give migratory signals, and activates ERK (extracellular signal-regulated protein kinase) enhancing cell migration. For MT1-MMP to promote cell migration, it needs to act in co-ordination with other cell migration machinery. Understanding such regulatory links may provide insights into the development of novel disease therapies.  相似文献   

12.
Cell migration and proteolysis are two essential processes during tumor invasion and metastasis. Matrix metalloproteinase (MMP)-2 (type IV collagenase; gelatinase A), is implicated in tumor metastasis as well as in primary tumor growth. The Rho family of small GTPases regulates the dynamics of actin cytoskeleton associated with cell motility. In this report, we provide evidence that Rac1, one member of Rho-related small GTPases, is a mediator of MMP-2 activation in HT1080 fibrosarcoma cells cultured in three-dimensional collagen gel (3D-col) and that MMP-2 activation is required for Rac1-promoted cell invasion through collagen barrier. Stable expression of dominant negative (Rac1V12N17) and constitutively active Rac1 (Rac1V12), respectively, in HT1080 cells demonstrates that Rac1 promoted cell invasiveness across type I collagen and collagen-dependent MMP-2 activation. Active Rac1 is sufficient to induce MMP-2 activation in cells cultured in fibrin gel, an extracellular matrix component that does not support MMP-2 activation. The Rac1-dependent MMP-2 activation occurred in a cell-associated fashion and required MMP activities. Because the cell membrane-mediated MMP-2 activation requires MT1-MMP and low amount of issue inhibitor of matrix metalloproteinase-2 (TIMP-2), their expression was examined. Rac1 modulated MT1-MMP mRNA level and the accumulation of a 43-kDa form of MT1-MMP protein, in correlation with MMP-2 activation profile. However, TIMP-2 expression was independent of Rac1 activity. The coordinate modulation of MMP-2 activity and MT1-MMP expression/processing by Rac1 is consistent with cell collagenolytic activity. The C-terminal hemopexin-like domain of MMP-2, which interferes with the cell membrane activation of MMP-2, reduced Rac1-promoted cell invasiveness as monitored by collagen invasion assay. These results suggest that collagen-dependent MMP-2 activation and MT1-MMP expression/processing contribute to Rac-promoted tumor cell invasion through interstitial collagen barrier.  相似文献   

13.
To test if proteolysis is involved in tumor cell extravasation, we developed an in vitro model where tumor cells cross an endothelial monolayer cultured on a basement membrane. Using this model we classified the ability of the cells to transmigrate through the endothelial cell barrier onto the underlying matrix, and scored this invasion according to the stage of passage through the endothelium. Metalloproteinase inhibitors reduced tumor cell extravasation by at least 35%. Visualization of protease and cell adhesion molecules by confocal microscopy demonstrated the cell surface localization of MMP-2, MMP-9, MT1-MMP, furin, CD44 and αvβ3, during the process of transendothelial migration. By the addition of inhibitors and bio-modulators we assessed the functional requirement of the aforementioned molecules for efficient migration. Proteolytic digestion occurred at the cell-matrix interface and was most evident during the migratory stage. All of the inhibitors and biomodulators affected the transition of the tumor cells into the migratory stage, highlighting the most prevalent use of proteolysis at this particular step of tumor cell extravasation. These data suggest that a proteolytic interface operates at the tumor cell surface within the tumor-endothelial cell microenvironment.  相似文献   

