首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular entry of thyroid hormone is mediated by plasma membrane transporters. We have identified rat monocarboxylate transporter 8 (MCT8) as an active and specific thyroid hormone transporter. The MCT8 gene is located on the X-chromosome. The physiological relevance of MCT8 has been demonstrated by the identification of hemizygous mutations in this gene in males with severe psychomotor retardation and elevated serum T(3) levels. We have characterized human (h) MCT8 by analysis of iodothyronine uptake and metabolism in cell lines transiently transfected with hMCT8 cDNA alone or together with cDNA coding for iodothyronine deiodinase D1, D2, or D3. MCT8 mRNA was detected by RT-PCR in a number of human cell lines as well as in COS1 cells but was low to undetectable in other cell lines, including JEG3 cells. MCT8 protein was not detected in nontransfected cell lines tested by immunoblotting using a polyclonal C-terminal hMCT8 antibody but was detectable in transfected cells at the expected size (61 kDa). Transfection of COS1 and JEG3 cells with hMCT8 cDNA resulted in 2- to 3-fold increases in uptake of T(3) and T(4) but little or no increase in rT(3) or 3,3'-diiodothyronine (3,3'-T(2)) uptake. MCT8 expression produced large increases in T(4) metabolism by cotransfected D2 or D3, T(3) metabolism by D3, rT(3) metabolism by D1 or D2, and 3,3'-T(2) metabolism by D3. Affinity labeling of hMCT8 protein was observed after incubation of intact transfected cells with N-bromoacetyl-[(125)I]T(3). hMCT8 also facilitated affinity labeling of cotransfected D1 by bromoacetyl-T(3). Our findings indicate that hMCT8 mediates plasma membrane transport of iodothyronines, thus increasing their intracellular availability.  相似文献   

2.
Cellular entry of thyroid hormone is mediated by plasma membrane transporters, among others a T-type (aromatic) amino acid transporter. Monocarboxylate transporter 10 (MCT10) has been reported to transport aromatic amino acids but not iodothyronines. Within the MCT family, MCT10 is most homologous to MCT8, which is a very important iodothyronine transporter but does not transport amino acids. In view of this paradox, we decided to reinvestigate the possible transport of thyroid hormone by human (h) MCT10 in comparison with hMCT8. Transfection of COS1 cells with hMCT10 cDNA resulted in 1) the production of an approximately 55 kDa protein located to the plasma membrane as shown by immunoblotting and confocal microscopy, 2) a strong increase in the affinity labeling of intracellular type I deiodinase by N-bromoacetyl-[(125)I]T(3), 3) a marked stimulation of cellular T(4) and, particularly, T(3) uptake, 4) a significant inhibition of T(3) uptake by phenylalanine, tyrosine, and tryptophan of 12.5%, 22.2%, and 51.4%, respectively, and 5) a marked increase in the intracellular deiodination of T(4) and T(3) by different deiodinases. Cotransfection studies using the cytosolic thyroid hormone-binding protein micro-crystallin (CRYM) indicated that hMCT10 facilitates both cellular uptake and efflux of T(4) and T(3). In the absence of CRYM, hMCT10 and hMCT8 increased T(3) uptake after 5 min incubation up to 4.0- and 1.9-fold, and in the presence of CRYM up to 6.9- and 5.8-fold, respectively. hMCT10 was less active toward T(4) than hMCT8. These findings establish that hMCT10 is at least as active a thyroid hormone transporter as hMCT8, and that both transporters facilitate iodothyronine uptake as well as efflux.  相似文献   

