首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The great variability and complexity of sacral morphology has led to some confusion over the separate influences of phylogeny, population differences, and sexual dimorphism. Principal component analysis of Cartesian coordinates taken on the alae of one hundred human sacra reveals that allometric growth accounts for most variation in the extent and orientation of this region (termed basality). Sex differences related to functional contribution of the alae to the pelvic cavity account for the remainder of the variability. The requirement for extrastability in this region to support the large individual may obscure sexual dimorphism in the sacrum. This, in turn, may have influenced past observations on the sex criteria for this bone.  相似文献   

2.
Many mammalian species display sexual dimorphism in the pelvis, where females possess larger dimensions of the obstetric (pelvic) canal than males. This is contrary to the general pattern of body size dimorphism, where males are larger than females. Pelvic dimorphism is often attributed to selection relating to parturition, or as a developmental consequence of secondary sexual differentiation (different allometric growth trajectories of each sex). Among anthropoid primates, species with higher body size dimorphism have higher pelvic dimorphism (in converse directions), which is consistent with an explanation of differential growth trajectories for pelvic dimorphism. This study investigates whether the pattern holds intraspecifically in humans by asking: Do human populations with high body size dimorphism also display high pelvic dimorphism? Previous research demonstrated that in some small-bodied populations, relative pelvic canal size can be larger than in large-bodied populations, while others have suggested that larger-bodied human populations display greater body size dimorphism. Eleven human skeletal samples (total N: male = 229, female = 208) were utilized, representing a range of body sizes and geographical regions. Skeletal measurements of the pelvis and femur were collected and indices of sexual dimorphism for the pelvis and femur were calculated for each sample [ln(M/F)]. Linear regression was used to examine the relationships between indices of pelvic and femoral size dimorphism, and between pelvic dimorphism and female femoral size. Contrary to expectations, the results suggest that pelvic dimorphism in humans is generally not correlated with body size dimorphism or female body size. These results indicate that divergent patterns of dimorphism exist for the pelvis and body size in humans. Implications for the evaluation of the evolution of pelvic dimorphism and rotational childbirth in Homo are considered.  相似文献   

3.
The mammalian pelvis is sexually dimorphic with respect to both size and shape. Yet little is known about the differences in postnatal growth and bone remodeling that generate adult sexual dimorphism in pelvic bones. We used Sprague-Dawley laboratory rats (Rattus norvegicus), a species that exhibits gross pelvic size and shape dimorphism, as a model to quantify pelvic morphology throughout ontogeny. We employed landmark-based geometric morphometrics methodology on digitized landmarks from radiographs to test for sexual dimorphism in size and shape, and to examine differences in the rates, magnitudes, and directional patterns of shape change during growth. On the basis of statistical significance testing, the sexes became different with respect to pelvic shape by 36 days of age, earlier than the onset of size dimorphism (45 days), although visible shape differences were observed as early as at 22 days. Males achieved larger pelvic sizes by growing faster throughout ontogeny. However, the rates of shape change in the pelvis were greater in females for nearly all time intervals scrutinized. We found that trajectories of shape change were parallel in the two sexes until age of 45 days, suggesting that both sexes underwent similar bone remodeling until puberty. After 45 days, but before reproductive maturity, shape change trajectories diverged because of specific changes in the female pelvic shape, possibly due to the influence of estrogens. Pattern of male pelvic bone remodeling remained the same throughout ontogeny, suggesting that androgen effects on male pelvic morphology were constant and did not contribute to specific shape changes at puberty. These results could be used to direct additional research on the mechanisms that generate skeletal dimorphisms at different levels of biological organization.  相似文献   