14.
Recently, we have shown that membrane type 1 matrix metalloproteinase (MT1-MMP) exhibits integrin convertase activity. Similar to furin-like proprotein convertases, MT1-MMP directly processes a single chain precursor of alpha(v) integrin subunit (pro-alpha(v)) into the heavy and light alpha-chains connected by a disulfide bridge. To evaluate functionality of MT1-MMP-processed integrins, we examined breast carcinoma MCF7 cells co-expressing alpha(v)beta(3) integrin with either the wild type or mutant MT1-MMP in a variety of migration and adhesion tests. Specific inhibitors of proprotein convertases and MMP were employed in our cell system to attenuate the individual pathways of pro-alpha(v) maturation. We present evidence that MT1-MMP cleavage of pro-alpha(v) in the cells did not affect RGD-ligand binding of the resulting alpha(v)beta(3) integrin but enhanced outside-in signal transduction through a focal adhesion kinase pathway. Enhanced tyrosine phosphorylation of focal adhesion kinase in cells co-expressing MT1-MMP and alpha(v)beta(3) integrin contributed to efficient adhesion and, especially, migration of cells on vitronectin, a ligand of alpha(v)beta(3) integrin. These mechanisms underscore the significance of a coordinated interplay between MT1-MMP and alpha(v)beta(3) integrin in tumor cells and identify downstream signaling pathways resulting from their interactions. Regulation of integrin maturation and functionality may be an important role of MT1-MMP in tumor cells.  相似文献   

15.
Emerging evidence has implicated the role of tumor initiating cells (TICs) in the process of cancer metastasis. The mechanism underlying the conversion of TICs from stationary to invasive remains to be characterized. In this report, we employed less invasive breast cancer TICs, SK-3rd, that displays CD44(high)/CD24(low) with high mammosphere-forming and tumorigenic capacities, to investigate the mechanism by which stationary TICs are converted to invasive TICs. Invasive ability of SK-3rd TICs was markedly enhanced when the cells were cultured under hypoxic conditions. Given the role of membrane type 1-matrix metalloproteinase (MT1-MMP) in cancer invasion/metastasis, we explored a possible involvement of MT1-MMP in hypoxia-induced TIC invasion. Silencing of MT1-MMP by a shRNA approach resulted in diminution of hypoxia-induced cell invasion in vitro and metastasis in vivo. Under hypoxic conditions, MT1-MMP redistributed from cytoplasmic storage pools to the cell surface of TICs, which coincides with the increased cell invasion. In addition, CD44, a cancer stem-like cell marker, inversely correlated with increased cell surface MT1-MMP. Interestingly, cell surface MT1-MMP gradually disappeared when the hypoxia-treated cells were switched to normoxia, suggesting the plasticity of TICs in response to oxygen content. Furthermore, we dissected the pathways leading to upregulated MT1-MMP in cytoplasmic storage pools under normoxic conditions, by demonstrating a cascade involving Twist1-miR10b-HoxD10 leading to enhanced MT1-MMP expression in SK-3rd TICs. These observations suggest that MT1-MMP is a key molecule capable of executing conversion of stationary TICs to invasive TICs under hypoxic conditions and thereby controlling metastasis.  相似文献   

16.
Understanding the function of invasion-promoting membrane type-1 matrix metalloproteinase (MT1-MMP) is of paramount importance for understanding cancer biology. MT1-MMP is synthesized in cells as a latent zymogen that requires the cleavage of its prodomain to exert the proteolytic activity. The mature alphav integrin subunit is also generated by endoproteolytic cleavage of the alphav subunit precursor (pro-alphav). Cleavage by furin is considered to be a principal event in the activation of both MT1-MMP and pro-alphav. To elucidate the alternative activation pathway of MT1-MMP and pro-alphav, we employed furin-negative LoVo cells, which co-express MT1-MMP with integrin alphavbeta3. In these cells the MT1-MMP proenzyme was rapidly trafficked to the plasma membrane via an unconventional Brefeldin A-resistant pathway and, then, autocatalytically processed on the cell surface. Next, the MT1-MMP activity converted the cell surface-associated pro-alphav into the mature alphav integrin, represented by the disulfide-bonded heavy and light chains, and promoted the formation of the functional integrin alphavbeta3 heterodimer. These events stimulated cell motility in vitro, and malignant invasion and tumor growth in vivo. Our data suggest that in furin-negative colon carcinoma cells MT1-MMP is autocatalytically processed and the active protease then operates as a prointegrin convertase. Our findings argue strongly that the processing by furin is not a prerequisite for the activation of MT1-MMP.  相似文献   