3.
The uptake of 3,3',5-[3'-125I]triiodo-L-thyronine ([125I]L-T3) and of L-[3',5'-125I]thyroxine ([125I]L-T4) by cultured rat glial cells was studied under initial velocity (Vi) conditions. Uptake of both hormones was carrier mediated and obeyed simple Michaelis-Menten kinetics. The following respective values of Km (microM) and Vmax (fmol/min/microgram of DNA) were obtained at 25 degrees C: 0.52 +/- 0.09 and 727 +/- 55 for L-T3 and 1.02 +/- 0.21 and 690 +/- 85 for L-T4. Ki values (microM) for the inhibition of [125I]L-T3 uptake by unlabeled analogues were as follows: L-T4, 0.88; 3,3',5'-triiodo-L-thyronine, 1.4; 3,3'-diiodo-L-thyronine, 2.9; 3,3',5-triiodo-D-thyronine, 4.8; and triiodothyroacetic acid, 5.3. These values indicate that the uptake system is stereospecific. Unlabeled L-T3 was a better competitor than unlabeled L-T4 for the uptake of [125I]L-T4, an observation suggesting that both hormones were taken up by a common carrier system. L-T3, and L-T4 uptake was pH dependent, a finding suggesting that the phenolic unionized form of the hormones was preferentially taken up. L-T3 uptake was studied in the presence of various inhibitors; the results suggest that uptake was independent of the transmembrane Na+ gradient and of the cellular energy. Compounds that inhibited cellular uptake but were without effect on L-T3 binding to isolated nuclei also inhibited L-T3 nuclear binding in intact cells, an observation suggesting that uptake could be rate limiting for the access of L-T3 to nuclear receptors when transport is severely inhibited.  相似文献   

4.
Nuclear binding sites of T3 in human trophoblastic cells were biochemically characterized. Nuclei were isolated by a combination procedure with mild homogenization of the freshly obtained trophoblastic tissue aged term gestation, centrifugations and Triton X-100 treatment. The isolated nuclei were incubated with various concentrations of 125I-T3 at 20 degrees C for 3 h. The total number of T3 binding sites per nucleus was approximately 650. The apparent association constant (Ka) was 6.0 X 10(9)M-1. Nuclear proteins extracted from purified nuclei with 0.4M KCl were able to bind T3 giving rise to nuclear thyroid hormone binding protein-T3 complexes and they were precipitated with bovine IgG, as a carrier protein, by 12.5% polyethylene glycol. Binding was maximum in 3 h incubation at 20 degrees C or in 18 h at 0 degrees C, while it dropped quickly at 37 degrees C. The binding characteristics were analyzed by Scatchard plots. In nuclear proteins obtained from 8 term placentae there was a single set of high affinity-low capacity T3 binding sites with Ka of 7.0 X 10(9)M-1. The capacity is about 62.7 fmol T3/mg DNA. The binding sites were found to be specific for L-T3, while L-T4 was about 100-fold less effective, rT3 ineffective, and D-T3 and D-T4 were roughly 1/8 and 1/5 as active as L-T3 and L-T4, respectively in displacing 125I-T3 from the binding sites. These data confirmed that human placenta is a target organ of thyroid hormones; trophoblastic cells contain T3 nuclear receptors which are biochemically similar to those isolated from liver, although the capacity is low.  相似文献   

5.
The regulation of growth hormone gene expression by thyroid hormone in cultured GH1 cells is mediated by a chromatin-associated receptor. We have previously described a photoaffinity label derivative of 3,5,3'-triiodo-L-thyronine (L-T3) in which the alanine side chain was modified to form N-2-diazo-3,3,3-trifluoropropionyl-L-T3 (L-[125I]T3-PAL). On exposure to 254 nm UV light, L-[125I]T3-PAL generates a carbene which covalently modifies two thyroid hormone receptor forms in intact GH1 cells; an abundant 47,000 Mr species and a less abundant 57,000 Mr form. We have now synthesized similar photoaffinity label derivatives of 3,5,3',5'-tetraiodo-L-thyronine (L-T4) and 3,3',5'-triiodo-L-thyronine (L-rT3). Both compounds identify the same receptor forms in intact cells and in nuclear extracts in vitro as L-[125I]T3-PAL. Labeling by L-[125I]rT3-PAL was low and consistent with the very low occupancy of receptor by L-rT3. Underivatized L-[125I]T3 and L-[125I]T4 labeled the same receptor forms at 254 nm but at a markedly lower efficiency than their PAL derivatives. In contrast, N-bromoacetyl-L-[125I]T3, a chemical affinity labeling agent, did not derivatize either receptor form in vitro. The relative efficiency of coupling to receptor at 254 nm was L-[125I]T4-PAL greater than L-[125I]T3-PAL greater than L-[125I]T4 greater than L-[125I]T3. Although L-[125I]T4-PAL has a lower affinity for receptor than L-[125I]T3-PAL, its coupling efficiency was 5-10-fold higher. This suggests that the alanine side chain of L-[125I]T4-PAL is positioned in the ligand binding region near a residue which is efficiently modified by photoactivation. With L-[125I]T4-PAL we were able to identify three different molecular weight receptor species in human fibroblast nuclei.  相似文献   

