首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At present, there is a renewed interest in thymic function and its secretions in relation to endocrine control and reproductive function. In an initial experiment, 60 crossbred heifers (18-20 mo) were detected in estrus and assigned to control or FSH superovulatory groups. On Days 7-14 of the subsequent estrous cycle, FSH was administered for 5 days and prostaglandin F2 alpha (PGF2 alpha) was administered at 48 and 60 h after the initial FSH injection. Control animals received only PGF2 alpha injections between Days 9 and 15 of the cycle. Blood samples were collected from all animals at the time of PGF2 alpha injection and every 12 h thereafter to 72 h post PGF2 alpha injection. In a subsequent experiment, 103 crossbred heifers (16-18 mo) were superovulated with FSH and synchronized to estrus with PGF2 alpha administered 60 h after the initial FSH injection. Twenty-eight of the heifers received Norgestomet implants 12 h prior to the initial PGF2 alpha injection to inhibit the LH surge. Blood samples were collected from animals at 12-h intervals until the PGF2 alpha injection and every 6 h thereafter until 108 h post PGF2 alpha treatment. Although thymosin beta 4 concentrations did change over the estrual period, no differences were noted between control and superovulatory animals in the initial experiment even though estradiol concentrations were increased tenfold from the FSH stimulated ovary. In the second experiment, thymosin beta 4 and alpha 1 increased as the estrual period progressed and decreased (p less than 0.05) subsequent to the LH surge. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
An effective, reduced dosage (1 10 to 1 20 the systemic dose) method for administering prostaglandin F(2alpha) in heifers to induce estrus is presented in this study. The PGF(2alpha) was injected intraovarially in five heifers at a dose of 2 mg and in another five heifers at a dose of 1 mg. Five additional heifers were injected intraovarially with 0.5 ml of distilled water and served as the controls. Regression of the corpus luteum (CL) occurred in all PGF(2alpha)-treated heifers resulting in marked decline of the peripheral levels of progesterone 24 h after treatment. Estrus was expressed 1 to 3 d later. Regression of the CL, estrus, and decline in the peripheral levels of progesterone were not observed in the control heifers. Conception rates in the heifers given either 2 mg and 1 mg PGF(2alpha) were 60 and 100%, respectively. Seven calves were born at the end of the normal gestation period while one calf was aborted.  相似文献   

3.
This study was designed to test the efficacy of melengestrol acetate (MGA) in combination with prostaglandin F(2alpha) (PGF(2alpha)) in synchronizing estrus in cyclic and noncyclic heifers. One hundred thirty-one cyclic and prepubertal crossbred heifers were randomly assigned to three treatment groups: Controls (n = 43); MGA (0.5 mg/d for 7 d) and PGF(2alpha) (25 mg i.m. on Day 7; n = 44); and PGF(2alpha) (25 mg i.m. on Day 7; n = 44). Observations for estrus were made at 6-n intervals throughout the 7-d treatment period followed by a 34-d artificial insemination breeding season. A greater percentage (P < 0.05) of MGA-PGF(2alpha) noncyclic heifers showed behavioral estrus (91%) than did Control (67%) or PGF(2alpha) heifers (61%) during the 34-d artificial insemination period. There was no difference (P > 0.05) between synchronization rates of the MGA-PGF(2alpha) heifers and PGF(2alpha) heifers 7 d after PGF(2alpha) administration. The percentage of control animals in estrus during the first 25 d of the breeding season did non differ from the synchronized rates of MGA-PGF(2alpha) and PGF(2alpha) heifers (P > 0.05). Conception rates (heifers pregnant/heifers inseminated) did not differ (P > 0.05) for cyclic or prepubertal heifers among Control, MGA-PGF(2alpha) or PGF(2alpha) heifers. Though conception rates did not differ, there was a trend toward lowered conception rates in MGA-PGF(2alpha) heifers.  相似文献   

