首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By making the hypothesis that the pattern of conserved sequence residues in the vicinity of the hydrolytic ATP-binding site of dynein would resemble that in myosins from a broad variety of sources, we designed degenerate oligonucleotide primers capable of amplifying this region of multiple dynein isoforms from sea urchin embryo poly(A)+ RNA. Quantification of the expression of two of these dynein isoforms has shown that the level of mRNA encoding for the beta-heavy chain, like that of tubulin, increases 2-3-fold after deciliation of the embryos, whereas the expression of the second dynein isoform, like that of actin, is essentially unaffected. This second isoform is believed to be the cytoplasmic dynein of sea urchin embryos.  相似文献   

2.
3.
TPA treatment of sea urchin embryos is able to induce thermotolerance. Evidence is provided that TPA treatment induces phosphorylation of a constitutive stress protein of 38 KDa.  相似文献   

4.
Hsp40 is involved in cilia regeneration in sea urchin embryos.   总被引:2,自引:0,他引:2  
In a previous paper we demonstrated that, in Paracentrotus lividus embryos, deciliation represents a specific kind of stress that induces an increase in the levels of an acidic protein of about 40 kD (p40). Here we report that deciliation also induces an increase in Hsp40 chaperone levels and enhancement of its ectodermal localization. We suggest that Hsp40 might play a chaperoning role in cilia regeneration.  相似文献   

5.
Unfertilized sea urchin eggs exposed to hyperosmotic salt solutions in excess of 1.75 M undergo a form of intracellular coagulation known as black cytolysis, similar to that seen in eggs injured by freezing. The process can be simulated by the microinjection of hypertonic salt into the cell suspended in isotonic solution in the absence of volume reduction. Black cytolysis during hyperosmotic stress can be attributed to the entry of concentrated extracellular solution through a membrane made permeable by excessive osmotic stress.  相似文献   

6.
7.
Most eggs in the animal kingdom establish a primary, animal-vegetal axis maternally, and specify the remaining two axes during development. In sea urchin embryos, the expression of Nodal on the oral (ventral) side of the embryo is the first known molecular determinant of the oral-aboral axis (the embryonic dorsoventral axis), and is crucial for specification of the oral territory. We show that p38 MAPK acts upstream of Nodal and is required for Nodal expression in the oral territory. p38 is uniformly activated early in development, but, for a short interval at late blastula stage, is asymmetrically inactivated in future aboral nuclei. Experiments show that this transient asymmetry of p38 activation corresponds temporally to both oral specification and the onset of oral Nodal expression. Uniform inhibition of p38 prevents Nodal expression and axis specification, resulting in aboralized embryos. Nodal and its target Gsc each rescue oral-aboral specification and patterning when expressed asymmetrically in p38-inhibited embryos. Thus, our results indicate that p38 is required for oral specification through its promotion of Nodal expression in the oral territory.  相似文献   

8.
Some properties of signaling systems, like ultrasensitivity, hysteresis (a form of biochemical memory), and all-or-none responses at a single cell level, are important to understand the regulation of irreversible processes. Xenopus oocytes are a suitable cell model to study these properties. The p38 MAPK (mitogen-activated protein kinase) pathway is activated by different stress stimuli, including osmostress, and regulates multiple biological processes, from immune response to cell cycle. Recently, we have reported that activation of p38 and JNK regulate osmostress-induced apoptosis in Xenopus oocytes and that sustained activation of p38 accelerates cytochrome c release and caspase-3 activation. However, the signaling properties of p38 in response to hyperosmotic shock have not been studied. Here we show, using Xenopus oocytes as a cell model, that hyperosmotic shock activates the p38 signaling pathway with an ultrasensitive and bimodal response in a time-dependent manner, and with low hysteresis. At a single cell level, p38 activation is not well correlated with cytochrome c release 2 h after hyperosmotic shock, but a good correlation is observed at 4 h after treatment. Interestingly, cytochrome c microinjection induces p38 phosphorylation through caspase-3 activation, and caspase inhibition reduces p38 activation induced by osmostress, indicating that a positive feedback loop is engaged by hyperosmotic shock. To know the properties of the stress protein kinases activated by hyperosmotic shock will facilitate the design of computational models to predict cellular responses in human diseases caused by perturbations in fluid osmolarity.  相似文献   