6.
Using a T7 expression system, large amounts of the human placental c-erbA protein (h-TR beta 1) were expressed. From 1 liter of Escherichia coli culture, approximately 50-100 micrograms of purified h-TR beta 1 were obtained. Analysis of the binding data indicated that the purified h-TR beta 1 binds to 3,3',5-triiodo-L-thyronine (T3) with a Ka = 2.8 x 10(9) M-1. It binds to 3,3',5-triiodo-L-thyropropionic acid, 3,3',5-triiodo-L-thyroacetic acid, D-T3, L-thyroxine (T4), and 3',5',3-triiodo-L-thyronine with 475, 120, 39, 7, and 0.1%, respectively, of the activity of L-T3. This order of binding activity to T3 analogs is similar to that reported for the T3 nuclear receptor identified in tissues or cultured cells. Furthermore, the purified h-TR beta 1 binds to the T3 response element of the rat growth hormone gene. Thus, the purified h-TR beta 1 is active. To identify the hormone binding domain, the purified h-TR beta 1 was affinity labeled with underivatized [3',5'-125I]T4. A partial digestion by trypsin yielded a 125I-labeled 25-kDa fragment which was identified to be the domain Phe240-Asp456 by amino acid sequencing. Thus, the purified h-TR beta 1 appears suitable for other structural and functional studies.  相似文献   

7.
L-Thyroxine (T4) and 3,3',5-L-triiodothyronine (T3) at 10(-10) M stimulated phospholipid- and Ca2+-dependent protein kinase activity in rabbit red cell cytosol in vitro by 151 and 176%, respectively. Kinase of 30-fold greater specific activity, developed with 0.4 mM NaCl from cytosol applied to DEAE-cellulose, was also stimulated up to 2-fold by thyroid hormone. Hormone enhancement of kinase activity occurred after 60 min of incubation at 37 degrees C prior to enzyme assay. Thyroid hormone analogues triiodothyroacetic acid, 3,5-dimethyl-3'-isopropyl-L-thyronine, D-T3, D-T4, and 3,3',5'-L-triiodothyronine (reverse T3) were inactive. These results support a role for thyroid hormone endogenously in regulation of phospholipid-dependent protein kinase activity.  相似文献   

8.
Recently we reported that hyperglucagonemia induced by glucagon infusion causes a decline in serum Triiodothyronine (T3) and a rise in reverse T3 (rT3) in euthyroid healthy volunteers. These changes in T3 and rT3 levels were attributed to altered T4 metabolism in peripheral tissues. However, the contribution of altered release of thyroid hormones by the thyroid gland could not be excluded. Since the release of thyroid hormones is suppressed by exogenous administration of L-thyroxine (L-T4) in appropriate dosage, we studied thyroid hormone levels for up to 6 hours after intravenous administration of glucagon in euthyroid healthy subjects after administration of L-T4 for 12 weeks. A control study was conducted using normal saline infusion. Plasma glucose rose promptly following glucagon administration demonstrating its physiologic effect. Serum T4, Free T4 and T3 resin uptake were not altered during both studies. Glucagon infusion induced a significant decline in serum T3 (P less than 0.01) and a marked rise in rT3 (P less than 0.01) whereas saline administration caused no alterations in T3 or rT3 levels. Thus the changes in T3 and rT3 were significantly different during glucagon study when compared to saline infusion. (P less than 0.01 for both comparisons). Therefore, this study demonstrates that changes in serum T3 and rT3 caused by hyperglucagonemia may be secondary to altered thyroid hormone metabolism in peripheral tissues and not due to altered release by the thyroid gland, since the release of thyroid hormones is suppressed by exogenous L-T4 administration.  相似文献   