4.
Pelvic sexual dimorphism occurs in many anthropoid species and is often attributed to obstetric selection on female pelvic morphology. Few studies of pelvic dimorphism have included strepsirrhine taxa, which typically have relatively smaller infants than those of anthropoids. Because smaller female primates give birth to relatively larger infants, it is possible that the pelves of Microcebus, the smallest extant primate genus, will show some evidence of selection on obstetric adequacy. A comparison of adult female and neonatal body masses indicates that individual neonatal Microcebus are relatively large compared to adult female body mass, even though members of the taxon frequently produce twins. I examined variation in the bony pelvis within a sample of Microcebus. I measured specimens from a single locality, which probably represent 1 population. I measured 8 pelvic and 3 femoral variables to investigate skeletal size and pelvic size and shape dimorphism. Females significantly exceed males in absolute values of sacral width, pelvic height, pubic length, and distances from the pubic symphysis to the ischial tuberosity and points on the sacrum. Measurements of the femur are not significantly greater in females, suggesting that the pelvic differences are not due to skeletal size dimorphism. Significant pelvic shape or ratio differences, calculated via the geometric mean of 5 variables as the denominator, included greater relative pubic length and sacral width in females. Hence selection for obstetric adequacy may occur in the extremely small-bodied Microcebus.  相似文献   

5.
Sexual dimorphism of the human pelvis is inferentially related to obstetrics. However, researchers disagree in the identification and obstetric significance of pelvic dimorphisms. This study addresses three issues. First, common patterns in dimorphism are identified by analysis of pelvimetrics from six independent samples (Whites and Blacks of known sex and four Amerindian samples of unknown sex). Second, an hypothesis is tested that the index of pelvic dimorphism (female mean x 100/male mean) is inversely related to pelvic variability. Third, the pelvic dimensions of the Neandertal male from Kebara cave, Israel are compared with those of the males in this study. The results show that the pelvic inlet is the plane of least dimorphism in humans. The reason that reports often differ in the identification of dimorphisms for this pelvic plane is that both the length of the pubis and the shape of the inlet are related to nutrition. The dimensions of the pelvis that are most dimorphic (that is, female larger than male) are the measures of posterior space, angulation of sacrum, biischial breadth, and subpubic angle. Interestingly, these dimensions are also the most variable. The hypothesis that variability and dimorphism are inversely related fails to be supported. The factors that influence pelvic variability are discussed. The Kebara 2 pelvis has a spacious inlet and a confined outlet relative to modern males, though the circumferences of both planes in the Neandertal are within the range of variation of modern males. The inference is that outlet circumference in Neandertal females is also small in size, but within the range of variation of modern females. Arguments that Neandertal newborns were larger in size than those of modern humans necessarily imply that birth was more difficult in Neandertals.  相似文献   

6.
Sexual dimorphism in the human pelvis has been studied widely for forensic purposes, but it is still unclear to what extent it varies among human populations. There is evidence that microevolutionary processes, both neutral (i.e., population history) and selective (e.g., thermoregulatory adaptation and size‐related obstetrical constraints) contribute to explain pelvic variation among populations, but the extent to which these factors affect pelvic sexual dimorphism is unknown. In this study, I analyze sexual dimorphism of the os coxae in 20 globally distributed human populations, using 3D morphometric data to separate the size and shape components of sexual differences. After evaluating population differences in the degree and pattern of sexual dimorphism, I test for the effect of population history, climate, and body size in shaping global diversity. The results show that size and shape dimorphism follow different patterns. Coxal size dimorphism is generally quite consistent through populations, with males bigger than females, but it appears to be reduced in small‐bodied populations, possibly in relation to obstetrically‐related selective pressures for a spacious birth canal. Beyond a general species‐wide pattern of shape dimorphism, commonly used for forensic sex determination, other aspects of sexual differences in coxal shape vary among human populations, reflecting the effects of neutral demographic processes and climatic adaptation. Am J Phys Anthropol 153:167–177, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Five measurements were taken on the ossa coxae of 454 adult primates representing Ceboidea, Cercopithecoidea and Hominoidea. Sex differences in these variables and their relationships to overall body size and sexual dimorphism were tested by means of Student's t-test and regression analysis. The study attempts to clarify the nature of primate pelvic sexual dimorphism, including allometric effects, and more specifically, test the assertion made by Mobb and Wood (1977) that sexual dimorphism in body size in not an important determinant in pelvic sex differences. Variables that contribute to the size of the birth canal tend to be larger in females than males in all taxa studied except two. In these, Hylobates and Alouatta, there were no significant differences between the sexes for any of the five variables. In general, sexual dimorphism in variables contributing to the size of the birth canal was correlated (r ? 0.8) with sexual dimorphism in body size. Furthermore, the coefficients of allometry underlying pelvic sex differences were shown to be moderately correlated (r ? 0.5) with sexual dimorphism in size. The influence of other adaptive factors on primate pelvic sexual dimorphism are also briefly discussed.  相似文献   