9.
It has been proposed that the apoptosis is an essential requirement for the evolution of all animals, in fact the apoptotic program is highly conserved from nematodes to mammals. Throughout development, apoptosis is employed by multicellular organisms to eliminate damaged or unnecessary cells. Here, we will discuss both developmental programmed cell death (PCD) under normal conditions and stress induced apoptosis, in sea urchin embryos. Sea urchin represent an excellent model system for studying embryogenesis and cellular processes involved in metamorphosis. PCD plays an essential role in sculpting and remodelling the embryos and larvae undergoing metamorphosis. Moreover, this marine organism directly interacts with its environment, and is susceptible to effects of several aquatic contaminants. Apoptosis can be adopted as a defence mechanism against any environmental chemical, physical and mechanical stress, for removing irreversibly damaged cells. This review, while not comprehensive in its reporting, aims to provide an overview of current knowledge on mechanisms to regulate physiological and the induced apoptotic program in sea urchin embryos.  相似文献   

10.
Hyalin is a large glycoprotein, consisting of the hyalin repeat domain and non-repeated regions, and is the major component of the hyaline layer in the early sea urchin embryo of Strongylocentrotus purpuratus. The hyalin repeat domain has been identified in proteins from organisms as diverse as bacteria, sea urchins, worms, flies, mice and humans. While the specific function of hyalin and the hyalin repeat domain is incompletely understood, many studies suggest that it has a functional role in adhesive interactions. In part I of this series, we showed that hyalin isolated from the sea urchin S. purpuratus blocked archenteron elongation and attachment to the blastocoel roof occurring during gastrulation in S. purpuratus embryos, (Razinia et al., 2007). The cellular interactions that occur in the sea urchin, recognized by the U.S. National Institutes of Health as a model system, may provide insights into adhesive interactions that occur in human health and disease. In part II of this series, we showed that S. purpuratus hyalin heterospecifically blocked archenteron-ectoderm interaction in Lytechinus pictus embryos (Alvarez et al., 2007). In the current study, we have isolated hyalin from the sea urchin L. pictus and demonstrated that L. pictus hyalin homospecifically blocks archenteron-ectoderm interaction, suggesting a general role for this glycoprotein in mediating a specific set of adhesive interactions. We also found one major difference in hyalin activity in the two sea urchin species involving hyalin influence on gastrulation invagination.  相似文献   

11.
Gastrullation of sea urchin embryos is arrested in sulfate-free sea water. This developmental arrest has been considered to be due to lack of sulfation of glycosaminoglycans in the extracellular matrix of the embryos. In the present study, we characterized a dermatan sulfate type component formed in gastrula-stage embryos of the sea urchin Clypeaster japonicus and examined the effects of sulfate deprivation on the formation. Glycosamino-glycans were prepared from gastrula-stage embryos incubated with [3H]acetate in normal and sulfate-free sea water. Enzymatic analyses indicated that embryos formed a glycosaminoglycan of the dermatan sulfate type which contained an N-acetylgalactosamine-6-sulfate-containing disaccharide as a major unit, plus a minor unidentified component. Under sulfate-free conditions, embryos formed an under-sulfated chondroitin/dermatan sulfate copolymer which mainly consisted of non-sulfate, glucuronic acid-containing (chondroitin) disaccharide units. These results suggest that sulfate deprivation diminishes not only the degree of sulfation but also the formation of L-iduronic acid-containing (dermatan) disaccharide units in dermatan sulfate in sea urchin embryos.  相似文献   

