首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Confluent adult and fetal human glomerular epithelial cells were incubated for 24 h in the presence of [3H]-amino acids and [35S]sulfate. Two heparan-35SO4 proteoglycans were released into the culture medium. These 35S-labeled proteoglycans eluted as a single peak from anion exchange chromatographic columns, but were separable by gel filtration on Sepharose CL-6B columns. The larger heparan-35SO4 proteoglycan eluted with the column void volume and at a Kav of 0.26 from Sepharose CL-4B columns. The most abundant medium heparan-35SO4 proteoglycan was a high buoyant density proteoglycan similar in hydrodynamic size (Sepharose CL-6B Kav 0.23) to those previously described in glomerular basement membranes and isolated glomeruli. Heparan-35SO4 chains from both proteoglycans were 36 kDa. A smaller proportion of Sepharose CL-6B excluded dermatan-35SO4 proteoglycan was also synthesized by these cells. The predominant protein cores of both medium heparan-35SO4 proteoglycans were approximately 230 and 180 kDa. A hybrid chondroitin/dermatan-heparan-35SO4 proteoglycan with an 80-kDa protein core copurified with the smaller medium heparan-35SO4 proteoglycan. This 35S-labeled proteoglycan appeared as a diffuse, chondroitinase ABC sensitive 155-kDa fluorographic band in sodium dodecyl sulfate-polyacrylamide gels after the Sepharose CL-6B Kav 0.23 35S-labeled proteoglycan fraction was digested with heparitinase. The heparitinase generated heparan sulfate proteoglycan protein cores and the 155-kDa hybrid proteoglycan fragment had molecular weights similar to those previously identified in rat glomerular basement membrane and glomeruli using antibodies against a basement membrane tumor proteoglycan precursor (Klein et al. J. Cell Biol. 106, 963-970, 1988). Thus, human glomerular epithelial cells in culture are capable of synthesizing, processing, and releasing heparan sulfate proteoglycans which are similar to those synthesized in vivo and found in the glomerular basement membrane. These proteoglycans may belong to a family of related basement membrane proteoglycans.  相似文献   

2.
Analysis of the proteoglycans synthesized by human bone cells in vitro   总被引:3,自引:0,他引:3  
Proteoglycans were isolated by ion-exchange chromatography from the extracted cell layer and culture medium of human bone cell cultures following incubation in the presence of [35S]sulfate and [3H]leucine. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the synthesized proteoglycans consisted of at least five polydisperse species having median apparent Mr = 600,000, 400,000, 270,000, 135,000 and 40,000. When chromatographed further on octyl-Sepharose CL-4B, the proteoglycans of the cell layer resolved into three peaks. The unbound fraction (peak cell layer-I) contained a 40,000 species consisting of a single glycosaminoglycan chain with or without peptide. Peak cell layer-II contained three sulfated species on electrophoresis: a 600,000 species uniformly distributed across the peak, a 135,000 species enriched in the ascending limb (similar to bone PG-I as described previously), and a 270,000 species (similar to bone PG-I) enriched in the descending limb. Peak cell layer-III, eluting at 0.2% Triton X-100, was highly enriched in a 400,000 proteoglycan component. When media proteoglycans were chromatographed on octyl-Sepharose, two labeled peaks were found. Peak medium-I (unbound) contained a species exhibiting electrophoretic mobility similar to that of the 400,000 species present in peak cell layer-III. Peak II of the culture medium (medium-II) was apparently identical to that of peak cell layer-II, containing the 600,000, 270,000 and 135,000 species. No appreciable 40,000 species was observed in the medium. Treatment of the 600,000 species with either chondroitinase ABC or ACII generated a core protein preparation with bands of 390,000 and 340,000 on SDS gels. Neither the intact nor the chondroitinase ABC-treated 600,000 species was immunoprecipitated by a purified, polyclonal antiserum raised against the core protein of the large chondroitin sulfate proteoglycan of human articular cartilage. Treatment of the 270,000 and 135,000 proteoglycans with chondroitinase ABC, but not ACII, generated a core protein preparation with bands of 52,000 and 49,000 on SDS gels, indicating that they were dermatan sulfate-containing species. The 400,000 species contained both heparan sulfate and chondroitin sulfate, in approximately a 3:1 labeling ratio. This species changed in electrophoretic mobility following treatment with chondroitinase ABC, heparatinase, or both enzymes in combination, which suggested that it may be a hybrid proteoglycan (i.e. both types of glycosaminoglycan chain on the same core protein).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Cell associated glycoproteins synthesized by cultured renal tubular cells   总被引:2,自引:0,他引:2  
Summary Thin cortical kidney explants from newborn New Zealand rabbits were cultured in Dulbecco's MEM containing 10% fetal bovine seru. Within 24 h the explants formed globular bodies which were completely covered by a monolayered epithelium. The cells show polar differentiation and resemble the renal collecting duct epithelium. By culturing the globular bodies in Dulbecco's MEM with d-valine instead of l-valine additionally a monolayer of renal collecting duct cells was obtained. For the study of glycoprotein synthesis the globular bodies and the collecting duct monolayers were incubated with various labelled carbohydrates, protein and collagen precursors and then fractionated into coarse membrane pellets. The synthesized glycoproteins were regained in 600×g and 12,000×g coarse membrane fractions and extracted with Triton X 100 buffer for column chromatography and SDS-polyacrylamide electrophoresis in 6 M urea. In addition to a 85,000 d glycoprotein, a carbohydrate rich collagen like protein (apparent molecular weight in column chromatography 200,000 d, in the SDS-polyacrylamide electrophoresis 150,000 d) was found. The 150,000 d glycoprotein incorporates favorably radioactive proline, sulfate, and smaller amounts of lysine, and leucine. Compared to the 85,000 d glycoprotein a double amount of glucosamine and galactose and four fold amount of fucose was detected. The 85,000 d protein has to be ascribed as a usual glycoprotein, in contrast the 150,000 d protein shows an unusual combination of characteristics and has to be considered as a new type of renal glycoprotein.  相似文献   