9.
The kinetic and equilibrium characteristics of interaction of thyroxine (T4) and its structural analogs with a high density lipoprotein (HDL) fraction isolated from human serum by T4-Sepharose affinity chromatography and containing apolipoprotein A-I (apo A-I) as a sole protein component, were studied. The binding of [125I]T4 to apo A-I-HDL reached a maximum after 40 min and did not change during the next 80 min of incubation at 0 degrees--22 degrees C. Dissociation of [125I]T4 induced by the addition of excess unlabeled T4 to the complex solution proceeded more intensely on a time scale at 0--2 degrees C than at 22 degrees C. Incubation of apo A-I-HDL with increasing concentrations of T4 showed that the binding is saturable. The data analysis using different computer programs revealed the presence in apo A-I-HDL of a single class of binding sites with K alpha = (4.0 +/- 2.1).10(-7) M- and Bmax = 1.7 +/- 0.8 nmol T4/mg of protein. Naturally occurring iodothyronines, their analogs and D-isomers of thyroid hormones competed with [125I]T4 for the binding sites on apo A-I-HDL with the following inhibitory potencies: L-T4 = D-T4 greater than or equal to 3,3',5-triiodo-L-thyronine = 3,3',5-triiodo-D-thyronine greater than 3,5-diiodo-L-thyronine = 3,3',5- triiodothyroacetic acid greater than 3,3',5-triiodothyropropionic acid greater than or equal to 3,5-diiodo-L-thyrosine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
BackgroundMutations in the thyroid hormone (TH) transporter MCT8 have been identified as the cause for Allan-Herndon-Dudley Syndrome (AHDS), characterized by severe psychomotor retardation and altered TH serum levels. Here we report a novel MCT8 mutation identified in 4 generations of one family, and its functional characterization.MethodsProband and family members were screened for 60 genes involved in X-linked cognitive impairment and the MCT8 mutation was confirmed. Functional consequences of MCT8 mutations were studied by analysis of [125I]TH transport in fibroblasts and transiently transfected JEG3 and COS1 cells, and by subcellular localization of the transporter.ResultsThe proband and a male cousin demonstrated clinical findings characteristic of AHDS. Serum analysis showed high T3, low rT3, and normal T4 and TSH levels in the proband. A MCT8 mutation (c.869C>T; p.S290F) was identified in the proband, his cousin, and several female carriers. Functional analysis of the S290F mutant showed decreased TH transport, metabolism and protein expression in the three cell types, whereas the S290A mutation had no effect. Interestingly, both uptake and efflux of T3 and T4 was impaired in fibroblasts of the proband, compared to his healthy brother. However, no effect of the S290F mutation was observed on TH efflux from COS1 and JEG3 cells. Immunocytochemistry showed plasma membrane localization of wild-type MCT8 and the S290A and S290F mutants in JEG3 cells.ConclusionsWe describe a novel MCT8 mutation (S290F) in 4 generations of a family with Allan-Herndon-Dudley Syndrome. Functional analysis demonstrates loss-of-function of the MCT8 transporter. Furthermore, our results indicate that the function of the S290F mutant is dependent on cell context. Comparison of the S290F and S290A mutants indicates that it is not the loss of Ser but its substitution with Phe, which leads to S290F dysfunction.  相似文献   