17.
Membrane type 1 (MT1) matrix metalloproteinase (MMP-14) is a membrane-tethered MMP considered to be a major mediator of pericellular proteolysis. MT1-MMP is regulated by a complex array of mechanisms, including processing and endocytosis that determine the pool of active proteases on the plasma membrane. Autocatalytic processing of active MT1-MMP generates an inactive membrane-tethered 44-kDa product (44-MT1) lacking the catalytic domain. This form preserves all other enzyme domains and is retained at the cell surface. Paradoxically, accumulation of the 44-kDa form has been associated with increased enzymatic activity. Here we report that expression of a recombinant 44-MT1 (Gly(285)-Val(582)) in HT1080 fibrosarcoma cells results in enhanced pro-MMP-2 activation, proliferation within a three-dimensional collagen I matrix, and tumor growth and lung metastasis in mice. Stimulation of pro-MMP-2 activation and growth in collagen I was also observed in other cell systems. Expression of 44-MT1 in HT1080 cells is associated with a delay in the rate of active MT1-MMP endocytosis resulting in higher levels of active enzyme at the cell surface. Consistently, deletion of the cytosolic domain obliterates the stimulatory effects of 44-MT1 on MT1-MMP activity. In contrast, deletion of the hinge turns the 44-MT1 form into a negative regulator of enzyme function in vitro and in vivo, suggesting a key role for the hinge region in the functional relationship between active and processed MT1-MMP. Together, these results suggest a novel role for the 44-kDa form of MT1-MMP generated during autocatalytic processing in maintaining the pool of active enzyme at the cell surface.  相似文献   