4.
Our objectives were to compare proteins secreted by caprine oviductal explants and oviductal epithelial (OE) cells in vitro. Oviducts were collected from goats on Days 1 (n=5) and 5 (n=5) of the estrous cycle. Radiolabeled secretory proteins from tissue segments and cell cultures were visualized using SDS-PAGE and fluorography. After culture, media from ampulla oviduct segments collected on Days 1 and 5 of the estrous cycle contained an acidic 97 kDa protein, which was greatly reduced in culture medium obtained from infundibulum and isthmus oviduct segments. A complex of low molecular weight proteins (14-26 kDa) could be modulated by estradiol when OE cells were cultured on plastic. This complex was constitutively expressed when OE cells were cultured on Matrigel-coated filters. Polarized OE cells were also capable of compartment-specific secretion of [L-(35)S]-methionine-labeled proteins. A 45 kDa acidic protein was predominantly secreted into the apical compartment while a 66 kDa acidic protein was preferentially localized in the basal compartment. Proteins secreted by OE cells were similar to proteins secreted by tissue segments in vitro. Therefore, under well-defined culture conditions OE cells may be useful in enhancing in vitro fertilization or early embryonic development.  相似文献   

5.
After extraction with 4 M guanidinium chloride and purification by DEAE-cellulose chromatography, the heparan sulfate proteoglycan (HSPG) of calf anterior lens capsule was found to consist of two immunologically related components (Mr = 340,000 and 250,000) which upon deglycosylation with trifluoromethanesulfonic acid yielded core proteins with Mr values of 170,000 and 145,000. The heparan sulfate chains were uniform in size (Mr = 14,000) and manifested a clustering of sulfate groups in a peripheral domain. From the decrease in Mr observed after heparitinase digestion, it could be estimated that 6 and 11 glycosaminoglycan chains were present in the Mr = 250,000 and 340,000 components respectively. The occurrence of N-linked oligosaccharides was evident from the size difference of the heparitinase- and trifluoromethane-sulfonic acid-treated proteoglycans (approximately 20 kDa), as well as from the presence of a substantial number of mannose residues; furthermore, interaction of the capsule proteoglycan with Bandeiraea simplicifolia I suggested that these carbohydrate units contains terminal alpha-D-Gal groups. Cultured lens epithelial cells deposited a single [35S]sulfate-labeled proteoglycan into their matrix (Mr = 400,000) which was immunologically related to the lens capsule proteoglycan and contained only heparan sulfate chains. In addition to this component, the medium from these cells contained an immunologically unrelated HSPG (Mr = 150,000) as well as a chondroitin sulfate proteoglycan (Mr = 240,000). Examination of bovine glomeruli indicated that, in addition to the previously described 200-kDa HSPG, an immunologically related 350-kDa component was also present. This size heterogeneity, which is comparable to that seen in the lens capsule, is most readily attributable to proteolytic processing of a precursor molecule. Studies with polyclonal antibodies demonstrated only limited cross-reactivities between the Engelbreth-Holms-Swarm proteoglycan and the components from lens capsule and glomerular basement membrane; since even the latter two differed somewhat in their antigenic sites, it would appear that cell- and species-dictated genetic differences as well as post-translational events contribute to the diversity observed in basement membrane HSPGs.  相似文献   