12.
While most cyclin‐dependent kinases (CDKs) are involved in cell cycle control, CDK5 is mostly known for crucial functions in neurogenesis. However, we cloned sea urchin CDK5 from a two‐cell stage cDNA library and found that the protein is present in eggs and embryos, up to the pluteus stage, but without associated kinase activity. To investigate the potential for nonneuronal roles, we screened a starfish cDNA library with the yeast two‐hybrid system, for possible CDK5 partners. Interactions with clones expressing part of cyclin B3 and cyclin E proteins were found and the full‐length cyclins were cloned. These interactions were verified in vitro but not in extracts of starfish oocytes and embryos, at any stages, despite the presence of detectable amounts of CDK5, cyclin B3, and cyclin E. We then looked for p35, the CDK5‐specific activator, and cloned the sea urchin ortholog. A sea urchin‐specific anomaly in the amino acid sequence is the absence of N‐terminal myristoylation signal, but nucleotide environment analysis suggests a much higher probability of translation initiation on the second methionine(Met44), that is associated with a conserved myristoylation signal. p35 was found to associate with CDK5 and, when bacterially produced, to confer protein kinase activity to CDK5 immunoprecipitated from sea urchin eggs and embryos. However, p35 mRNA expression was found to begin only at the end of the blastula stage, and the protein was undetectable at any embryonic stage, suggesting a neuronal role beginning in late larval stages. Mol. Reprod. Dev. 77: 449–461, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Sea urchin gametes and embryos serve as a model system to evaluate toxicity in the marine environment. In this study, the toxicity of complex chemical mixtures in leachate samples to sea urchin development was examined with a focus on ammonia, which was the main contaminant of concern in most samples. Two rapid tests, the submitochondrial particle function and bacterial luminescence tests, were also used. Ammonia is highly toxic to sea urchin embryos with an EC50 of 1.3 mg l−1 for the embryos of the Australian sea urchin Heliocidaris tuberculata. Leachate ammonia levels were well above these EC50 concentrations. To assess the contribution of ammonia to leachate toxicity in sea urchin development, we compared the predicted toxic units (PTU) and observed toxic units (OTU) for ammonia for each sample. The PTU/OTU comparison revealed that the sensitivity of the sea urchin embryos to ammonia were altered (enhanced or decreased) by other chemicals in the leachates. This result emphasises the need for parallel chemical analyses and a suite bioassays for evaluating the toxicity of complex and variable chemical mixtures.  相似文献   

14.
15.
We previously demonstrated that Paracentrotus lividus Hsp56 mitochondrial chaperonin is constitutively expressed during development, that it has a specific territorial distribution, both in normal and heat-shocked embryos, and that its amount increases after heat shock [Roccheri MC, Patti M, Agnello M, Gianguzza F, Carra E, Rinaldi AM. Localization of mitochondrial Hsp56 chaperonin during sea urchin development. Biochem Biophys Res Commun 2001;287:1093-98] and cadmium treatment [Roccheri MC, Agnello M, Boneventura R, Matranga V. Cadmium induces the expression of specific stress proteins in sea urchin embryos. Biochem Biophys Res Commun 2004;321:80-7]. In this study, we looked at Hsp56 mRNA during normal development and under stress conditions. The messenger is almost constantly expressed at all stages of development and its amount is steadily increased in stressed embryos. Moreover, we found, using T1 RNase protection assay, that the most proximal region of the 3'-UTR of the Hsp56 mRNA binds a 40 kDa protein: this factor is more abundant in the mitochondrial extract and, more specifically, in the outer membrane of the organelle.  相似文献   