4.
This study was undertaken to determine whether a single injection of porcine FSH (pFSH) would induce a superovulatory response in cattle. Holstein heifers were given a single injection of pFSH (30 mg, s.c.) dissolved in saline (Group 1, n = 5); 50% polyvinylpyrrolidone (PVP; Group 2, n = 5); or 25% PVP (Group 3, n = 4). Group-4 heifers (n = 5) were given multiple intramuscular injections of pFSH every 12 h for 3 d at decreasing doses, for a total of 30 mg. All animals received a single injection of 750 microg PGF2 alpha 48 h after the initiation of pFSH treatment. Animals exhibiting estrus were artificially inseminated twice throughout estrus. Ova and embryos were recovered nonsurgically. Ovaries were examined by transrectal ultrasonography or by palpation per rectum on Day 7 or 8 of estrus. Plasma concentrations of pFSH, bovine FSH progesterone, estradiol-17 beta and inhibin were determined by specific radioimmunoassays. The number of corpora lutea (CL) and the numbers of total and transferable embryos which were detected and recovered in Groups 2 and 3 were equivalent to the numbers detected and recovered in Group 4. In Group 1, however, only 1 of 5 animals ovulated even a single oocyte. The present study demonstrated that only a single injection of pFSH dissolved in PVP was capable of inducing a superovulatory response by maintaining a high plasma FSH concentration to allow for the recovery of a sufficient number of embryos for transplantation.  相似文献   

5.
A total of 47 superovulations were conducted on forty non-lactating cows to evaluate two different schemes using follicle stimulating hormone (FSH) for superovulating cattle. Cows randomly assigned to treatment A (26 collections) were superovulated beginning on days 9 to 13 of the estrous cycle by giving FSH at decreasing doses of 6, 6, 5, 5, 3, 3, and 2, 2 mg for 4 consecutive days at 12-h intervals while those in treatment B (21 collections) also received 2.5 mg of FSH on days 3 and 4 of the estrous cycle. Animals in both treatments were each given 12.5 mg of prostaglandin F(2alpha) (PGF(2alpha)) at 60 and 72 h after the initiation of superovulatory treatment. Cows were artificially inseminated at 0, 12, and 24 h after the onset of estrus. Embryos were recovered nonsurgically on d 6 and morphologically evaluated. Ovaries of the cows were palpated at the end of flushings to assess the number of corpora lutea (CL). The mean interval from PGF(2alpha) to the onset of estrus was not different (P>0.05) for treatments A (56.6 h) and B (50.0 h). Also, mean duration of standing estrus was not different for either treatment (13.4 h vs 12.8 h). The mean number of CL palpated (7.3 vs 12.9) and ova recovered (5.5 vs 14.2) were significantly greater (P<0.05) for treatment B. The mean number of excellent and good embryos recovered was lower for treatment A animals, but not significant (P>0.05). Therefore, low doses of FSH given at the beginning of the cycle increased ovulation rate and embryo recovery in non-lactating cows.  相似文献   

6.
Two experiments evaluated a modified delivery of prostaglandin F2alpha (PGF2alpha) after a melengestrol acetate (MGA) treatment in Angus and Bos indicus x Bos taurus (BI) heifers. Experiment 1 was replicated three times with yearling BI heifers (n = 695). Heifers received MGA (0.5 mg head(-1) day(-1)) for 14 days. In Replications 1 and 2, heifers received either 25 mg of PGF2alpha im 19 days after MGA (single) or 12.5 mg of PGF2alpha im 19 and 20 days after MGA (split). In Replication 3, heifers received the same treatments, with PGF2alpha initiated either 18 or 19 days after MGA. Estrus was detected for 72 h after PGF2alpha, with AI commencing 8-12 h after a detected estrus. Heifers not observed in estrus by 72 h were timed-AI concomitant with GnRH (100 microg im). Heifers from Replication 2 (n = 146) had blood samples collected at the initial PGF2alpha and at timed-AI to determine corpus luteum (CL) regression by evaluating plasma progesterone concentrations. The interval from MGA withdrawal to PGF2alpha did not have a significant effect on any variable in Replication 3 and there were no treatment by replication effects for any variables, therefore data were pooled. Modifying the PGF2alpha treatment from a single treatment to two treatments on consecutive days increased (P < 0.05) 72 h estrous response (43.2% versus 50.1%), timed-AI (23.9% versus 33.5%) and total-AI pregnancy rates (34.5% versus 42.5%), and CL regression (79.1% versus 92.5%), respectively. In Experiment 2, yearling Angus (n = 66) and 2-year-old BI (n = 68) heifers were synchronized as per Experiment 1 (with the initial PGF2alpha 19 days after MGA). Neither breed nor PGF2alpha treatment effected (P > 0.05) 72 h estrous response, total-AI pregnancy rate, or CL regression rate. In conclusion, treating yearling BI heifers with split treatments of PGF2alpha (given on two consecutive days) improved estrous response and pregnancy rates by increasing PGF2alpha-induced luteolysis.  相似文献   