6.
The proteoglycans secreted by a malignant human breast cell line (MDA-MB-231) were compared with the corresponding proteoglycans from a normal human breast cell line (HBL-100). The physicochemical characteristics of these proteoglycans were established by hexosamine analysis, chemical and enzymatic degradations, and dissociative cesium chloride density gradient centrifugation, and by gel filtration before and after alkaline beta-elimination. Both cell lines secreted approximately 70% of the synthesized proteoglycans, which were composed of 20% heparan sulfate and 80% chondroitin sulfate proteoglycans. The MDA cell line secreted large hydrodynamic size (major) and small hydrodynamic size heparan sulfate proteoglycan. In contrast HBL cells secreted only one species having a hydrodynamic size intermediate to the above two. The chondroitin sulfate proteoglycans from MDA medium were slightly larger than the corresponding polymers from HBL medium. All proteoglycans except the small hydrodynamic size heparan sulfate proteoglycan from MDA medium were of high buoyant density. The proteoglycans of both cell lines contained significant proportions of disulfide-linked lower molecular weight components which were more pronounced in the proteoheparan sulfate polymers, particularly those from MDA medium, than in chondroitin sulfate proteoglycans. The glycosaminoglycans of heparan sulfate proteoglycans from MDA medium were more heterogeneous than those from HBL medium. The glycosaminoglycan chains of large hydrodynamic size heparan sulfate proteoglycans from MDA medium were larger in size than those from HBL medium while small hydrodynamic size heparan sulfate proteoglycans contained shorter glycosaminoglycan chains. In contrast to the glycosaminoglycans derived from chondroitin sulfate proteoglycans of both MDA and HBL medium were comparable in size. The heparan sulfate as well as chondroitin sulfate proteoglycans of both cell lines contained both neutral (di- and tetrasaccharides) and sialylated (tri- to hexasaccharides) O-linked oligosaccharides.  相似文献   

7.
Epithelial cells in the proximal tubule of the kidney reclaim and metabolize protein from the glomerular filtrate. Proteinuria, an overabundance of protein in the urine, affects tubular cell function and is a major factor in the progression of chronic kidney disease. By developing experimental systems to study tubular protein handling in a setting that simulates some of the environmental conditions of the kidney tubule in vivo, we can better understand how microenviromental conditions affect cellular protein handling to determine if these conditions are relevant in disease. To this end, we used two in vitro microfluidic models to evaluate albumin handling by renal proximal tubule cells. For the first system, cells were grown in a microfluidic channel and perfused with physiological levels of shear stress to evaluate the effect of mechanical stress on protein uptake. In the second system, a porous membrane was used to separate an apical and basolateral compartment to evaluate the fate of protein following cellular metabolism. Opossum kidney (OK) epithelial cells were exposed to fluorescently labeled albumin, and cellular uptake was determined by measuring the fluorescence of cell lysates. Confocal fluorescence microscopy was used to compare uptake in cells grown under flow and static conditions. Albumin processed by the cells was examined by size exclusion chromatography (SEC) and SDS-PAGE. Results showed that cellular uptake and/or degradation was significantly increased in cells exposed to flow compared to static conditions. This was confirmed by confocal microscopy. Size exclusion chromatography and SDS-PAGE showed that albumin was broken down into small molecular weight fragments and excreted by the cells. No trace of intact albumin was detectable by either SEC or SDS-PAGE. These results indicate that fluid shear stress is an important factor mediating cellular protein handling, and the microfluidic bioreactor provides a novel tool to investigate this process.  相似文献   

