首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interferon-gamma enhances target cell sensitivity to monocyte killing   总被引:1,自引:0,他引:1  
The mechanism of human peripheral blood monocyte-mediated cytotoxicity was investigated using the HT-29 human colon adenocarcinoma line, A673 human rhabdomyosarcoma line, and A375 human melanoma line as target cells. Pretreatment of these target cells with 100 U/ml of recombinant human interferon (IFN)-gamma for 48 hr increased their susceptibility to monocyte killing. Increased susceptibility to the lytic action was particularly pronounced at low effector/target cell ratios. Unlike IFN-gamma human IFN-alpha did not potentiate monocyte cytotoxicity, and pretreatment of HT-29 with IFN-alpha also had virtually no effect on their susceptibility to monocyte killing. However, IFN-gamma appeared to prime either monocytes or target cells to become responsive to IFN-alpha. Our data suggest that IFN-gamma can promote the killing of tumor cells by monocytes through two separate actions, one on the monocyte and one on the target cell.  相似文献   

2.
The mechanism of human peripheral blood monocyte-mediated cytotoxicity for tumor cells was investigated, using the A673 human rhabdomyosarcoma and HT-29 human colon adenocarcinoma lines as target cells. A673 cells were shown to be susceptible to the cytotoxic action of purified recombinant human tumor necrosis factor (TNF). A673 cells were also highly sensitive to the cytotoxic action of peripheral blood monocytes. Clones of A673 cells sensitive and resistant to TNF were isolated and characterized for their sensitivity to monocyte killing. A good correlation was found between the sensitivity of these clones to the cytotoxicity of TNF and their susceptibility to killing by monocytes. A TNF-specific neutralizing monoclonal antibody (MAb) reduced monocyte killing of parental A673 cells and of a TNF-sensitive clone of A673 cells. Inhibition of monocyte killing by this MAb was particularly pronounced at a low effector to target cell ratio. HT-29 cells were relatively resistant to the cytotoxic action of recombinant TNF and to monocyte killing. Treatment of HT-29 cells with recombinant human IFN-gamma increased their susceptibility to both TNF cytotoxicity and monocyte killing. In addition, MAb to TNF inhibited monocyte killing in HT-29 cells sensitized by incubation with IFN-gamma. Our data show that TNF is an important mediator of the cytotoxicity of human monocytes for tumor cells and that IFN-gamma can increase monocyte cytotoxicity by sensitizing target cells to the lytic action of TNF.  相似文献   

3.
The synthetic peptide CKS-17 has homology to a highly conserved region of the immunosuppressive retroviral envelope protein P15E, to envelope proteins of HTLV I, II, III, and to that encoded by an endogeneous C-type human retroviral DNA. CKS-17 inhibits the immune response of lymphocytes and the respiratory burst of human monocytes. Because P15E-related antigens are present in human malignant cell lines and cancerous effusions, we sought to determine the effect of CKS-17 on monocyte-mediated tumor cell lysis. Lysis of A375 tumor cells by lymphokine or lipopolysaccharide-activated human monocytes was inhibited by 10 microM CKS-17 (control, 79%; CKS-17-treated, 19%). Another synthesized peptide, CS-2, which has partial homology to CKS-17, failed to block monocyte-mediated killing. Thus, the inhibition by CKS-17 appeared to be specific. Because interleukin 1 (IL-1) is a cytocidal factor produced by activated monocytes, we also investigated the effect of CKS-17 on IL-1 production by monocytes and on direct IL-1-mediated cytotoxicity. CKS-17 did not block production or secretion of IL-1 by lipopolysaccharide- or interferon-gamma-activated monocytes. However, the direct cytocidal activity of both recombinant IL-1 alpha and IL-1 beta against A375 tumor cells was blocked by CKS-17. The cytotoxic activity of IL-1 was inhibited by CKS-17 if (a) IL-1 was preincubated with CKS-17 for 1 hr at 37 degrees C or (b) the A375 cells were incubated with CKS-17 for 1 hr prior to the addition of IL-1. CKS-17 also blocked IL-1-induced proliferation of murine thymocytes, the D10 T cell line, and an IL-1-responsive astrocytoma cell line. These data suggest that CKS-17 may be a potent inhibitor of IL-1.  相似文献   