7.
Fourteen 6-mo-old crossbred heifers were used to study the effects of hysterectomy on corpora lutea (CL) function in prepubertal heifers. A series of follicle stimulating hormone (FSH) injections were given to induce multiple ovulations. Five d after the last injection of FSH, all animals were laparotomized, number of CL were recorded and the uteri were removed from six heifers. Blood samples were taken from all 14 animals at 28-d intervals over a 224-d period and serum progesterone concentrations were measured. Signs of behavioral estrus were not observed in the superovulated-hysterectomized (SO-H) heifers but estrous avtivity was observed in all superovulated-intact (SO-I) heifers. All heifers were slaughtered at 13 to 14 mo of age and ovaries were collected and observed for multiple corpora lutea (MCL). Four of six SO-H heifers had MCL, while the SO-I heifers had no more than one CL per ovary. In the SO-I heifers, MCL present at surgery regressed within 28 d as indicated by lack of serum progesterone at this time. The overall mean serum progesterone of SO-H heifers was higher (P<0.01) than SO-I heifers. These results suggest that MCL induced in prepubertal heifers were functional for approximately 224 d in the absence of the uterus.  相似文献   

8.
Ninety-five normal cyclic crossbred beef heifers were used to determine if the proportions of heifers showing estrus, intervals to estrus and corpus luteum (CL) function were influenced by PGF(2alpha) dosage and (or) the stage of luteal phase when PGF(2alpha) was administered. Heifers were assigned randomly to treatments in a 4 x 3 factorial arrangement. Treatments were 5, 10, 25 or 30 mg PGF(2alpha) injected either in early (5 to 9 d), mid (10 to 14 d) or late (15 to 19 d) stages of the luteal phase. Jugular samples were taken at 0 h and at 8 h-intervals for 48 h and again at 60 h after PGF(2alpha) treatment for progesterone assay. Heifers were observed for estrus continuously for 120 h PGF(2alpha) treatment. The proportion of heifers showing estrus was dependent upon (P<0.05) both dosage of PGF(2alpha) and stage of luteal phase. Heifers given 5 mg of PGF(2alpha) showed estrus only if treated during the late stage, while those given 10 mg of PGF(2alpha) showed a progressive increase of heifers in estrus as stage of luteal phase advanced. The proportion of heifers showing estrus after 25 and 30 mg of PGF(2alpha) increased from 56% for the early stage to 100% for the mid and late stages. Interval to estrus in heifers showing estrus within 120 h after PGF(2alpha) treatment did not differ (P>0.05) among dosages but tended (P=0.10) to be longer in heifers treated during the mid luteal stage (67 h) than in heifers treated in the two other stages (56 h). A greater proportion of heifers (P<0.05) showed estrus by 60 h after PGF(2alpha) when treated during the early and late luteal stages (75.5%) than for heifers treated during the mid luteal stage (30.4%). Patterns of progesterone concentrations were influenced (P=0.08) by the three way interaction of dosage, stage and time. In heifers that showed estrus, rate of decline in progesterone tended (P=0.07) to be slower during the mid luteal stage than during the early and late stages. Progesterone did not drop below 1 ng/ml until 32 h in heifers treated during the mid luteal stage; whereas progesterone dropped below 1 ng/ml by 24 h in heifers treated during the early and late stages. These data may be useful in designing more efficient systems for using PGF(2alpha) or its analogues in estrus synchronization of beef cattle.  相似文献   