11.
The short-term effect of L-tri-iodothyronine (T3) on hepatic Ca2+ uptake from perfusate was compared with changes induced by T3 on cellular respiration and glucose output in isolated perfused livers from fasted and fed rats. The same parameters were also studied after the addition of glucagon or vasopressin. T3 (1 microM) induced Ca2+ uptake from the perfusate into the liver within minutes, and the time course was similar to that for stimulation of respiration and gluconeogenesis in livers from fasted rats, and for the stimulation of respiration and glucose output in livers from fed rats. The effects were dose-dependent in the range 1 microM-0.1 nM. Similar changes in the same parameters could be observed with glucagon and vasopressin, but with a completely different time course. Also, the influence of the T3 analogues L-thyroxine (L-T4), 3,5-di-iodo-L-thyronine (L-T2) and 3,3',5-tri-iodo-D-thyronine (D-T3) on hepatic energy metabolism was examined. Whereas D-T3 had practically no effect, L-T4 and L-T2 caused changes in Ca2+ uptake, O2 consumption and gluconeogenesis in livers from fasted rats similar to those with T3. It is concluded that changes in mitochondrial and cytosolic Ca2+ concentrations are involved in the stimulation of respiration and glucose metabolism observed with T3, glucagon and vasopressin.  相似文献   

12.
The aim of this study was to see whether the inhibitory effect of propylthiouracil on thyroidal secretion of 3,5,3'-triiodothyronine (T3) and 3,3',5'-triiodothyronine (rT3) could be reproduced in intensively stimulated thyroids, and to elucidate whether an increase in the fractional deiodination of thyroxine (T4) to T3 and rT3 during iodothyronine secretion might be responsible for the transient fall in the T4/T3 and T4/rT3 ratios in thyroid secretion seen in the early phase after stimulation of thyroid secretion. For this purpose T4, T3 and rT3 were measured in effluent from isolated dog thyroid lobes perfused in a non-recirculation system using a synthetic hormone free medium. 1 mmol/1 propylthiouracil induced a significant reduction in thyroid-stimulating hormone (TSH) stimulated T3 and rT3 release while the release of T4 was unaffected. This supports our previous conclusion that T4 is partially monodeiodinated to T3 and rT3 during thyroid secretion. Infusion of 1 mmol/l propylthiouracil for 30 min or 3 mmol/l propylthiouracil for 120 min did not abolish the transient fall in effluent T4/T3 and T4/rT3 induced by TSH stimulation. Thus, this phenomenon seems not to depend on intrathyroidal iodothyronine deiodinating processes.  相似文献   

13.
The specific thyroid hormone transporter, MCT8, located on the X chromosome, has led to the identification a novel syndrome. The objective is to relate phenotype with several tissue-specific thyroid functions. A 1-year-old boy, who had severe psychological damage and low serum T4, had received l-T4 for 3 months. At admission, body length was normal but weight was low. Off therapy, serum TSH was mildly elevated, serum T4 and free T4 were low, and serum T3 and free T3 were high. Direct sequencing of the MCT8 gene revealed a single nucleotide change that resulted in a novel nonsense mutation at codon 261 (Q261X) in exon 3. Since serum T3 was high, peripheral markers of hyperthyroidism were looked for. Bone age was advanced, despite the presence of malnutrition and low T4. Serum SHBG, a marker of thyroid hormone action in liver, was markedly elevated. Markers of skeletal muscle catabolism, ammonemia and lactic acid, were found to be elevated. The phenotype of MCT 8 mutation might be explained by differences in the entry of thyroid hormones into different cells. In the presence of an inactive MCT8 transporter, the high blood T3 levels might not be enough to prevent brain damage early in life, while they seem to be able to induce a postnatal state of peripheral hyperthyroidism in other tissues, such as liver, bone and skeletal muscle.  相似文献   

14.
Transport of various amphipathic organic compounds is mediated by organic anion transporting polypeptides (OATPs in humans, Oatps in rodents), which belong to the solute carrier family 21A (SLC21A/Slc21a). Several of these transporters exhibit a broad and overlapping substrate specificity and are expressed in a variety of different tissues. We have isolated and functionally characterized OATP-F (SLC21A14), a novel member of the OATP family. The cDNA (3059 bp) contains an open reading frame of 2136 bp encoding a protein of 712 amino acids. Its gene containing 15 exons is located on chromosome 12p12. OATP-F exhibits 47-48% amino acid identity with OATP-A, OATP-C, and OATP8, the genes of which are clustered on chromosome 12p12. OATP-F is predominantly expressed in multiple brain regions and Leydig cells of the testis. OATP-F mediates high affinity transport of T(4) and reverse T(3) with apparent K(m) values of approximately 90 nM and 128 nM, respectively. Substrates less well transported by OATP-F include T(3), bromosulfophthalein, estrone-3-sulfate, and estradiol-17beta-glucuronide. Furthermore, OATP-F-mediated T(4) uptake could be cis-inhibited by L-T(4) and D-T(4), but not by 3,5-diiodothyronine, indicating that T(4) transport is not stereospecific, but that 3',5'-iodination is important for efficient transport by OATP-F. Thus, in contrast to most other family members, OATP-F has a more selective substrate preference and may play an important role in the disposition of thyroid hormones in brain and testis.  相似文献   