4.
We recently reported the preparation and characterization of a monoclonal antibody, 32.2, specific for the high-affinity Fc receptor (FcR) for IgG on human monocytes. We have utilized the hybridoma cell line producing this antibody as a target for monocyte-mediated cytotoxicity. The hybridoma was selected for stable sublines that expressed high quantities of surface 32.2 immunoglobulin (Ig) through flow cytometry. Monocyte-mediated cytotoxicity, with these sublines used as targets, was evaluated with the use of a 51Cr-release assay. It was found that monocytes could efficiently lyse the hybridoma cells (HC 32.2) bearing surface Ig directed to the high-affinity FcR. Consistent with the specificity of the 32.2 antibody for an epitope on the high-affinity receptor outside of the ligand binding site, human IgG did not block monocyte killing of HC 32.2. In contrast, monocytes could not mediate lysis of hybridoma cells bearing high levels of antibody directed to other monocyte cell surface molecules, in particular, class I MHC molecules, the C3bi receptor, and the My 23 antigen. The effect of IFN-gamma on the ability of monocytes to mediate lysis of the 32.2 Ig-bearing hybridomas was also assessed. Monocytes cultured in the absence of IFN-gamma could lyse the hybridoma line expressing high levels of 32.2 Ig as efficiently as monocytes cultured in the presence of IFN-gamma. However, untreated monocytes were less able than IFN-gamma-treated monocytes to kill HC 32.2 expressing lower levels of Ig. Thus, IFN-gamma may enhance the efficiency of monocyte-mediated antibody-dependent killing under conditions where limited antibody is available on the target. These studies demonstrate that the high-affinity FcR on monocytes can act as a cytotoxic trigger molecule for killing of tumor cell targets and that this trigger does not require specific binding to the Fc binding epitope. These results further encourage possible clinical application of the 32.2 monoclonal antibody in tumor therapy.  相似文献   

5.
Several tumor target cell lines, prototypically K562 cells, are resistant to lysis by recombinant tumor necrosis factor (TNF alpha) but are killed by monocytes expressing membrane-associated TNF, suggesting that membrane TNF could account for monocyte-mediated cytotoxicity. Formaldehyde-fixed monocytes or extracted monocyte membrane fragments are cytotoxic to K562 target cells. Treatment of monocytes with interferon-gamma (IFN-gamma) increases cytotoxicity by live and fixed cells or by extracted monocyte membranes. Both TNF and TNF receptors are detectable on monocyte membranes by FACS analysis, and the levels of each are modulated by treatment with IFN-gamma. Cytotoxicity can be inhibited by either anti-TNF or anti-TNF receptor antibodies. Incubation of effector cells with exogenous soluble TNF prior to fixation or membrane preparation increases their cytotoxicity. In contrast, incubation of the target cells with exogenous TNF neither increases nor decreases killing by effector cell membrane fragments or intact effector cells. The data suggest that the TNF receptors on the effector cell, but not on the target cell, play a crucial role in TNF-mediated cytotoxicity.  相似文献   