8.
Rat mesangial cells selected by long-term culture of glomeruli exhibited a hill and valley appearance in the confluent state and were stained with antibodies against vimentin and desmin, suggesting that they are smooth muscle-like mesangial cells. The glycoconjugates produced by the cells were metabolically labeled with [35S]sulfate and [3H]glucosamine and extracted with 4 M guanidine HCl containing 0.5% Triton X-100. The radiolabeled glycoconjugates were separated on DEAE-Sephacel and compared with those synthesized by glomeruli labeled in the same conditions. Of the three major sulfated glycoconjugates, sulfated glycoprotein (17% of the total 35S-labeled macromolecules), heparan sulfate proteoglycan (35%), and chondroitin sulfate proteoglycan (30%) synthesized by glomeruli, the cultured mesangial cells synthesized mainly chondroitin sulfate proteoglycan (more than 90%). After purification by CsCl density-gradient centrifugation, the chondroitin sulfate proteoglycan from the cell layer was separated on Bio-Gel A-5m into three molecular species with estimated Mr values of 230,000, 150,000, and 40,000-10,000, whereas that released into the medium consisted of a single species with an Mr of 135,000. In the beta-elimination reaction, the former two larger proteoglycans released chondroitin sulfate chains with Mr of an apparent 30,000 and the latter from the medium released the glycosaminoglycan chains with an Mr of 36,000. The Mr of the smallest proteoglycan from the cell layer was not significantly changed after beta-elimination, indicating that this species had only a small peptide, if any. Analysis with chondroitinase AC-II and ABC demonstrated that all the chondroitin sulfates were copolymers consisting of glucuronosyl-N-acetylgalactosamine (65-74%) having sulfate groups at position 4 (53-57%) or positions 4 and 6 (10-14%) of hexosamine moieties and iduronosyl-N-acetylgalactosamine (21-26%) having sulfate groups at position 4 (17-23%) or positions 4 and 6 (about 3%) of hexosamine moieties; namely chondroitin sulfate H type. These characteristics of the chondroitin sulfate H proteoglycans synthesized by the cultured mesangial cells were very similar to those of the proteoglycans synthesized by glomeruli. Thus, we conclude that most, if not all, of the glomerular chondroitin sulfate proteoglycans are synthesized by mesangial cells. The cultured mesangial cells were also found to synthesize hyaluronic acid at a similar level to chondroitin sulfate proteoglycan. Based on the characteristics of this glycosaminoglycan, we discuss the possible role of hyaluronic acid produced by mesangial cells.  相似文献   

9.
Pyelonephritis, in which renal tubular epithelial cells are directly exposed to bacterial component, is a major predisposing cause of renal insufficiency. Although previous studies have suggested C-C chemokines are involved in the pathogenesis, the exact source and mechanisms of the chemokine secretion remain ambiguous. In this study, we evaluated the involvement of Toll-like receptors (TLRs) in C-C chemokine production by mouse primary renal tubular epithelial cells (MTECs). MTECs constitutively expressed mRNA for TLR1, 2, 3, 4, and 6, but not for TLR5 or 9. MTECs also expressed MD-2, CD14, myeloid differentiation factor 88, and Toll receptor-IL-1R domain-containing adapter protein/myeloid differentiation factor 88-adapter-like. Synthetic lipid A and lipoprotein induced monocyte chemoattractant protein 1 (MCP-1) and RANTES production in MTECs, which strictly depend on TLR4 and TLR2, respectively. In contrast, MTECs were refractory to CpG-oligodeoxynucleotide in chemokine production, consistently with the absence of TLR9. LPS-mediated MCP-1 and RANTES production in MTECs was abolished by NF-kappaB inhibition, but unaffected by extracellular signal-regulated kinase inhibition. In LPS-stimulated MTECs, inhibition of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase significantly decreased RANTES, but did not affect MCP-1 mRNA induction. Thus, MTECs have a distinct expression pattern of TLR and secrete C-C chemokines in response to direct stimulation with a set of bacterial components.  相似文献   