8.
The ventral arc is a ridge of bone which may occur on the ventral surface of the corpus of the os pubis in adult females. Recently, this feature of the human public bone has regained attention as being of value in ascribing sex. The ventral arc should not be confused with a somewhat similar crest that can occur in adult males, which is characterized by a different position and configuration than that of the ventral arc. The corpus is the site of both muscular and ligamentous attachments. The tissues correlated with adult bony morphology and its development in females and males during growth are described. The primary research question addresses the factors involved in the determination of bony differences between the sexes. Sexual dimorphism in bony features of the ventral aspect of the human os pubis relates to muscular origin and to differential growth patterns between males and females.  相似文献   

9.
Schultz ([1949] Am. J. Phys. Anthropol. 7:401-424) presented a conundrum: among primates, sexual dimorphism of the pelvis is a developmental adjunct to dimorphism in other aspects of the body, albeit in the converse direction. Among species in which males are larger than females in body size, females are larger than males in some pelvic dimensions; species with little sexual dimorphism in nonpelvic size show little pelvic dimorphism. Obstetrical difficulty does not explain this relationship. The present study addresses this issue, evaluating the relationship between pelvic and femoral sexual dimorphism in 12 anthropoid species. The hypothesis is that species in which males are significantly larger than females in femoral size will have a higher incidence, magnitude, and variability of pelvic sexual dimorphism, with females having relatively larger pelves than males, compared with species monomorphic in femoral size. The results are consistent with the hypothesis. The proposed explanation is that the default pelvic anatomy in adulthood is that of the female; testosterone redirects growth from the default type to that of the male by differentially enhancing and repressing growth among the pelvic dimensions. Testosterone also influences sexual dimorphism of the femur. The magnitude of the pelvic response to testosterone is greater in species that are sexually dimorphic in the femur than in those that are monomorphic.  相似文献   

10.
The pattern of sexual dimorphism in 15 mandibles from the Atapuerca-SH Middle Pleistocene site, attributed to Homo heidelbergensis, is explored. Two modern human samples of known sex are used as a baseline for establishing sexing criteria. The mandible was divided for analysis into seven study regions and differential expression of sexual dimorphism in these regions is analysed. A total of 40 continuous and 32 discrete variables were scored on the mandibles. The means method given in Regh & Leigh (Am. J. phys. Anthrop.110, 95-104, 1999) was followed for evaluating the potential of correct sex attribution for each variable.On average, the mandibles from the Atapuerca-SH site present a degree of sexual dimorphism about eight points higher than in H. sapiens samples. However, mandibular anatomy of the European Middle Pleistocene hominid records sexual dimorphism differentially. Different areas of the Atapuerca-SH mandibles exhibit quite distinct degrees of sexual dimorphism. For instance, variables of the alveolar arcade present very low or practically no sexual dimorphism. Variables related to overall size of the mandible and symphysis region present a medium degree of sex differences. Finally, ramus height, and gonion and coronoid process present a high degree of sexual dimorphism (indexes of sexual dimorphism are all above 130%). Whether this marked sexual dimorphism in specific anatomical systems affects sexual differences in body size is not completely clear and further studies are needed.Sexual differences detected in the mandible of modern humans have at least two components: differences related to musculo-skeletal development and differences related to a different growth trajectory in males and females (relative development of some of the basal border features). The Atapuerca-SH mandibles display little variation in the basal border, however. The limited variation of this mandibular region may indicate that the pattern of sexual variation in H. heidelbergensis is different enough to that of H. sapiens to caution against simple extrapolation of criteria from one pattern to the other.  相似文献   