6.
The purpose of our study was to determine some of the mechanisms involved in macrophage-mediated lysis of tumorigenic cells. A375 human melanoma cells (A375-R) resistant to lysis mediated by TNF and IL-1 were selected from the TNF- and IL-1-sensitive A375 parental melanoma cells subsequent to continuous (2 mo) exposure to rTNF. Peripheral blood monocytes isolated by centrifugal elutriation from healthy donors were incubated with rIFN-gamma and muramyl dipeptide, with a lipoprotein derived from Escherichia coli (CG-31362) or with LPS for 24 h. These activated monocytes lysed both the A375 (monokine-sensitive) and A375-R (monokine-resistant) melanoma cells. Activated tumoricidal macrophages fixed in 2% paraformaldehyde lysed only the TNF- and IL-1-sensitive A375 cells. These fixed monocytes contained both IL-1 and TNF activities as determined by D10 cell proliferation and L929 cytolysis assays, respectively. Nearly identical results were obtained with preparations of plasma membranes from activated human monocytes. Anti-IL-1 and/or anti-TNF sera neutralized the cytolysis of tumor cells mediated by free monokines, by fixed monocytes, or by plasma membrane preparations. In contrast, anti-TNF and/or anti-IL-1 sera did not inhibit tumor cell lysis by viable activated monocytes. We conclude that IL-1 and TNF molecules associated with the plasma membranes of activated monocytes mediate lysis of susceptible target cells. However, because activated monocytes lysed IL-1-and TNF-resistant target cells, molecules other than these monokines must also be involved in the antitumor activity of monocytes.  相似文献   

7.
Human monocytes cultured in a specially prepared medium free of lipopolysaccharide (LPS) constitutively produced a small, though significant, amount of tumor necrosis factor (TNF). Upon addition of LPS, the amount produced remained constant until the LPS concentration reached 1-10 ng/ml, whereupon the production of TNF dramatically increased, eventually becoming 100-fold greater than when the LPS concentration was below 1 ng/ml. Priming the monocytes with recombinant interferon-gamma (rIFN-gamma) before LPS exposure resulted in a 2- to 10-fold increase in TNF production, the highest relative increase being obtained at lower LPS concentrations and in the absence of LPS. Monocyte-produced TNF appears to be the effector molecule in monocyte-mediated killing of some target cell types, since antiserum against recombinant TNF inhibited killing of both actinomycin D-treated and untreated WEHI 164 cells by human monocytes. However, it also appears that TNF may not in all cases be an effector molecule in monocyte-mediated killing, since cytolysis of K562 cells mediated by IFN-gamma/LPS-activated monocytes was not inhibited by antiserum against recombinant TNF. Antiserum which was raised against a monocyte-derived cytotoxic factor and which neutralized recombinant TNF did, however, inhibit monocyte-mediated cytolysis of K562 cells, suggesting that an extracellular factor, perhaps related to TNF, was also involved in monocyte-mediated killing of K562 cells. A TNF-like activity was associated with the monocyte surface membrane, since paraformaldehyde-fixed monocytes expressed cytotoxic activity which was neutralized by antiserum against recombinant TNF. Fixed monocytes activated with rIFN-gamma in addition to LPS before fixation were generally more cytotoxic than those exposed to LPS alone, and those exposed to LPS were much more cytotoxic than those not exposed to LPS. Thus it is possible that high local TNF concentrations may be generated near the target cell upon direct contact between effector and target cells, and that also monocyte-associated TNF may in this way be involved in monocyte-mediated cytotoxicity.  相似文献   