10.
11.
目的 研究改构型酸性成纤维细胞生长因子(MaFGF)对顺铂(DDP)引起的体外培养的肾小管上皮细胞损害的保护作用。方法 将原代培养的肾小管上皮细胞接种于96孔培养板:(1)培养72h后加入一系列浓度的DDP,实验组在DDP作用12h后加入不同浓度MaFGF,再培养36h后用WST-8法检测细胞存活率。(2)以DDP建立损伤模型,并在加药后12小时加入一定量的MaFGF,观察MaFGF对肾小管上皮细胞的保护作用。结果 (1) MaFGF能使DDP对肾小管上皮细胞的半数抑制浓度(IC50)升高。(2)DDP组与对照组比较,各生化和酶学指标差异均有统计学意义;而MaFGF + DDP组与对照组比较,SOD、GSH-Px酶活性差异无统计学意义,MDA、NO升高差异仍有统计学意义。结论 MaFGF对DDP损伤的肾小管上皮细胞有明显的保护作用。  相似文献   

12.
Hypercholesterolemia can aggravate contrast-induced acute kidney injury, and the exacerbation of renal tubular epithelial cell (RTEC) injury is a major cause. However, the exact mechanisms remain obscure. Mitophagy, a type of autophagy, selectively eliminates damaged mitochondria and reduces mitochondrial oxidative stress, which is strongly implicated in cell homeostasis and acute kidney injury. Oxidized low-density lipoprotein (Ox-LDL) is accumulated in hypercholesterolemia and has a cytotoxic effect. This study aimed to determine whether and how ox-LDL exacerbates contrast-induced injury in RTECs and to further explore whether PINK1/Parkin-dependent mitophagy is involved in this process. Iohexol and ox-LDL were used alone or in combination to treat HK-2 cells. Rapamycin pretreatment was utilized to enhance mitophagy. Cell viability, apoptosis, mitochondrial membrane potential (MMP) and mitochondrial reactive oxygen species (mtROS) were detected by cell counting kit-8, TUNEL staining, JC-1 kit and MitoSOX fluorescence, respectively. The expression of mitophagy-related proteins (including PINK1, Parkin, and so on) and cleaved caspase-3 was confirmed by western blot. Colocalization of MitoTracker-labeled mitochondria and LysoTracker-labeled lysosomes was observed by fluorescence microscopy to evaluate mitophagy. The results of our study showed that ox-LDL aggravated MMP decline, mtROS release and apoptosis in iohexol-treated HK-2 cells, accompanied by a further increased autophagy level. Enhancement of PINK1/Parkin-dependent mitophagy by rapamycin alleviated apoptosis and mitochondrial injury in HK-2 cells in response to iohexol under ox-LDL condition. Therefore, our findings indicate that ox-LDL aggravates contrast-induced injury of RTECs by increasing mitochondrial damage and mitochondrial oxidative stress, which may be associated with the relative insufficiency of PINK1/Parkin-dependent mitophagy.  相似文献   

13.
The proteoglycans synthesized by fibroblasts derived from healthy human gingivae were isolated and characterized. The largest medium proteoglycan was excluded from Sepharose CL-4B but not from Sepharose CL-2B; it was recovered in the most-dense density gradient fraction and identified as a chondroitin sulfate proteoglycan. The medium contained two smaller proteoglycans; one contained predominantly chondroitin sulfate proteoglycan, while the other was comprised predominantly of dermatan sulfate proteoglycan and was quantitatively the major species. The largest proteoglycan in the cell layer fraction, excluded from both Sepharose CL-2B and Sepharose CL-4B, was found in the least-dense density gradient fraction and contained heparan sulfate and chondroitin sulfate proteoglycan. It could be further dissociated by treatment with detergent, suggesting an intimate association with cell membranes. Two other proteoglycan populations of intermediate size were identified in the cell layer extracts which contained variable proportions of heparan sulfate, dermatan sulfate, or chondroitin sulfate proteoglycan. Some small molecular weight material indicative of free glycosaminoglycan chains was also associated with the cell layer fraction. Carbohydrate analysis of the proteoglycans demonstrated the glycosaminoglycan chains to have approximate average molecular weights of 25,000. In addition, N- and O-linked oligosaccharides which were associated with the proteoglycans appeared to be sulfated in varying degrees.  相似文献   

