首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The sea slug Hermissenda learns to associate light and hair cell stimulation, but not when the stimuli are temporally uncorrelated. Memory storage, which requires an elevation in calcium, occurs in the photoreceptors, which receive monosynaptic input from hair cells that sense acceleration stimuli such as turbulence. Both light and hair cell activity increase calcium concentration in the photoreceptor, but it is unknown whether paired calcium signals combine supralinearly to initiate memory storage. A correlate of memory storage is an enhancement of the long lasting depolarization (LLD) after light offset, which is attributed to a reduction in voltage dependent potassium currents; however, it is unclear what causes the LLD in the untrained animal.These issues were addressed using a multi-compartmental computer model of phototransduction, calcium dynamics, and ionic currents of the Hermissenda photoreceptor. Simulations of the interaction between light and hair cell activity show that paired stimuli do not produce a greater calcium increase than unpaired stimuli. This suggests that hair cell activity is acting via some other pathway to initiate memory storage. In addition, simulations show that a potassium leak channel, which closes with an increase in calcium, is required to produce both the untrained LLD and the enhanced LLD due to the decrease in voltage dependent potassium currents. Thus, the expression of this correlate of classical conditioning may depend on a leak potassium current.  相似文献   

2.
R H Lee  B M Brown  R N Lolley 《Biochemistry》1984,23(9):1972-1977
Phosphorylated proteins may play an important role in regulating the metabolism or function of rod photoreceptors. In mammalian retinas, a photoreceptor protein of 33 000 (33K) molecular weight is phosphorylated in a cyclic nucleotide dependent manner in vitro. Since light initiates the activation of a photoreceptor-specific phosphodiesterase and a rapid reduction in guanosine cyclic 3',5'-phosphate concentration, phosphorylation of the 33K protein may be modulated by light in situ. In order to test this possibility, dark-adapted rat retinas were incubated for 30 min in the dark in phosphate-free Kreb's buffer containing [32P]orthophosphate. Following incubation, rod outer segments were detached by shaking, and the 32P-labeled rod outer segment proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, detected by autoradiography, and quantitated by densitometric scanning. The incorporation of radioactivity (32P) into the 33K protein was higher than into any other rod outer segment protein, and the amount of 32P-labeled 33K protein in the detached rod outer segments remained unchanged during 10 additional min of darkness. The addition of isobutylmethylxanthine to the incubation medium enhanced the incorporation of 32P into 33K protein to about 400% of the original level. Exposure of freshly detached rod outer segments to room light for 90 s decreased the amount of labeled 33K protein to 45% of its original level. The dephosphorylation of labeled 33K protein continued, reaching 12% of the original dark value 10 min after the previously illuminated sample was returned to darkness. Light initiated the phosphorylation of rhodopsin, and rhodopsin phosphorylation continued during the postillumination period of darkness.  相似文献   

3.
4.
Newt photoreceptor synaptic terminals undergo a variety of morphological changes over a 24-hr (LD 12:12) cycle. During the day, dense-cored synaptic vesicles were found to increase in number and accumulate near the synaptic lamellae; during the dark phase, the dense-cored vesicles decreased in number, while large clear vesicles and profiles of smooth endoplasmic reticulum increased in frequency. The most marked change in photoreceptor synaptic terminal morphology occurred after 10 hr of darkness, at 0730 hr. At this time, photoreceptor synaptic terminal cross-sectional area was found to increase dramatically. Morphometric analysis showed that the number of synaptic vesicles in these terminals remained constant throughout the day, as did the perimeter of photoreceptor terminal profiles. The observed increase in area of synaptic terminals at 0730 hr was found to be due to a decrease in the folding of the terminal plasma membrane. Qualitative observations showed endocytosis to be occurring at a rapid rate at this time as well; and since the number of synaptic vesicles and terminal perimeter did not change, exocytosis of synaptic vesicles was assumed to be occurring at an equally rapid rate. These findings support an extension to the hypothesis of Monaghan and Osborne (1975), suggesting that photoreceptor synaptic vesicles become "supercharged" with transmitter substance in the light.  相似文献   