8.
9.
Antisera raised against recombinant tumor necrosis factor (TNF) and against the monocyte-derived cytotoxic/cytostatic protein factor (CF), which is related to recombinant TNF, have been compared with respect to their ability to inhibit monocyte-mediated killing of various types of cells which differ in their sensitivity to recombinant TNF. During 6 hr of coculturing monocytes and target cells, the recombinant TNF antiserum inhibited killing of the extremely TNF-sensitive WEHI 164 clone 13 cells and actinomycin D-treated WEHI 164 cells from which the clone 13 cells were derived (parental WEHI 164 cells (P-WEHI 164 cells]. The CF antiserum also inhibited monocyte-mediated killing of these cells during 6 hr of coculturing with monocytes, but on a per volume basis it was less potent than the recombinant TNF antiserum, consistent with the fact that the CF antiserum also was much less potent in inhibiting the cytotoxic activity of recombinant TNF. However, during 72 hr of coculturing with monocytes and target cells, the CF antiserum inhibited monocyte-mediated killing of P-WEHI 164 cells more efficiently than the recombinant TNF antiserum. Moreover, during 72 hr of coculturing with monocytes, only the CF antiserum was able to significantly inhibit monocyte-mediated killing of the relatively recombinant TNF-resistant K562 cells. This suggests that a factor immunologically different from recombinant TNF, perhaps a form of natural TNF differing somewhat immunologically from recombinant TNF, was involved in the killing of K562 cells, and possibly in the killing of P-WEHI 164 cells, during 72 hr of coculturing with monocytes. Although this factor was present extracellularly, it appears that it may act as a monocyte-associated factor in monocyte-mediated killing of K562 cells, since exposure to recombinant interferon-gamma (rIFN-gamma) in the absence of Escherichia coli endotoxin (lipopolysaccharide, LPS) activated the monocytes to mediate killing of K562 cells more efficiently than exposure to LPS alone, despite the fact that only little cytotoxic/cytostatic activity was released from the monocytes without the addition of LPS. The ability of rIFN-gamma and LPS to activate monocytes to produce and release CF has also been studied.  相似文献   

10.
As part of an effort to define the cytotoxic trigger molecules on human myeloid cells, the ability of the different Fc receptors for IgG (Fc gamma R) to mediate killing of tumor cell lines by monocytes and granulocytes was examined. This was accomplished by studying cytolysis of hybridoma cell (HC) targets bearing surface antibody directed toward the different Fc gamma R. The HC line, HC IV.3A, which bears Ig directed to the low affinity Fc gamma R (Fc gamma RII) on monocytes and neutrophils was lysed by human monocytes. The extent of lysis of HC IV.3A was approximately equal to that of anti-Fc gamma RI (the high affinity Fc gamma R on human monocytes) bearing HC lines (HC 32.2A and HC 62A) and was not augmented by treatment of the monocytes with interferon-gamma (IFN-gamma). In contrast, neutrophils lysed HC IV.3A and HC 32.2A only after activation with IFN-gamma. Since Fc gamma RI is not detectable on untreated neutrophils and is induced by IFN-gamma on these cells, lysis of HC 32.2A by IFN-gamma-activated neutrophils correlated with receptor induction. On the other hand, Fc gamma RII was present at equal levels on untreated and IFN-gamma-treated neutrophils, but only IFN-gamma-treated neutrophils mediated cytotoxicity via Fc gamma RII. In this case, enhanced killing appeared to be due to events other than an increase in Fc gamma RII number. Neither untreated nor IFN-gamma-treated neutrophils mediated the lysis of the anti-Fc gamma RIII bearing HC 3G8A. Thus, binding to the tumor target via this Fc receptor does not lead to lysis and may initiate signals distinct from those triggered through Fc gamma RI or Fc gamma RII. Surprisingly, HC bearing high amounts of mouse IgG1 antibody of irrelevant specificity were also lysed by monocytes. This lysis was blocked by soluble IV.3 antibody and thus appeared to be due to binding of the Fc portion of the surface Ig to Fc gamma RII on monocytes. Furthermore, monocytes from donors with a form of Fc gamma RII incapable of binding aggregated mouse IgG1 did not lyse these HC, but displayed normal lysis of HC IV.3, demonstrating that this structurally different Fc gamma RII remained a functional trigger molecule. Overall, these studies have demonstrated the specificity of Fc receptors in triggering monocyte- and granulocyte-mediated antibody-dependent tumor cell killing and have begun to dissect functional similarities and differences among the three defined Fc gamma R on human myeloid cells.  相似文献   