9.
Wang JY  Larson LL  Owen FG 《Theriogenology》1982,18(4):461-473
Three trials were conducted to determine the effect of feeding supplemental beta-carotene on reproductive performance of Holstein heifers. In each trial, the animals were randomly assigned to either a control or treatment group. Animals in the treatment groups received 300 mg supplemental beta-carotene daily for the test periods which varied from 6 to 8 weeks in length. To facilitate sample collections and observations, estrus was synchronized with two injections of 25 mg PGF(2alpha) at 11 day intervals. The first injection was after 2 weeks of feeding supplemental beta-carotene. Blood serum beta-carotene concentrations were higher in the heifers fed supplemental beta-carotene as compared to concentrations in control heifers after 1 week of feeding and this difference increased throughout the test periods. The interval from the second injection of PGF(2alpha) to onset of estrus was shorter in the control heifers as compared to that interval in heifers supplemented with beta-carotene (trial 1,44.0 vs 56.0 hr; trial 2, 51.3 vs 70.8 hr; trial 3, 40.7 vs 62.5 hr, respectively). The intervals from PGF(2alpha) administration to the preovulatory LH peak (43.3 vs 61.5 hr) and ovulation (69.3 vs 85.9 hr) were also shorter in the control heifers in trial 3. No significant differences were found among treatments in the number of heifers that expressed estrus, the blood serum progesterone concentrations or the conception rates in any of the three trials.  相似文献   

10.
Current in vitro culture systems may not be adequate to support maturation, fertilization and embryo development of calf oocytes. Thus, we initiated a study to investigate an alternative method of assessing oocyte competence in vivo, initially using oocytes from adults. Experiment 1 was done to determine if follicle puncture would alter subsequent follicle development, ovulation and CL formation. In control (no follicle puncture, n = 3) and treated (follicle puncture, n = 3) heifers, ultrasound-guided transvaginal follicle aspiration was used to ablate all follicles > or = 5 mm at random stages of the estrous cycle to induce synchronous follicular wave emergence among heifers; PGF2 alpha was given 4 d later. Three days after PGF2 alpha, the preovulatory follicle in treated heifers was punctured with a 25-g needle between the exposed and nonexposed portions of the follicular wall, and 200 microL of PBS were infused into the antrum. There was no significant difference between control and treated heifers for mean diameter of the dominant follicle prior to ovulation, the interval to ovulation following PGF2 alpha, or first detection and diameter of the CL. Experiment 2 was designed to assess multiple embryo production following interfollicular transfer of oocytes (i.e., transfer of multiple oocytes from donor follicles to a single recipient preovulatory follicle). Follicular wave emergence was synchronized among control (no follicle puncture, n = 5), oocyte recipient (n = 7) and oocyte donor (n = 5) heifers as in Experiment 1. In control and oocyte recipient heifers, a norgestomet ear implant was placed at the time of ablation and removed 4 d later, at the second PGF2 alpha treatment. In oocyte donor heifers, FSH was given the day after ablation, and, 4 d later, oocytes were collected by transvaginal follicle aspiration, pooled and placed in holding medium. Five or 6 oocytes were loaded into the 25-g needle of the follicle infusion apparatus with < or = 200 microL of transfer medium. Puncture of the preovulatory follicle of recipient heifers was done as in Experiment 1. Immediately thereafter, LH was given to control and oocyte recipient heifers, but only the recipients were inseminated. Ovarian function was assessed by transrectal ultrasonography and control and oocyte recipient heifers were sent to the abattoir 2 or 3 d after ovulation, where excised oviducts were flushed. The interval between LH administration and ovulation (33 to 36 h) was highly synchronous within and among control and oocyte recipient heifers. Four of 5 (80%) ova were collected from controls and 16 of a potential 43 (37%) ova/embryos were recovered from oocyte recipients; 8 embryos from 3 heifers. Thus, the gamete recovery and follicular transfer procedure (GRAFT) did not alter ovulation or subsequent CL formation, and resulted in the recovery of multiple ova/embryos in which a total of 19 oocytes yielded as many as 8 early embryos, a 42% embryo production rate.  相似文献   

11.
The objective was to assess effects of long-term treatment with recombinant bovine somatotropin (bST) and estradiol-17beta (E2) on the number of follicles that ovulated in response to FSH. Non-lactating Holstein and Jersey cows (Trial 1, n=27) and Angus cows and heifers (Trial 2, n=35) received two ear implants of E2 and biweekly injections of bST in a 2 x 2 arrangement of treatments. Estradiol implants were removed 74.6 +/- 1.1 d after insertion and 18.1 +/- 0.9 d after the last biweekly injection of bST. Cows were stimulated with FSH-P beginning 2 d after removal of E2 implants, and PGF2alpha (PGF) was given on the third day of FSH treatment. Ovaries were collected to determine the number of CL at 1 to 2 wk after treatment with PGF. In Trial 2 only, cattle were inseminated at estrus and embryos were collected 6 to 8 d later. Implants of E2 increased (P < 0.01) serum E2 8-fold initially and E2 was still elevated 5-fold at removal of implants. Injections of bST increased (P < 0.01) serum growth hormone (GH) 15-fold and insulin-like growth factor-I (IGF-I) 3-fold. In Trial 1, number of CL was increased by the combination of bST+E2 (P < 0.01). In Trial 2, E2 increased the number of CL (P < 0.05), and bST increased the number of total ova and transferable embryos (P < 0.01). We conclude that long-term treatment with bST and E2 may interact to enhance follicular development and ovulatory response to FSH.  相似文献   