14.
Mouse neuroblastoma Neuro 2a cells are known to extend neurite-like processes in response to gangliosides added to the culture medium. We compared the structural features of proteoglycans (PG) synthesized by conventional Neuro 2a cells with those of neurite-bearing cells. Two different proteoglycans labeled with [35S]sulfate, namely, chondroitin sulfate proteoglycan (CS-PG) and heparan sulfate proteoglycan (HS-PG), were found both in the cell layer and in the culture medium of the conventional cells. CS-PG isolated from the cell layer had a Kav value of 0.38 on Sepharose CL-6B, and had CS side chains with Mr of 27,000. HS-PG in the cell layer was slightly larger (Kav of 0.33) in terms of hydrodynamic size than CS-PG, and the apparent Mr of the heparan sulfate side chains was 10,000. The structural parameters of CS-PG and HS-PG isolated from the medium were almost identical to those of the PGs in the cell layer. In addition to these PGs, single-chain HS, with an average Mr of 2,500, was observed only in the cell layer and this component was the major sulfated component in the cell layers of both control and ganglioside treated cells. The neurite-bearing cells also synthesized both CS-PG and HS-PG which were very similar in hydrodynamic size to those synthesized by the conventional cells, but the size of HS side chains was greater. Radioactivity, as35S, of each sulfated component from the gangliosideteated culture seemed to be slightly less than that of the corresponding component from the control culture. These findings indicate that the marked morphological change in Neuro 2a cells, induced by gangliosides is not accompanied by major changes in the synthesis of PGs.  相似文献   

15.
Rat glomerular heparan sulfate (HS) and dermatan sulfate (DS) proteoglycan synthesis was studied in vitro and in vivo. Incorporation of [35S]sulfate into macromolecules was linear over 16 h in vitro, and DS was the predominant glycosaminoglycan (GAG), while HS dominated in vivo incubations. Proteoglycans were found in the bottom 2/5 (high density) CsCl gradient fractions and eluted as two overlapping peaks from DEAE-Sephacel columns. The proportion of low density 35S-glycoproteins and 35S-proteoglycans increased with time. Two high buoyant density HS proteoglycans were extracted from glomeruli and eluted in DEAE peak I. The first, HS-tIA, had an Mr of 130 X 10(3) with Mr 12.5 X 10(3) GAG chains. This proteoglycan was released from the tissue by trypsin and was partially displaced by heparin treatment. In addition, it was rapidly released into the medium of label-chase experiments after which it migrated slightly more rapidly than HS-tIA in gels, with HS chains similar in length to its tissue counterpart. The second, HS-tIB, had an Mr of 8.6 X 10(3) with little or no attached protein. This proteoglycan was characterized as intracellular as it resisted release by trypsin treatment or heparin extraction in medium and was not detected in the medium of label-chase experiments. Two tissue DS proteoglycans were characterized. The first, DS-tIA, co-purified with HS-tIA and was the predominant proteoglycan synthesized during 4-h in vitro incubations. Like HS-tIA, it was rapidly released into medium and displaced from cell surfaces or tissue "receptors" by heparin or trypsin treatments. A second, Sepharose CL-6B-excluded DS proteoglycan from DEAE peak II, DS-tII, accumulated in tissue over 16 h in vitro. This proteoglycan was self-associating and contained clusters of iduronic acid residues along its Mr 26 X 10(3) DS chains. It resisted extraction from the tissue with heparin, trypsin, and detergent. No DS-tII was detected in the incubation medium. Instead, medium proteoglycans eluted as single Sepharose CL-6B-included peaks. DS chains from medium proteoglycans were shorter (Mr 18 X 10(3)) and had more regularly spaced iduronic acid residues than GAGs from DS-tII. The length and sulfation patterns of DS-mII GAG were similar to GAG from DS-tIA. Thus, glomeruli rapidly synthesized and released Sepharose CL-6B-included heparin-displaceable DS and HS proteoglycans while retaining a Sepharose CL-6B-excluded self-associating DS proteoglycan and an intracellular HS.  相似文献   