11.
Herein we demonstrate that IFN-alpha, IFN-gamma, and IL-2 can induce human peripheral blood monocyte-mediated lysis of tumor cells that are resistant to both the direct effects of TNF and to monocytes activated by TNF. Monocytes activated by TNF kill only TNF-sensitive tumor targets, whereas those activated by IFN and IL-2 can lyse both TNF-sensitive and TNF-resistant tumor targets. Monocyte cytotoxicity against TNF-sensitive lines induced by the IFN, IL-2, or TNF can be completely abrogated by the addition of anti-TNF antibodies. In contrast, anti-TNF antibodies have no effect on IFN- or IL-2-induced monocyte cytotoxicity against TNF resistant targets, confirming non-TNF-mediated lysis induced by lymphokine-activated monocytes. Neither induction of TNF receptors by IFN-gamma nor inhibition of RNA synthesis by actinomycin D increased the susceptibility of TNF-resistant tumor targets to TNF-mediated monocyte cytotoxicity. Thus, non-TNF-mediated modes of monocyte cytotoxicity are induced by IFN and IL-2, but not by TNF, indicating that different cytotoxic mechanisms are responsible for the lysis of TNF-sensitive and TNF-resistant tumor cells. In addition, these findings also suggest that TNF-sensitive lines are susceptible only to TNF-mediated killing and apparently insensitive to non-TNF-mediated monocyte cytotoxicity.  相似文献   

12.
We determined the expression of intercellular adhesion molecules (ICAM) on neuro-2a cells in order to evaluate whether they were involved in cytolysis of murine neuroblastoma. Fluorescence-activated cell sorting analysis revealed that the control neomycin-resistance-genetransduced line (neuro-2a/LN) had poor expression of ICAM-1 (mean channel fluorescence, MCF=3.7). An ICAM-1-positive transfectant of neuro-2a (neuro-2a/ICAM-1+) (CMF=64.3) was generated to evaluate directly the role of this adhesion molecule in cytolysis. Neuro-2a/ICAM-1+ was more sensitive to LAK killing (69.7% at an effector-to-target ratio of 1001) compared to neuro-2a/LN (48.6%) (P<0.001). Blocking of neuro-2a/LN and neuro-2a/ICAM-1+ lysis with anti-ICAM-1 monoclonal antibodies (mAbs) did not account for all the LFA-1-dependent killing. These data indicate that even in neuro-2a/ICAM-1+ cells, other LFA-1 ligands participated in the effector-target interaction. Therefore, we examined these cell lines for ICAM-2 expression. Both neuro-2a/LN and neuro-2a/ICAM-1+ lines expressed ICAM-2 (MCF=16.4 and 16.5). ICAM-2 accounted for the majority of the LFA-1-dependent killing in the ICAM-1-negative target, neuro-2a/LN, while ICAM-1 played a primary role in the cytolysis of the ICAM-1+ transfectant. Inhibition of lysis in the presence of anti-ICAM-1 and ICAM-2 mAbs was comparable to that seen with the addition of anti-LFA-1 mAb, indicating that other LFA-1 ligands were not involved in this system. ICAM-1 expression was associated with decreased in vivo tumorigenicity; mice inoculated with neuro-2a/ICAM-1+ cells had a significantly longer survival compared to those receiving neuro-2a/LN cells (median survival time 35.5 versus 24.5 days) (P<0.001). It is important to note that ICAM-1 transfection of murine neuroblastoma did not alter its metastatic potential. We conclude that transfection of mouse neuroblastome with ICAM-1 increases its sensitivity to in vitro lysis and reduces its in vivo tumorgenicity. In ICAM-1-negative murine neuroblastoma cells, ICAM-2 plays a primary role in cell-mediated lysis.This work was supported in part by the Children's Cancer Research Fund, the Minnesota Medical Foundation, the Viking Children's Fund and NIH grants PO1-CA-21737, NO1-AI-85002. E. K. is a recipient of the Irvine McQuarrie Research Scholar Award and B. R. B. a recipient of the Edward Mallinkrodt Foundation Scholar Award  相似文献   