12.
Three dairy heifers (A, B and C) were induced to parturition with two prostaglandin (PG) F(2alpha) injections on day 268 and 269 of pregnancy. Signs of approaching parturition were carefully observed. The following parameters were registered: degrees of calving difficulty, date and time of parturition, calf's birth weight and calf's sex. Body temperature was measured and blood samples were taken every 3 h 3 days before the first PGF(2alpha) injection until 3 days after parturition. The plasma concentrations of the PGF(2alpha) metabolite, progesterone, cortisol, oestrone sulphate and pregnancy associated glycoproteins (PAGs) were analysed. Heifers A, B and C delivered 48, 51 and 57 h after the first PGF(2alpha) injection, respectively. Heifer A delivered without any signs of calving difficulty, whereas, the parturition was considered to be slight and moderate difficulty occurred in the delivery of heifers B and C, respectively. The calf of heifer C, without any abnormal gross-evidences, was stillborn. All animals had retained foetal membranes. A slight increase of the PGF(2alpha) metabolite at the time of parturition was found only in heifer C, whereas the levels dramatically increased in all animals 15-24 h after parturition. At the same time, progesterone levels decreased within 3 h after the first PGF(2alpha) injection (P < 0.05) and reached 0.8, 2.7 and 12.4 nmol/l at the time of parturition in heifers A, B and C, respectively. High release of cortisol at the time of parturition was seen in heifer C. Rising levels of oestrone sulphate around the time of parturition were recorded in all heifers, whereas, increasing levels of PAGs were recorded only in heifer A. In conclusion, the patterns of the PGF(2alpha) metabolite, cortisol, progesterone and PAGs were changed in the cases of calving difficulty and stillbirth after PGF(2alpha)-induction of parturition. However, the relationship between oestrone sulphate and PAGs and the status of foetal well being prior to parturition require further elucidation.  相似文献   

13.
One of the primary limiting factors to superovulation and embryo transfer in cattle has been the large variability in response, both between and within animals. It appears that the primary source of this problem is the variability in the population of gonadotropin-responsive follicles present in ovaries at the time of stimulation. We have shown that treatment of heifers with recombinant bovine somatotropin (rbGH) increases the number of small antral follicles (2 to 5 mm) and, therefore, enhances the subsequent superovulatory response to eCG. To investigate further the potential of using this approach to improve superovulatory regimens in cattle, the effect of rbGH pretreatment on the response to pituitary FSH was studied. The estrous cycles of 16 heifers were synchronized using PGF2alpha. On Day 7 of the synchronized cycle, half of the animals were injected with 320 mg sustained-release formulated rbGH, while the other half received 10 ml saline. Five days later, all heifers were given a decreasing-dose regimen of twice daily injections of oFSH for 4 d, incorporating an injection of PGF2alpha with the fifth FSH treatment, to induce superovulation. All animals were artificially inseminated twice with semen from the same bull during estrus. Ova/embryos were recovered nonsurgically on Days 6 to 8 of the following estrous cycle, and the ovulation rate assessed on Day 9 by laparoscopy. Using the same animals as described above, the experiment was repeated twice, 3 and 6 mo later, with no laparoscopy in the third experiment. The animals were randomized both between experiments and for the day of ova/embryo collection. Pretreatment of heifers with rbGH significantly (P < 0.01) increased the number of ovulations, total number of ova/embryos recovered and the number of transferable embryos. The percentage of transferable embryos was significantly (P < 0.05) increased by rbGH pretreatment. In addition, the incidence (2/16) of follicular cysts with a poor ovulatory response (< 6 ovulations) for the rbGH-pretreated heifers was significantly lower (P < 0.05) when compared with the incidence (7/16) in the control animals. It is concluded that pretreatment with rbGH may provide a useful approach for improving superovulatory response in cattle.  相似文献   