5.
ObjectiveVibration conditioning has been adopted as a tool to improve muscle force and reduce fatigue onset in various rehabilitation settings. This study was designed to asses if high frequency vibration can induce some conditioning effects detectable in surface EMG (sEMG) signal; and whether these effects are central or peripheral in origin.Design300 Hz vibration was applied for 30 min during 5 consecutive days, to the right biceps brachii muscle of 10 healthy males aged from 25 to 50 years. sEMG was recorded with a 16 electrode linear array placed on the skin overlying the vibrated muscle. The test protocol consisted of 30% and 60% maximal voluntary contraction (MVC) as well as involuntary (electrically elicited) contractions before and after treatment.ResultsNo statistically significant differences were found between PRE and POST vibration conditioning when involuntary stimulus-evoked contraction and 30% MVC were used. Significant differences in the initial values and rates of change of muscle fibre conduction velocity were found only at 60% MVC.Conclusions300 Hz vibration did not induce any peripheral changes as demonstrated by the lack of differences when fatigue was electrically induced. Differences were found only when the muscle was voluntarily fatigued at 60% MVC suggesting a modification in the centrally driven motor unit recruitment order, and interpreted as an adaptive response to the reiteration of the vibratory conditioning.  相似文献   

6.
The lateral nucleus of the amygdala (LA) has been implicated in the formation of long-term associative memory (LTM) of stimuli associated with danger through fear conditioning. The current study aims to detect genes that are expressed in LA following associative fear conditioning. Using oligonucleotide microarrays, we monitored gene expression in rats subjected to paired training where a tone co-terminates with a footshock, or unpaired training where the tone and footshock are presented in a non-overlapping manner. The paired protocol consistently leads to auditory fear conditioning memory formation, whereas the unpaired protocol does not. When the paired group was compared with the unpaired group 5 h after training, the expression of genes coding for the limbic system-associated membrane protein (Lsamp), kinesin heavy chain member 2 (Kif2), N -ethylmaleimide-sensitive fusion protein (NSF) and Hippocalcin-like 4 protein (Hpcal4) was higher in the paired group. These genes encode proteins that regulate neuronal axonal morphology (Lsamp, Kif2), presynaptic vesicle cycling and release (Hpcal4 and NSF), and AMPA receptor maintenance in synapses (NSF). Quantitative real-time PCR (qPCR) showed that Kif2 and Lsamp are expressed hours following fear conditioning but minutes after unpaired training. Hpcal4 is induced by paired stimulation only 5 h after the training. These results show that fear conditioning induces a unique temporal activation of molecular pathways involved in regulating synaptic transmission and axonal morphology in LA, which is different from non-associative stimulation.  相似文献   

7.
The role of cyclic nucleotides in visual excitation   总被引:2,自引:0,他引:2  
Early studies of vertebrate rod outer segment cyclic nucleotide metabolism indicated that illumination of photoreceptor membranes causes a marked reduction in apparent cyclic AMP production. Current studies confirm these observations and explain light effects in terms of an unanticipated, ATP-dependent activation of phosphodiesterase. Here we present recent progress in our understanding of the components and mechanisms of this light dependent activation. We also describe the characteristics and substrate preference (cyclic GMP) of the photoreceptor phosphodiesterase, and a suggested model for the role of cyclic nucleotides in photoreceptor physiology.  相似文献   

8.
Abstract: The aeolid nudibranch, Hermissenda crassicornis , exhibits Pavlovian conditioning to paired light and rotational stimuli and it has been suggested that protein kinase C (PKC) may play a critical role in the cellular mechanism for this conditioned behavioral response in the B-cell photoreceptor. The present study was designed to further examine learning-specific PKC involvement in identified cellular areas, particularly those in the visual-vestibular network, of the Hermissenda nervous system after Pavlovian conditioning. As used in previous vertebrate studies, the highly specific PKC radioligand, [3H]phorbol-12,13-dibutyrate ([3H]-PDBU), was used to determine the binding characteristics of the molluscan protein receptor considered to be PKC. The binding was specific, saturable, and could be displaced by a soluble diacylglycerol analogue. The binding activity was distributed evenly between the cytosol and the membrane. All of these analyses suggest that [3H]PDBU binds primarily to PKC in Hermissenda as it does in many other systems. Computerized grain image analysis was then used to determine the cellular localization of PKC as a function of Pavlovian conditioning. The medial and intermediate B photoreceptor and the optic ganglion showed significantly increased [3H]PDBU binding in conditioned animals. The present results provide the first report of an associative learning change of a key signal transduction component in identified neurons.  相似文献   