15.
Using a T7 expression system, the monomer of rat pituitary pyruvate kinase, subtype M1 (PKM1), was overexpressed in Escherichia coli and purified to homogeneity. The monomeric p58-M1 has intrinsic enzymatic activity with a Vmax of 79 +/- 20 units/mg and Km's for ADP and PEP of 1.43 +/- 0.76 and 0.14 +/- 0.07 mM, respectively. The monomer binds 3,3',5-triiodo-L-thyronine (T3) with Ka = 1.5 x 10(7) M-1. The order of analog specificity is L-T3 greater than L-thyroxine greater than D-T3 greater than 3'-isopropyl-3,5-diiodo-L-thyronine greater than or equal to 3',5',3-triiodo-L-thyronine. In contrast, tetrameric PKM1 lacks T3 binding activity. The kinase activity of p58-M1 is inhibited by T3 and its analogs in a concentration-dependent manner with the order of inhibitory activity similar to that of binding activity. This inhibition, however, is reversed by the addition of fructose 1,6-bisphosphate. p58-M1 is the second PK isoenzyme monomer to be identified as having thyroid hormone binding activity.  相似文献   

16.
Liver uptake of thyroxine (T4) is mediated by transporters and is rate limiting for hepatic 3,3',5-triiodothyronine (T3) production. We investigated whether hepatic mRNA for T4 transporters is regulated by thyroid state using Xenopus laevis oocytes as an expression system. Because X. laevis oocytes show high endogenous uptake of T4, T4 sulfamate (T4NS) was used as an alternative ligand for the hepatic T4 transporters. Oocytes were injected with 23 ng liver mRNA from euthyroid, hypothyroid, or hyperthyroid rats, and after 3-4 days uptake was determined by incubation of injected and uninjected oocytes for 1 h at 25 degrees C or for 4 h at 18 degrees C with 10 nM [125I]T4NS. Expression of type I deiodinase (D1), which is regulated by thyroid state, was studied in the oocytes as an internal control. Uptake of T4NS showed similar approximately fourfold increases after injection of liver mRNA from euthyroid, hypothyroid, or hyperthyroid rats. A similar lack of effect of thyroid state was observed using reverse T3 as ligand. In contrast, D1 activity induced by liver mRNA from hyperthyroid and hypothyroid rats in the oocytes was 2.4-fold higher and 2.7-fold lower, respectively, compared with euthyroid rats. Studies have shown that uptake of iodothyronines in rat liver is mediated in part by several organic anion transporters, such as the Na+/taurocholate-cotransporting polypeptide (rNTCP) and the Na-independent organic anion-transporting polypeptide (rOATP1). Therefore, the effects of thyroid state on rNTCP, rOATP1, and D1 mRNA levels in rat liver were also determined. Northern analysis showed no differences in rNTCP or rOATP1 mRNA levels between hyperthyroid and hypothyroid rats, whereas D1 mRNA levels varied widely as expected. These results suggest little effect of thyroid state on the levels of mRNA coding for T4 transporters in rat liver, including rNTCP and rOATP1. However, they do not exclude regulation of hepatic T4 transporters by thyroid hormone at the translational and posttranslational level.  相似文献   