14.
The objective of this study was to determine whether nitric oxide (NO) is produced locally in the bovine corpus luteum (CL) and whether NO mediates prostaglandin F2alpha (PGF2alpha)-induced regression of the bovine CL in vivo. The local production of NO was determined in early I, early II, mid, late, and regressed stages of CL by determining NADPH-d activity and the presence of inducible and endothelial NO synthase immunolabeling. To determine whether inhibition of NO production counteracts the PGF2alpha-induced regression of the CL, saline (10 ml/h; n = 10) or a nonselective NOS inhibitor (Nomega-nitro-l-arginine methyl ester dihydrochloride [L-NAME]; 400 mg/h; n = 9) was infused for 2 h on Day 15 of the estrous cycle into the aorta abdominalis of Holstein/Polish Black and White heifers. After 30 min of infusion, saline or cloprostenol, an analogue of PGF2alpha (aPGF2alpha; 100 microg) was injected into the aorta abdominalis of animals infused with saline or L-NAME. NADPH-diaphorase activity was present in bovine CL, with the highest activity at mid and late luteal stages (P < 0.05). Inducible and endothelial NO synthases were observed with the strongest immunolabeling in the late CL (P < 0.05). Injection of aPGF2alpha increased nitrite/nitrate concentrations (P < 0.01) and inhibited P4 secretion (P < 0.05) in heifers that were infused with saline. Infusion of L-NAME stimulated P4 secretion (P < 0.05) and concomitantly inhibited plasma concentrations of nitrite/nitrate (P < 0.05). Concentrations of P4 in heifers infused with L-NAME and injected with aPGF2alpha were higher (P < 0.05) than in animals injected only with aPGF2alpha. The PGF2alpha analogue shortened the cycle length compared with that of saline (17.5 +/- 0.22 days vs. 21.5 +/- 0.65 days P < 0.05). L-NAME blocked the luteolytic action of the aPGF2alpha (22.6 +/- 1.07 days vs. 17.5 +/- 0.22 days, P < 0.05). These results suggest that NO is produced in the bovine CL. NO inhibits luteal steroidogenesis and it may be one of the components of an autocrine/paracrine luteolytic cascade induced by PGF2alpha.  相似文献   

15.
Follicle stimulating hormone (FSH) is a glycoprotein hormone with a short half-life and has to be given twice daily for 3-4 days to induce superovulation in heifers. Since such a regimen is time consuming we compared the ovulatory response and yield of embryos in heifers following superovulation with either once or twice daily injections of pFSH for 4 days during the mid-luteal phase of a synchronized estrous cycle or during a prolonged luteal phase in heifers which had been immunized against prostaglandin F2alpha (PG). In Experiment 1, crossbred heifers (n = 42) previously actively immunized against a PG immunogen were superovulated in a 2 (cyclic or persistent corpus luteum) x 2 (once or twice daily injection) factorial plan. The heifers were superovulated with 75 units pFSH, which was injected subcutaneously once (22.5, 22.5, 15 and 15 units per day) or twice daily (9.3 units per injection) for 4 days. In Experiment 2, cyclic crossbred beef heifers (n = 80) were superovulated using pFSH which was given randomly to heifers once daily subcutaneously (T1) or twice daily intramuscularly (T2) using the same daily dose of 9, 7, 5, and 3 mg per day. Estrus was induced in all heifers in both experiments using 500 mug and 250 mug Cloprostenol 12 hours apart on the third day of pFSH injections. All heifers were inseminated twice with frozen-thawed semen at 12 and 24 hours after the onset of standing estrus or at 56 and 72 hours after the first PG if estrus was not observed. Embryos were recovered at slaughter and graded on a scale of 1 to 5 (1 = excellent, 5 = degenerated). Data were recorded for the number of corpora lutea (CL), large (>/=10 mm) and medium (5-9 mm) follicles, number of embryos recovered and embryo morphology. Data were analyzed by least squares analysis of variance procedures. In Experiment 1, there was no difference in ovulation rate between main effects. Fewer embryos were recovered from heifers with a persistent corpus luteum (pCL) and injected once daily (1.71+/-.75 vs 5.75+/-1.27) than from any other group. Heifers with pCL yielded lower (P < 0.05) numbers of freezable embryos than cyclic animals, regardless of injection regimen. In Experiment 2, T2 heifers had a significantly higher number of CL (16.4+/-1.7 vs 7.7+/-1.7; P = 0.0003), large follicles (4.1+/-0.5 vs 2.8+/-0.5; P = 0.04), medium follicles (6.4+/-0.7 vs 4.4+/-0.7; P = 0.04), embryos recovered (9.6+/-1.1 vs 4.9+/-1.1; P = 0.0025) and freezable embryos (4.7+/-0.7 vs 2.1+/-0.7; P = 0.014) than T1 heifers. It is concluded that a single daily subcutaneous injection of pFSH results in a lower superovulatory response than the twice daily regimen in heifers.  相似文献   