9.
The steady-state levels of nitrate, nitrite, and ammonium were estimated in the green alga Ulva rigida C. Agardh in darkness after addition of 0.5 mM KNO3 and irradiation with red (R) and blue (B) light pulses of different duration (5 and 30 min). The net uptake of nitrate was very rapid. Seventy-five percent of the nitrate added was consumed after 60 min in darkness. Although uptake was stable after R or B, efflux of nitrate occurred within 3 h in the dark control and when R or B were followed by far-red (FR) irradiation. The internal nitrate concentration after 3 h in darkness was similar after R and B light pulses; however, the intracellular ammonium was higher after R than after B. The intracellular nitrate and ammonium decreased when FR tight pulses were applied immediately after R or B. Thus, the involvement of phytochrome in the transport of nitrate and ammonium is proposed. Nitrate reductase activity, measured by the in situ method, was increased by both R and B light pulses. The effect was partially reversed by FR light. Nitrate reductase activity was higher after 5 min of R light than after 5 min of B. However, after 30-min light pulses, the relative increase in activity was reversed for R and B. We propose that phytochrome and a blue-light photoreceptor are involved in regulation of nitrogen metabolism. Nitrate uptake and reduction correlates with previously detected light-regulated accumulation of protein in Ulva rigida under the same experimental conditions.  相似文献   

10.
Chlorophyll synthesis is stimulated by red light in the green alga Ulva rigida C. Ag. and in the red alga Porphyra umbilicalis (L.) Kützing. Because the effect of red light showed some far-red reversibility in successive red and far-red light treatments, the involvement of phytochrome or a phytochrome-like photoreceptor is suggested. The extent of the response is dependent on exposure and photon fluence rate of red-light pulses. In addition to the effect of red light, a strong stimulation of chlorophyll synthesis by blue light was only observed in Ulva rigida. The effect of blue light shows also some far-red reversibility. In the green alga the accumulated chlorophyll is higher after blue light pulses than after red light pulses. In Porphyra umbilicalis , however, the contrary is observed. In Ulva rigida the involvement of a blue light photoreceptor in addition to phytochrome or a phytochrome-like photoreceptor is proposed. The different responses to red and blue light in both algae are explained in terms of their adaptation to the natural light environment.  相似文献   

11.
1. Responses to light of an identified motorneuron (LP1) were recorded simultaneously with those of an identified Hermissenda photoreceptor (the lateral Type B) following three days of training with paired light and rotation. 2. These responses were significantly different when compared to responses of cells from animals trained with unpaired stimuli and from naive animals. 3. The differences of the LP1 responses can be explained as a consequence of the photoreceptor response changes. 4. The same training with paired stimuli has been shown to produce behavioural changes which satisfy criteria for vertebrate associative learning. 5. The observed neural correlates are consistent with previous findings which indicate that membrane changes within the Type B cell bodies play a causal role in associative learning of the nudibranch mollusc, Hermissenda crassicornis.  相似文献   

12.
Postactivation potentiation (PAP), a mechanism by which the torque of a muscle twitch is increased following a conditioning contraction, is well documented in muscular physiology, but little is known about its effect on the maximal rate of torque development and functional significance during voluntary movements. The objective of this study was to investigate the PAP effect on the rate of isometric torque development of electrically induced and voluntary contractions. To that purpose, the electromechanical responses of the thumb adductor muscles to a single electrical stimulus (twitch), a train of 15 pulses at 250 Hz (HFT(250)), and during ballistic (i.e., rapid torque development) voluntary contractions at torque levels ranging from 10 to 75% of maximal voluntary contraction (MVC) were recorded before and after a conditioning 6-s MVC. The results showed that the rate of torque development was significantly (P < 0.001) increased after the conditioning MVC, but the effect was greater for the twitch ( approximately 200%) compared with the HFT(250) ( approximately 17%) or ballistic contractions (range: 9-24%). Although twitch potentiation was maximal immediately after the conditioning MVC, maximal potentiation for HFT(250) and ballistic contractions was delayed to 1 min after the 6-s MVC. Furthermore, the similar degree of potentiation for the rate of isometric torque development between tetanic and voluntary ballistic contractions indicates that PAP is not related to the modality of muscle activation. These observations suggest that PAP may be considered as a mechanism that can influence our contractions during daily tasks and can be utilized to improve muscle performance in explosive sports.  相似文献   