16.
When sea urchin embryos were subjected to nucleolar organizer region (NOR)-silver staining, densely stained particles were observed in the cytoplasm. The appearance of these cytoplasmic particles (CPs) was cell-cycle dependent. During early development, the CPs were detected at interphase, but not during mitosis; they disappeared at metaphase and reappeared at telophase. The CPs appeared periodically even when embryos were treated with cytochalasin B or aphidicolin, which inhibits the progression of cytokinesis and nuclear division, respectively. By contrast, CPs were not detected in the colchicine-treated embryos in which both cytokinesis and nuclear divisions were prevented. The CPs were observed only in the embryos whose stage was early blastula (about 6th to 7th cleavage) or earlier; no CPs were detected even at interphase in the embryos at late blastula (about 8th to 9th cleavage) or later. Electron microscopic evaluation showed CPs to be granular structures, similar to heavy bodies. Also, sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) showed that 95-kDa and 38-kDa proteins were the NOR-silver-staining proteins in sea urchin embryos. These proteins existed during the course of the cell cycles. These results suggest that (1) the cyclic appearance of the CPs or heavy bodies is closely related to the cell cycle as well as the programming of the embryogenesis, but independent of the cycle of cytokinesis and nuclear division; (2) 95-kDa and 38-kDa proteins are the major NOR-silver-staining proteins in sea urchin embryos.  相似文献   

17.
Isolated nuclei from sea urchin embryos synthesize RNA at a rate comparable to other animal cell nuclei. All three RNA polymerases are active as judged by alpha-amanitin sensitivity and hybridization to specific cloned DNAs. Extracts were prepared from sea urchin eggs and embryos by extraction with 0.35 M KCl. None of the crude extracts had a large effect on total RNA synthesis. However, extracts from sea urchin eggs inhibited RNA polymerase III activity in nuclei from blastula and gastrula embryos. There was no effect on the synthesis of ribosomal RNA by RNA polymerase I or on the synthesis of two RNA polymerase II products, histone mRNA and the sea urchin analogue of U1 RNA. The inhibitor is present in two different species of sea urchin and has been 50-fold purified by diethylaminoethylcellulose and hydroxylapatite chromatography. The inhibitor is not present in extracts prepared from sea urchin blastula embryos.  相似文献   

18.
5-azacytidine (5-azaCR), an analogue of cytidine, inhibits nuclear DNA methylation in early sea urchin embryos. This inhibition is specific and dose-dependent. Exposure of sea urchin embryos at any stage between one-cell and blastula, to micromolar quantities of 5-azaCR invariably inhibits development beyond the blastula stage. In a substantial number of embryos arrested at the blastula stage, spicule formation proceeds although other morphological differentiation is lacking. No significant effect on development is seen if sea urchin embryos are exposed to 5-azaCR at post-blastula stages. 5-azaCR also inhibits the development of a mosaic egg such as the ascidian Phallusia mammilata at the blastula stage, indicating that both regulative (sea urchin) and mosaic (ascidian) embryos respond more or less similarly to 5-azaCR treatment.  相似文献   

19.
Agrobacterium-mediated transformation of higher plants is a well-known and powerful tool for transgene delivery to plant cells. In the present work, we studied whether Agrobacterium can transfer genetic information to animal (sea urchin) embryos. Sea urchin embryos were co-cultivated with A. tumefaciens strains carrying binary vectors containing the nptII marker gene and agrobacterial rolC and rolB oncogenes. Bacterial plasmid T-DNA-sea urchin DNA junction sites were identified in the genome of these embryos, thus indicating successful transformation. The nptII and both rol genes were expressed in the transformed embryos. The processes of transgene integration and transgene expression were suppressed when Agrobacteria contained mutated virA, virB or virG genes, suggesting that Agrobacterium transforms sea urchin cells by a mechanism similar to that which mediates T-DNA transfer to plants. Some of the embryos co-cultivated with Agrobacterium developed teratoma-like structures. The ability of Agrobacterium strains to trigger formation of teratoma-like structures was diminished when they contained the mutated vir genes. In summary, our results demonstrate that Agrobacterium is able to transform animal (sea urchin) embryonic cells, thus indicating a potential of this natural system for gene delivery to animal hosts. We also discuss the possibility of horizontal gene transfer from Agrobacterium to marine invertebrates.  相似文献   

20.
Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS) at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30) were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号