13.
NGX6基因对人结肠癌细胞HT-29细胞周期的影响   总被引:6,自引:1,他引:6  
NGX6基因是新克隆的候选抑瘤基因,研究表明NGX6重表达可抑制结肠癌细胞的增殖.为进一步研究NGX6对细胞周期的影响,采用流式细胞仪检测NGX6重表达对结肠癌细胞HT-29细胞周期的影响,发现NGX6重表达可增加HT-29细胞在G0/G1期的分布比例,减少了S,G2,M期细胞数.利用蛋白质印迹和流式细胞术分析NGX6转染前后HT-29细胞周期素(cyclins)和细胞周期素依赖性蛋白激酶抑制物(cyclin-dependentkinaseinhibitor,CKI)的表达变化,发现NGX6可下调HT-29细胞中cyclinE、cyclinD1的表达及上调p27的表达,对cyclinA和cyclinB的表达无明显影响,p16在三组结肠癌细胞中均无表达.研究结果表明,NGX6在HT-29细胞中通过下调cyclinE、cyclinD1和上调p27的表达,阻滞细胞周期于G0/G1期,从而发挥其在结肠癌中的抑瘤作用.  相似文献   

14.
Gastrin-releasing peptide (GRP) and its receptor (GRPR) act as morphogens when expressed in colorectal cancer (CRC), promoting the assumption of a better differentiated phenotype by regulating cell motility in the context of remodeling and retarding tumor cell metastasis by enhancing cell-matrix attachment. Although we have shown that these processes are mediated by focal adhesion kinase (FAK), the downstream target(s) of GRP-induced FAK activation are not known. Since osteoblast differentiation is mediated by FAK-initiated upregulation of ICAM-1 (Nakayamada S, Okada Y, Saito K, Tamura M, Tanaka Y. J Biol Chem 278: 45368-45374, 2003), we determined whether GRP-induced activation of FAK alters ICAM-1 expression in CRC and, if so, determined the contribution of ICAM-1 to mediating GRP's morphogenic properties. Caco-2 and HT-29 cells variably express GRP/GRPR. These cells only express ICAM-1 when GRPR are present. In human CRC, GRPR and ICAM-1 are only expressed by better differentiated tumor cells, with ICAM-1 located at the basolateral membrane. ICAM-1 expression was only observed subsequent to GRPR signaling via FAK. To study the effect of ICAM-1 expression on tumor cell motility, CRC cells expressing GRP, GRPR, and ICAM-1 were cultured in the presence and absence of GRPR antagonist or monoclonal antibody to ICAM-1. CRC cells engaged in directed motility in the context of remodeling and were highly adherent to the extracellular matrix, only in the absence of antagonist or ICAM-1 antibody. These data indicate that GRP upregulation of ICAM-1 via FAK promotes tumor cell motility and attachment to the extracellular matrix.  相似文献   

15.
Monocyte cell surface molecules play an important role in the regulation of monocyte function. To investigate the molecular basis of monocyte-mediated cytotoxicity, we tested the ability of a variety of mediators to stimulate human monocyte-mediated cytotoxicity. Phorbol myristic acetate (PMA) stimulated significant monocyte-mediated killing of tumor cells in an 18-hr indium-111 release assay. Five other cytoactive substances did not induce monocyte-mediated cytotoxicity. The acquisition of monocyte cytotoxicity was associated with nearly a twofold increase in surface expression of three CD18-bearing cell surface molecules (CD11a, CD11b, CD11c). The direct involvement of the CD18-bearing molecules in monocyte-mediated cytotoxicity was investigated using monoclonal antibody (MAb) inhibition. MAb recognizing the CD18 subunit significantly inhibited monocyte-mediated killing. The inhibition by anti-CD18 MAb could not be attributed to LFA-1 (CD11a) alone, suggesting that CR3 (CD11b) and p150,95 (CD11c) may also participate in monocyte-mediated cytotoxicity. In contrast, seven of eight other cell surface structures were not affected by PMA treatment, and MAb to all eight cell surface structures did not inhibit killing. These findings suggest that CD18-bearing molecules are upregulated with monocyte activation and may play a functional role in monocyte-mediated killing.  相似文献   