13.
【目的】为了探究桔小实蝇 Bactrocera dorsalis (Hendel)雄成虫的嗅觉学习能力。【方法】本研究采用经典性嗅觉条件反射训练法(classical olfactory conditioning)在室内对固定的羽化后14-17日龄的桔小实蝇雄成虫进行气味与食物的联合学习训练, 即薄荷精油和10%蔗糖溶液联合的奖赏性训练(appetitive conditioning)以及甲基丁香酚(methyl eugenol, ME)和饱和盐溶液联合的惩罚性训练(aversive conditioning),并以伸喙反射行为(proboscis extension reflex, PER)作为学习与否的判定标准。【结果】经过奖赏性训练后,桔小实蝇雄成虫对薄荷精油的伸喙反射率可从0%增加至68%;而经过惩罚性训练后,桔小实蝇对甲基丁香酚的伸喙反射率可从100%降低至36.54%,且这种伸喙反射率的变化是通过气味条件刺激(conditioned stimulus)和食物非条件刺激(unconditioned stimulus)的对称性联合而产生的。【结论】结果表明,桔小实蝇雄性成虫具有较强的联系性嗅觉学习能力,并且两种刺激的联合是形成学习记忆的必要条件。  相似文献   

14.
Hermissenda CNS, immunolabeled for the memory protein calexcitin showed significant immunostaining over background in the B-photoreceptor cells of the eye. The degree of staining correlated positively with the number of Pavlovian training events experienced by the animals and the degree of Pavlovian conditioning induced. The training regime consisted of exposing animals to light (conditioned stimulus, CS) paired with orbital rotation (unconditioned stimulus, US). In animals that exhibited the conditioned response, calexcitin immunolabeling was more intense than was found for naive (unconditioned) animals or animals given the CS and US in random sequence. Animals exposed to lead (maintained in 1.2 ppm lead acetate) at a dosage known to impair learning in children, showed reduced learning and less intense calexcitin staining whether the CS and US were paired or given randomly. However, the levels were still higher than that of naive animals. Immuno-electron microscopy indicated that the labeling was predominantly within calcium sequestering organelles such as the endoplasmic reticulum, and to lesser extent within mitochondria, and photopigments. The calexcitin density after a short-term memory (STM) regime was the same whether measured 5 minutes after conditioning (when STM was evidenced by foot contraction) or 90 minutes later when no recall was detected. The staining density was also similar to the levels found 5 minutes after long-term memory (LTM) conditioning. However, the LTM regime produced a greater calexcitin intensity at 90 minutes when the memory had been consolidated. This learning-specific increase in calexcitin is consistent with the previously implicated sequence of molecular events that are associated with progressively longer time domains of memory storage.  相似文献   

15.
Bovine aortic endothelial cells (BAEC), grown in vitro, are shown to synthesize and secrete factor(s) that stimulate fibroblasts to contract collagen matrices. The amount of contraction-promoting activity in the conditioned media is dependent on conditioning time and the number of cells in the culture. Production of the contraction-promoting activity continues at a high stable level for at least 5 d in serum-free medium but is abolished when the cells are exposed to an inhibitor of protein synthesis. The mechanism of action of the contraction factor(s) derived from endothelial cells was compared with that of unidentified serum factors. The endothelial cell-secreted factor(s) depends on active protein synthesis by the target cell but does not need to be present during the contraction process. The serum factors on the other hand promote collagen contraction in the absence of de novo protein synthesis but need to be continuously present. Preliminary biochemical characterization of the contraction-promoting factors produced by endothelial cells revealed properties similar to those of previously identified growth factors. However, the BAEC-secreted factor was found to be distinct from a previously identified contraction-promoting transforming growth factor beta.  相似文献   