16.
Holstein heifers (n = 29) were used to determine whether thermal stress during the first 7 d of embryonic development may increase the incidence of embryonic abnormalities in dairy cattle. Heifers were acclimated to environmental chambers at 20 degrees C for 9 d and superovulated with follicle stimulating hormone-pituitary (FSH-P; 40 mg total), beginning on Days 9 to 11 of the estrous cycle. Prostaglandin F(2)alpha (Lutalyse; 50 mg total) was administered on Day 3 of FSH-P. Heifers were inseminated artificially at estrus and then maintained at either thermal neutrality (20 degrees C) or under hyperthermic conditions (daily exposure up to 16 h at 30 degrees C and 8 h at 42 degrees C) for 7 d beginning at 30 h after the onset of estrus. On Day 7 post estrus, embryos were recovered nonsurgically and evaluated morphologically for stage of development and quality. The distribution of embryos classified as normal, abnormal, retarded or as unfertilized ova, differed (P<0.001) between heat stress and thermoneutral treatments. Only 20.7% of 82 embryos recovered from stressed heifers were normal compared with 51.5% of 68 embryos from thermoneutral animals. Stressed heifers had a higher incidence of abnormal and retarded embryos with degenerate nonviable blastomeres. Responses indicated that thermal stress from 30 h after the onset of estrus to Day 7 post estrus increases the incidence of abnormal and retarded embryos in superovulated heifers.  相似文献   

17.
The influence of interval between insemination (AI) and estrus on subsequent fertility of PGF(2alpha)-treated (two injections of 25 mg, 11 days apart) heifers was assessed in two experiments. In Experiment I, 240 heifers were allotted to Control (AI 8 to 16 hr after estrus detection), PGF(2alpha)-E (AI 8 to 16 hr after estrus within five days of second PGF(2alpha)) or PGF(2alpha)-T (AI 80 hr after second PGF(2alpha)). In Experiment II, 130 heifers were assigned to control (AI as before) or PGF(2alpha) (AI 72 or 80 hr after second PGF(2alpha)) with half the PGF(2alpha) heifers receiving 100 mug GnRH 72 hr after first PGF(2alpha). Heifers of both experiments that were bred at a predetermined time were arrayed by interval from AI to estrus. Conception rates of heifers detected in estrus from 32 hr before AI to 24 hr after AI did not differ (x(2)=3.35, df=5, P>0.5). The percentage of GnRH-treated heifers in estrus within five days (81.8%) was not (P>0.75) greater than those not receiving GnRH (77.3%) but they had higher (P<0.05) serum progesterone (P(4)) concentration at second PGF(2alpha) (3.17 vs 2.41 ng/ml). When P(4) values were arrayed for both groups at 1 ng intervals, the percentage of heifers exhibiting estrus increased with increasing P(4) level (P<0.05).  相似文献   