16.
We recently observed that lipoteichoic acid (LTA) isolated from Lactobacillus plantarum inhibited endotoxin-mediated inflammation of the immune cells and septic shock in a mouse model. Here, we examined the inhibitory role of L. plantarum LTA (pLTA) on the inflammatory responses of intestinal epithelial cells (IEC). The human colon cell line, HT-29, increased interleukin (IL)-8 expression in response to recombinant human tumor necrosis factor (TNF)-alpha, but not in response to bacterial ligands and interferon (IFN)-gamma. TNF-α also increased the production of inducible nitric oxide synthase (iNOS), nitric oxide (NO), and intercellular adhesion molecule 1 (ICAM-1) through activation of p38 mitogen-activated protein kinase (MAPK) from HT-29 cells. However, the inflammatory response of HT-29 on TNF-α stimulation was significantly inhibited by pLTA treatment. This pLTA-mediated inhibition accompanied the inhibition of nuclear factor (NF)-kappa B and MAPKs. Our data suggest that pLTA regulates cytokine-mediated immune responses and may be a good candidate for maintaining intestinal homeostasis against excessive inflammation.  相似文献   

17.
Connexins are proteins that form gap junctions between cells in various mammalian tissues. Because of their role in intercellular communication, connexins are important in the bystander cell death seen in Herpes simplex virus-thymidine kinase (HSV-TK) gene therapy for brain tumors. A selective review of connexin transduction/transfection studies with particular emphasis to central nervous system tumor cells is presented. In addition, specific references to studies with cell types that demonstrate low gap junction intercellular communication are presented. Data are included with the HT-29 colorectal tumor cell line to support the concept that enhancing gap junction protein expression in otherwise low gap junction communicating HT-29 cells increases bystander cell death and reduces tumor burden beyond what might be expected from HSV-TK and ganciclovir (GCV) treatment alone. Maximum in vitro bystander cell death was always produced when GCV treated co-cultures of TK-transduced and non-TK-transduced HT-29 cell lines were also transduced with connexin-43. When connexin was present in only one group of cells in the co-culture, there was more bystander cell death observed with connexin transduced into the non-TK-transduced cells, rather than the TK-transduced cells. The data presented reinforces conclusions made from earlier findings from cell line mixing experiments in which the non-TK-transduced cell population determined the level of bystander cell death (Burrows et al., 2002).  相似文献   

18.
Monocytes are the major inflammatory cells that infiltrate most solid tumors in humans. The interaction of tumor cells with infiltrating monocytes and their adhesion to these monocytes play a significant role in altering the tumor to become more aggressive. Recently, exposure to lipopolysaccharide (LPS) was suggested to promote cancer cell adhesion to monocytes; however, little is known about the details of the signaling mechanism involved in this process. In this study, we found that LPS up-regulates ICAM-1 expression in MDA-MB-231 breast cancer cells, which facilitates their adhesion to THP-1 monocytes. In addition, we analyzed the signaling mechanism underlying the up-regulation of ICAM-1 and found that the siRNA-mediated depletion of BLT2 markedly suppressed the LPS-induced expression of ICAM-1 in MDA-MB-231 cells and the subsequent adhesion of these cells to THP-1 monocytes. Moreover, we demonstrated that myeloid differentiation primary response gene 88 (MyD88) lies downstream of LPS/TLR4 and upstream of BLT2 and that this ‘MyD88-BLT2’ cascade mediates ERK activation and subsequent ICAM-1 expression, which is critical for the adhesion of MDA-MB-231 cells to THP-1 monocytes. Taken together, our results demonstrate for the first time that LPS up-regulates ICAM-1 expression in breast cancer cells via a MyD88-BLT2-ERK-linked signaling cascade, leading to the increased adhesion of breast cancer cells to monocytes.  相似文献   