16.
17.
The effect of in vitro incubation on the level of the intracellular nucleophile, glutathione (GSH), in adult Schistosoma mansoni was investigated. The GSH levels of freshly collected adult male and female parasites were 8.5 +/- 2.5 and 2.7 +/- 0.7 nmol/10 worms, respectively, as determined by an enzymatic assay. Twenty-four-hour incubation of unpaired males in RPMI-1640 medium at 37 C resulted in a 1.7-fold increase (P less than 0.001) in GSH level that remained elevated for at least 7 days. The increase was dependent on exogenous L-cystine, suggesting that it was due to biosynthesis of GSH. Biosynthesis in male S. mansoni was confirmed by isolating [3H] GSH from parasites incubated in medium containing L-[3H] cystine or [3H] glycine. In contrast to unpaired males, the GSH level of paired males as well as that of unpaired or paired females did not increase after 24 hr in vitro. When males that had been incubated unpaired for 24 hr were allowed to couple in vitro with freshly collected females, their GSH level fell to that of continuously paired males. These observations provide evidence that in vitro female schistosomes can influence the physiology of the male.  相似文献   

18.
Teleost retinal cones contract in the light and elongate in the dark. In the green sunfish, Lepomis cyanellus, the necklike myoid region of the cone contracts from as much as 120 micrometers (midnight dark- adapted) to 6 micrometers in fully light-adapted state. When dark- adapted fish are exposed to light (1.4 lux), cone myoids contract with a linear rate of 1.5 +/- 0.1 micrometers/min. We report here that detergent-lysed motile models of teleost retinal cones exhibit calcium- and ATP-dependent reactivated contraction, with morphology and rate comparable to that observed in vivo. For reactivation studies isolated dark-adapted retinas were lysed with nonionic detergent Brij-58 (0.1- 1.0%). In reactivation medium containing 10(-5) M free calcium and 4 mM ATP, the lysed cones contracted with normal morphology at in vivo rates (1.4 +/- 1 micrometer/min). Little contraction was observed if ATP or detergent was deleted from the medium or if free calcium levels were less than 10(-8) M. Ultrastructural examination of cone models lysed with 1% Brij-58 revealed that, in spite of extensive extraction of the cytoplasmic matrix, cytoskeletal components (thin filaments, intermediate filaments, microtubules) were still present. Thus we have produced extensively extracted motile models of teleost retinal cones which undergo calcium- and ATP-dependent reactivated contraction with normal morphology at physiological rate.  相似文献   

19.
20.
In previous work we have presented evidence for electrogenic Na+/Ca2+ exchange in Limulus ventral photoreceptors (1989. J. Gen. Physiol. 93:473-492). This article assesses the contributions to photoreceptor physiology from Na+/Ca2+ exchange. Four separate physiological processes were considered: maintenance of resting sensitivity, light-induced excitation, light adaptation, and dark adaptation. (a) Resting sensitivity: reduction of [Na+]o caused a [Ca2+]o-dependent reduction in light sensitivity and a speeding of the time courses of the responses to individual test flashes; this effect was dependent on the final value to which [Na+]o was reduced. The desensitization caused by Na+ reduction was dependent on the initial sensitivity of the photoreceptor; in fully dark-adapted conditions no desensitization was observed; in light-adapted conditions, extensive desensitization was observed. (b) Excitation: Na+ reduction in fully dark-adapted conditions caused a Ca2+o-dependent depolarizing phase in the receptor potential that persisted beyond the stimulus duration and was evoked by a bright adapting flash. (c) Light adaptation: the degree of desensitization induced by a bright adapting flash was Na+o dependent, being larger with lower [Na+]o. Na+ reduction enhanced light adaptation only at intensities brighter than 4 x 10(-6) W/cm2. In addition to being Na+o dependent, light adaptation was Ca2+o dependent, being greater at higher [Ca2+]o. (d) Dark adaptation: the recovery of light sensitivity after adapting illumination was Na+o dependent. Dark adaptation after bright illumination in voltage-clamped and in unclamped conditions was faster in normal-Na+ saline than in reduced Na+ saline. The final sensitivity to which photoreceptors recovered was lower in reduced-Na+ saline when bright adapting illumination was used. The results suggest the involvement of Na+/Ca2+ exchange in each of these physiological processes. Na+/Ca2+ exchange may contribute to these processes by counteracting normal elevations in [Ca2+]i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号