16.
Heterogeneity of heparan sulfate proteoglycans synthesized by PYS-2 cells   总被引:5,自引:0,他引:5  
Antibodies to the basement membrane proteoglycan produced by the EHS tumor were used to immunoprecipitate [35S]sulfate-labeled protoglycans produced by PYS-2 cells. The immunoprecipitated proteoglycans were subsequently fractionated by CsCl density gradient centrifugation and Sepharose CL-4B chromatography. The culture medium contained a low-density proteoglycan eluting from Sepharose CL-4B at Kav = 0.18, containing heparan sulfate side chains of Mr = 35-40,000. The medium also contained a high-density proteoglycan eluting from Sepharose CL-4B at Kav = 0.23, containing heparan sulfate side chains of Mr = 30,000. The corresponding proteoglycans of the cell layer were all smaller than those in the medium. Since the antibodies used to precipitate those proteoglycans were directed against the protein core, this suggests that these proteoglycans share common antigenic features, and may be derived from a common precursor which undergoes modification by the removal of protein segments and a portion of each heparan sulfate chain.  相似文献   

17.
All-trans retinoic acid (ATRA) induces cellular senescence via up-regulation of p16 and p21; however, the action mechanism of ATRA is unknown. Here, we show that ATRA induces promoter hypomethylation of p16 and p21 via down-regulation of DNA methyltransferases 1, 3a, and 3b to facilitate binding of Ets1/2 to the p16 promoter and p53 to the p21 promoter, resulting in up-regulation of their expression and subsequent induction of cellular senescence in HepG2 cells. These effects were mediated by retinoic acid receptor β2 whose promoter was also hypomethylated in the presence of ATRA. Therefore, ATRA can be considered as an epi-drug in cancer therapy.  相似文献   

18.
19.
Renal fibrosis is a common pathological process that occurs with diverse etiologies in chronic kidney disease. However, its regulatory mechanisms have not yet been fully elucidated. Ferroptosis is a form of non-apoptotic regulated cell death driven by iron-dependent lipid peroxidation. It is currently unknown whether ferroptosis is initiated during unilateral ureteral obstruction (UUO)-induced renal fibrosis and its role has not been determined. In this study, we demonstrated that ureteral obstruction induced ferroptosis in renal tubular epithelial cells (TECs) in vivo. The ferroptosis inhibitor liproxstatin-1 (Lip-1) reduced iron deposition, cell death, lipid peroxidation, and inhibited the downregulation of GPX4 expression induced by UUO, ultimately inhibiting ferroptosis in TECs. We found that Lip-1 significantly attenuated UUO-induced morphological and pathological changes and collagen deposition of renal fibrosis in mice. In addition, Lip-1 attenuated the expression of profibrotic factors in the UUO model. In vitro, we used RSL3 treatment and knocked down of GPX4 level by RNAi in HK2 cells to induce ferroptosis. Our results indicated HK2 cells secreted various profibrotic factors during ferroptosis. Lip-1 was able to inhibit ferroptosis and thereby inhibit the secretion of the profibrotic factors during the process. Incubation of kidney fibroblasts with culture medium from RSL3-induced HK2 cells promoted fibroblast proliferation and activation, whereas Lip-1 impeded the profibrotic effects. Our study found that Lip-1 may relieve renal fibrosis by inhibiting ferroptosis in TECs. Mechanistically, Lip-1 could reduce the activation of surrounding fibroblasts by inhibiting the paracrine of profibrotic factors in HK2 cells. Lip-1 may potentially be used as a therapeutic approach for the treatment of UUO-induced renal fibrosis.Subject terms: Cell death, RNAi, Urinary tract obstruction  相似文献   

20.
Metformin (Met), an AMP-activated protein kinase (AMPK) inducer, is primarily transported by organic cation transporters expressed at the surface of renal proximal tubular epithelial cells. However, the implication of Met in renal function remains poorly understood. Interestingly, AICAR, another AMPK inducer, has been shown to inhibit the Unfolded Protein Response (UPR) generated by tunicamycin in cardiomyocytes in an AMPK-kinase dependent fashion suggesting metformin may also block the UPR. In this work, we have examined the effect of metformin on the expression of UPR-related markers (GRP94 and CHOP) induced by glucosamine (GlcN), 2-deoxyglucose (2-DOG) and tunicamycin (TUNI) in renal proximal tubular epithelial cells and in murine mesangial cells. Met attenuated GRP94 and CHOP expression induced by GlcN and 2-DOG, but not TUNI only in renal epithelial cells, even though the AMPK activation was observed in both renal epithelial and mesangial cells. Met did not require the contribution of its AMPK kinase inducing activity to block UPR markers expression. This report has identified a novel inhibitory function of metformin on UPR, which may have a beneficial impact on kidney homeostatic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号