19.
Certain anti-neoplastic agents at subtoxic doses may exert immunomodulatory effects, which alter the expression of specific tumor cell surface molecules. We reasoned that potential increases in tumor cell surface markers, such as those important for facilitating effector-target contact, as well as triggering cell death pathways, might then improve antigen (Ag)-specific T-cell-mediated tumor cytolysis. Here, in a human colon carcinoma cell model in vitro, we examined whether the anti-neoplastic agents 5-fluorouracil (5-FU), CPT-11 or cisplatin (CDDP) could upregulate the expression of specific tumor cell surface markers, which may then enhance productive lytic interactions between CD8+ CTL and Ag-bearing tumor cells. Based on our earlier studies, IFN-gamma treatment was included as a control for sensitization to CTL-mediated lysis. Pretreatment of the SW480 primary colon carcinoma cell line with IFN-gamma, 5-FU, CPT-11 or CDDP enhanced ICAM-1 and Fas expression, resulting in Ag-specific CTL-mediated lysis involving Fas-dependent and -independent mechanisms. In contrast, pretreatment of the SW620 metastatic isolate, derived from the same patient, with IFN-gamma, CPT-11 or CDDP, but not 5-FU, enhanced ICAM-1 expression, resulting in Ag-specific CTL-mediated lysis via Fas-independent mechanisms only. Flow cytometric-based assays were then developed to measure the effects of drug treatment on caspase signaling and apoptosis incurred by tumor targets after interaction with CTL. We found that the lytic enhancement caused by drug treatment of SW480 or SW620 targets was accompanied by an increase in caspase-3-like protease activity. A peptide-based caspase inhibitor abrogated CTL-mediated apoptosis, suggesting that "chemomodulation" involved regulation of the caspase pathway. These results revealed for the first time an important role for components of the caspase pathway, such as caspase-3-like proteases, in the sensitization of human colon carcinoma cells by anti-neoplastic agents to Ag-specific CTL. Thus, certain anti-neoplastic agents may display unique immunoregulatory properties that facilitate human colon carcinoma death by engaging the lytic capacity of Ag-specific CTL, which may have implications for chemoimmunotherapy strategies.  相似文献   

20.
NK cells are able to discriminate between normal cells and cells that have lost MHC class I (MHC-I) molecule expression as a result of tumor transformation. This function is the outcome of the capacity of inhibitory NK receptors to block cytotoxicity upon interaction with their MHC-I ligands expressed on target cells. To investigate the role of human NK cells and their various receptors in the control of MHC-I-deficient tumors, we have isolated several NK cell clones from lymphocytes infiltrating an adenocarcinoma lacking beta2-microglobulin expression. Unexpectedly, although these clones expressed NKG2D and mediated a strong cytolytic activity toward K562, Daudi and allogeneic MHC-class I+ carcinoma cells, they were unable to lyse the autologous MHC-I- tumor cell line. This defect was associated with alterations in the expression of natural cytotoxicity receptor (NCR) by NK cells and the NKG2D ligands, MHC-I-related chain A, MHC-I-related chain B, and UL16 binding protein 1, and the ICAM-1 by tumor cells. In contrast, the carcinoma cell line was partially sensitive to allogeneic healthy donor NK cells expressing high levels of NCR. Indeed, this lysis was inhibited by anti-NCR and anti-NKG2D mAbs, suggesting that both receptors are required for the induced killing. The present study indicates that the MHC-I-deficient lung adenocarcinoma had developed mechanisms of escape from the innate immune response based on down-regulation of NCR and ligands required for target cell recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号