18.
Effect of stage of the estrous cycle at the time of prostaglandin F(2alpha) (PGF(2alpha)) injection on subsequent reproductive events in beef females was studied in four trials involving 194 animals. Cycling animals were given two injections of 25 mg PGF(2alpha) 11 days apart or, in some cases, the interval was altered to allow the second injection to fall on a specific day of the cycle. Day of estrous cycle at time of the second injection was determined by estrous detection. Interval from the second PGF(2alpha) injection to the onset of estrus (interval to estrus) was shorter (P<.01) in heifers than in cows. Both cows and heifers injected on days 5 to 9 (early cycle) had a shorter (P<.01) interval to estrus (estrus = day 0) than did those injected on days 10 to 15 (late cycle). Conception rate was lower (P<.05) for early-cycle heifers than for late-cycle heifers inseminated by appointment at 80 hours. There was no significant difference in conception rate of early-or late-cycle heifers or cows inseminated according to estrous detection or early- or late-cycle cows inseminated at 80 hours. Progesterone concentrations in blood samples collected in heifers at 4-hour intervals after the second PGF(2alpha) injection on either day 7 or day 14 declined linearly (P<.05) through 36 hours. Day of the estrous cycle at PGF(2alpha) injection had no effect on rate of progesterone decline, even though heifers injected on day 7 had a shorter (P<.05) interval to estrus. All animals whose cycle length was not affected by the second PGF(2alpha) injection were treated on days 5 through 8 of the cycle, indicating that PGF(2alpha) was less effective in regressing the corpus luteum between days 4 and 9 of the cycle than later in the cycle.  相似文献   

19.
The luteolysis which terminated pseudopregnancy (PSP) in superovulated hamsters was studied. Spontaneous luteolysis occurred before 1100 on Day 7 of PSP and was characterized by a rapid decline in circulating progesterone levels. Luteolysis induced by prostaglandin F2 alpha (PGF2 alpha) on Day 5 of PSP displayed a similar rapid reduction in progesterone over 24 hours. In both cases levels of the progesterone metabolite 20 alpha hydroxypregn-4-ene-3-one (20 alpha-OHP) were less than 2 percent of progesterone levels and declined in a manner similar to progesterone. This suggests that conversion of progesterone or its precursors to 20 alpha-OHP was not a functional aspect of luteolysis in the hamster. Pretreatment with either prolactin (PRL), luteinizing hormone (LH) or follicle stimulating hormone (FSH) failed to prevent PGF2 alpha-induced luteolysis on Day 5 in the superovulated PSP hamster. Combinations of PRL and LH, LH and FSH or PRL and FSH were also unsuccessful in abrogating luteolysis. However, pretreatment with a combination of PRL, FSH and LH prevented luteolysis in 11/14 animals. These results suggest that luteotropic agents can reverse the luteolytic effects of PGF2 alpha in the hamster.  相似文献   

20.
In this study we assessed the effect of GnRH on the recovery rate, meiotic synchronization and in vitro developmental competence of oocytes recovered close to the expected time of ovulation. Twenty-three heifers were superstimulated with FSH, and luteolysis was induced by PGF(2alpha) injection 48 h after the start of treatment Twelve heifers received 200 microg GnRH at 34 h after PGF(2alpha) treatment, Blood samples were collected between 35 to 47 h after PGF(2alpha) administration to determine the time of the LH surge. Transvaginal follicular aspiration was performed at 60 h after PGF(2alpha), and the recovered oocytes were fertilized or fixed either immediately or after 24 h of maturation in vitro. GnRH-treated heifers showed an LH surge within 3 h after treatment, while only 4 of the 10 heifers in the control group exhibited an LH surge by 47 h after treatment with PGF(2alpha). The average number of large follicles (> 10 mm) was 21.3 +/- 2.3 and 19.3 +/- 2.4 for GnRH-treated and control heifers, respectively. The oocyte recovery rate was 87.7 and 63.1% (P < 0.05), respectively, and most of the cumulus-oocyte-complexes (COC) recovered from the 2 groups had an expanded cumulus (80.4 and 80.5%, respectively). Oocytes with an expanded cumulus from the GnRH group had completed meiotic maturation at higher rate than the controls (97 vs 20%;P < 0.05). In vitro development to the blastocyst stage of cumulus-expanded oocytes fertilized immediately after recovery was higher in GnRH-treated than in control heifers (60.3 vs 40.0%; P < 0.05). No difference was observed when oocytes with compact or expanded cumulus were matured in vitro for 24 h before fertilization. These results indicate that GnRH injections improve the oocyte recovery rate and that oocytes have a higher development competence than those obtained from non-GnRH-treated animals. We propose that this higher in vitro developmental competence may result from a more synchronous or further advanced meiotic maturation. However, due to the small number of oocytes in our study, we must emphasize that our findings on meiotic resumption are of preliminary nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号