18.
19.
Membrane-type 1 matrix metalloproteinase 1 (MT1-MMP) is a potent modulator of the pericellular microenvironment and regulates cellular functions in physiological and pathological settings in mammals. MT1-MMP mediates its biological effects through cleavage of specific substrate proteins. However, our knowledge of MT1-MMP substrates remains limited. To identify new substrates of MT1-MMP, we purified proteins associating with MT1-MMP in human epidermoid carcinoma A431 cells and analyzed them by mass spectrometry. We identified 163 proteins, including membrane proteins, cytoplasmic proteins, and functionally unknown proteins. Sixty-four membrane proteins were identified, and they included known MT1-MMP substrates. Of these, eighteen membrane proteins were selected, and we confirmed their association with MT1-MMP using an immunoprecipitation assay. Co-expression of each protein together with MT1-MMP revealed that nine proteins were cleaved by MT1-MMP. Lutheran blood group glycoprotein (Lu) is one of the proteins cleaved by MT1-MMP, and we confirmed the cleavage of the endogenous Lu protein by endogenous MT1-MMP in A431 cells. Mutation of the cleavage site of Lu abrogated processing by MT1-MMP. Lu protein expressed in A431 cells bound to laminin-511, and knockdown of MT1-MMP in these cells increased both their binding to laminin-511 and the amount of Lu protein on the cell surface. Thus, the identified membrane proteins associated with MT1-MMP are an enriched source of physiological MT1-MMP substrates.Cells in tissues are surrounded by an extracellular cellular matrix that interacts with cells to regulate their activity (1, 2). Matrix metalloproteinases (MMPs)3 are endopeptidases responsible for extracellular matrix degradation and thereby regulate turnover of the extracellular matrix. However, recent studies have demonstrated that substrates of MMPs are expanded to a variety of pericellular proteins.MT1-MMP/MMP14 is an integral membrane proteinase that cleaves multiple proteins in the pericellular milieu and thereby regulates various cell functions. Substrates of MT1-MMP identified to date include extracellular matrix proteins (type I collagen, fibronectin, vitronectin, laminin-1 and -5, and others), cell adhesion molecules (CD44, syndecan-1, and αv integrin), cytokines (SDF-1 and transforming growth factor-β and others), and latent forms of pro-MMPs (pro-MMP-2 and pro-MMP13) (35). Processing of these proteins by MT1-MMP alters their activities and thereby regulates a variety of cellular functions, such as motility, invasion, growth, differentiation, and apoptosis. Consistent with these functions, forced expression of MT1-MMP in tumor cells enhances behavior consistent with increased malignancy, such as rapid tumor growth, invasion, and metastasis (6). However, MT1-MMP is normally expressed in various types of cell and mice deficient in MT1-MMP expression (MT1−/−) display pleiotropic defects (710). However, we as yet have only limited knowledge of the physiological substrates of MT1-MMP that could explain such pleiotropic effects.Proteases interact with their substrates at least transiently, but in some cases such interaction is more stable. For instance, type I collagen binds MT1-MMP via a hemopexin-like domain and is cleaved (11, 12). Cleavage of collagen by MT1-MMP regulates cell growth and invasion in a collagen-rich environment (13). CD44, a hyaluronic acid receptor, also binds to the hemopexin of MT1-MMP and is cleaved (14). Expression of CD44 and MT1-MMP in tumor cells promotes cell migration, accompanied by the shedding of CD44 by MT1-MMP (14, 15). pro-MMP-2, which is cleaved by MT1-MMP for activation, forms a tri-molecular complex with MT1-MMP and TIMP-2 (3, 16). Therefore, screening of proteins that associate with MT1-MMP may provide a systematic method to identify potential substrates of MT1-MMP in cells. In addition, these proteins may also be regulatory proteins of MT1-MMP.To identify proteins associating with MT1-MMP in different types of tumor cells, we first studied conditions for cell lysis using malignant melanoma A375 cells and following purification method of the proteins as reported recently (17). Proteins purified in this manner were analyzed by high-throughput proteomic analysis (1821). Interestingly, approximately one-half of the membrane proteins identified in our previous study could be cleaved by MT1-MMP at least in vitro. Here, we applied this approach to human carcinoma cells (A431) that originate from epidermoid cells and further validated the systemic whole cell analysis method. To evaluate whether the MT1-MMP-associated membrane proteins so identified include physiological targets of MT1-MMP activity, we select one of them, Lutheran blood group glycoprotein (Lu), and evaluate its processing in A431 cells.  相似文献   

20.
Glioma cell-surface binding to hyaluronan (HA), a major constituent of the brain extracellular matrix (ECM) environment, is regulated through a complex membrane type-1 matrix metalloproteinase (MT1-MMP)/CD44/caveolin interaction that takes place at the leading edges of invading cells. In the present study, intracellular transduction pathways required for the HA-mediated recognition by infiltrating glioma cells in brain was investigated. We show that the overexpression of the GTPase RhoA up-regulated MT1-MMP expression and triggered CD44 shedding from the U-87 glioma cell surface. This potential implication in cerebral metastatic processes was also observed in cells overexpressing the full-length recombinant MT1-MMP, while the overexpression of a cytoplasmic domain truncated from of MT1-MMP failed to do so. This suggests that the cytoplasmic domain of MT1-MMP transduces intracellular signaling leading to RhoA-mediated CD44 shedding. Treatment of glioma cells with the Rho-kinase (ROK) inhibitor Y27632, or with EGCg, a green tea catechin with anti-MMP and anti-angiogenesis activities, antagonized both RhoA- and MT1-MMP-induced CD44 shedding. Conversely, overexpression of recombinant ROK stimulated CD44 release. Taken together, our results suggest that RhoA/ROK intracellular signaling regulates MT1-MMP-mediated CD44 recognition of HA. These molecular processes may partly explain the diffuse brain-infiltrating character of glioma cells within the surrounding parenchyma and thus be a target for new approaches to anti-tumor therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号