17.
18.
The NADP(H)-linked oxidoreductase activity of a major isozyme of human liver 3 alpha-hydroxysteroid dehydrogenase was activated 5-, 4-, and 2-fold by D-thyroxine (T(4)), L-T(4) and DL-3,3', 5'-triiodothyronine (reverse T(3)), respectively. Kinetic analysis of the activation indicated that D-T(4), L-T(4), and reverse T(3) are non-essential activators, showing binding constants of 1.5, 1.1, and 3.6 microM, respectively. Comparison of the effects of the T(4) analogs on the activities of the mutant enzymes suggests that the binding site is composed of at least Lys-270, Arg-276, and the C-terminal loop of the enzyme. L-T(3), DL-thyronine, and D-tyrosine had no effect on the enzyme, but 3,5,3',5'-tetra- and 3,5, 3'-tri-iodo thyropropionic acids were potent competitive inhibitors with K(i) values of 42 and 60 nM, respectively, with respect to the substrate. The inhibition constant was lowered upon the activation of the enzyme by D-T(4), and the inhibition by the deamino derivatives of T(4) and T(3) disappeared upon modification of the C-terminal loop of the enzyme, but not upon replacement of Lys-270 or Arg-276 with Met. These results indicate that, depending on their structures, the T(4) analogs bind differently to two distinct sites at the active center of the enzyme to produce stimulatory and inhibitory effects.  相似文献   

19.
Parameters of the peripheral metabolism of thyroxine (T4) were studied in the early postnatal period. Iopanoic acid (IOP) was administered to newborn rats that were either euthyroid or rendered hypothyroid in utero by propylthiouracil (PTU) or methimazole (MMI) administration to the mothers during gestation and injected with thyroxine on postnatal days 6 and 7. In euthyroid newborn rats given IOP from postnatal day 6, the plasma T4 level increased (+50%) while the plasma 3,3',5'-triiodothyronine (T3) level slightly decreased (-18%). Peripheral deiodination of T4 was also reduced (about -50%) as estimated by thyroid 125I uptake after injection of 125I (3'-5')L-T4. In the newborn rats rendered hypothyroid in utero and given T4 on postnatal days 6 and 7, IOP treatment started on day 4 decreased the constant rate of elimination (-50%), the distribution volume (-43%) and the metabolic clearance (-74%) of plasma T4. The results were the same in PTU- and MMI-treated newborn rats. The differences between newborn and adult animals under IOP treatment are discussed.  相似文献   

20.
Specific thyroid hormone (TH) binding sites have been detected in nuclei of erythrocytes obtained from developing chick embryos. The binding characteristics and relative affinities for TH analogs were those expected of TH receptors. Nuclear triiodothyronine (T3) saturation analysis was carried out in vitro by incubating intact erythrocytes in M199 medium with 3-200 pM [125I]T3 for 1 hr at 37 degrees C or 20-24 hr at 21 degrees C. Nuclei were obtained by centrifugation after lysing the erythrocytes in a stabilizing buffer containing 0.3% saponin, followed by addition of Triton X-100 (final concentration 0.2%) to minimize the nonspecific binding. Scatchard analysis of equilibrium binding data suggested that the nuclei possess a single class of binding sites. The binding is reversible and the rate of dissociation is temperature dependent. T3 and T4 appear to bind to the same sites, but the affinity of T3 was 16 times greater. Among TH analogs tested, Triac had the highest affinity followed by L-T3, D-T3, Tetrac, L-T4, D-T4, T2, and rT3. Serial studies performed on different days of chick embryogenesis demonstrated a rapid and significant decrease of the erythrocyte nuclear T3 receptor. On Day 5, the number of T3 binding sites was maximal at 1600 +/- 100 per nucleus. The number declined steadily until, by Day 20, it had reached about 60 +/- 10 sites/nucleus. RBC from adult and baby chickens had less than 1% as many binding sites as those from Day 5 embryos. There was no significant change in the affinity of the sites (Kd approximately equal to 20 pM at 37 degrees C). The reason for the loss of T3 binding sites during embryogenesis is not known. Since the plasma level of the TH increases during embryogenesis, this may reflect down regulation. Another possibility is that the change in erythrocyte population which occurs during this period involves production of erythrocytes which contain fewer T3 binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号