11.
Insight into the ontogeny of sexual dimorphism is important to our understanding of life history, ecology, and evolution in primates. This study applied a three-dimensional method, Euclidean Distance Matrix Analysis, to investigate sexual dimorphism and its diachronic changes in rhesus macaque (Macaca mulatta) skulls. Twenty-one landmarks in four functional areas of the craniofacial skeleton were digitized from macaques of known age and sex from the Cayo Santiago collections. Then, a series of mean form matrices, form difference matrices, and growth matrices were computed to demonstrate growth curves, rates and duration of growth, and sexual dimorphism within the neurocranium, basicranium, palate, and face. The inclusion of fully adult animals revealed a full profile of sexual dimorphism. Additionally, we demonstrate for the first time diachronic change in adult sexual dimorphism caused by extended growth in adult females. A quicker growth rate in males from ages 2 to 8 was offset by a longer duration of growth in adult females that resulted in diminished dimorphism between the ages of 8 and 15. Four functional areas showed different sex-specific growth patterns, and the rate and duration of growth in the anterior facial skeleton contributed most to the changing profiles of sexual dimorphism. The late maturation in size of the female facial skeleton corresponds to later and less complete fusion of facial sutures. The prolongation of growth in females is hypothesized to be an evolutionary response to high levels of intrasexual competition, as is found in other primate species such as common chimpanzees with similar colony structure and reproductive behavior. Further investigation is required to determine (1) if this phenomenon observed in craniofacial skeletons is linked to sexual dimorphism in body size, and (2) whether this diachronic change in sexual dimorphism is species specific. The changing profile of sexual dimorphism in adult rhesus macaques suggests caution in studying sexual dimorphism in fossil primate and human forms.  相似文献   

12.
Recent colonization of ecologically distinct areas in North America by the house finch (Carpodacus mexicanus) was accompanied by strong population divergence in sexual size dimorphism. Here we examined whether this divergence was produced by population differences in local selection pressures acting on each sex. In a long-term study of recently established populations in Alabama, Michigan, and Montana, we examined three selection episodes for each sex: selection for pairing success, overwinter survival, and within-season fecundity. Populations varied in intensity of these selection episodes, the contribution of each episode to the net selection, and in the targets of selection. Direction and intensity of selection strongly differed between sexes, and different selection episodes often favored opposite changes in morphological traits. In each population, current net selection for sexual dimorphism was highly concordant with observed sexual dimorphism--in each population, selection for dimorphism was the strongest on the most dimorphic traits. Strong directional selection on sexually dimorphic traits, and similar intensities of selection in both sexes, suggest that in each of the recently established populations, both males and females are far from their local fitness optimum, and that sexual dimorphism has arisen from adaptive responses in both sexes. Population differences in patterns of selection on dimorphism, combined with both low levels of ontogenetic integration in heritable sexually dimorphic traits and sexual dimorphism in growth patterns, may account for the close correspondence between dimorphism in selection and observed dimorphism in morphology across house finch populations.  相似文献   

13.
Growth and sexual dimorphism have long been the focus of investigation for researchers interested in the life history and socioecology of nonhuman primates. Previous research has shown that sex differences in the duration of growth, or bimaturism, are primarily responsible for the sexual dimorphism observed in anthropoid primates with multimale–multifemale social structure, such as macaques. The present study investigates sex differences in patterns of craniofacial and somatometric growth relative to head and body size and relative to dental development in a population of hybrid macaques (Cercopithecidae: Macaca ) from Sulawesi, Indonesia. How these patterns may contribute to sexual dimorphism in this hybrid population is also examined. The results of the study suggest that there is no substantial effect on the levels of sexual dimorphism associated with hybridization in these macaques. Although sex differences in patterns of size-related, or allometric, growth patterns play a significant role in the development of sexual dimorphism for some cranial dimensions in these hybrids, bimaturism seems to be the primary component in the ontogeny of sexual dimorphism in this hybrid population. The observed levels of hybrid dimorphism and the predominant ontogenetic pattern of bimaturism characterized by prolonged male growth are consistent with previously published reports on dimorphism and growth in other cercopithecine primates.  相似文献   

14.
New insights may be gleaned by taking an ontogenetic approach to investigations of adult dimorphism. Previous work in this area relied on traditional, caliper-based, morphometric methods, and produced conflicting results. This study uses a three-dimensional (3-D) approach for both local and global form comparisons of sex-specific growth and growth patterns. 3-D coordinate data were collected for 20 landmarks on 94 orangutan crania divided into five developmental stages. Data were analyzed using Euclidean distance matrix analysis (EDMA). Results indicate that differences in growth patterns between male and female orangutans exist in the youngest age intervals. Dimorphic patterns are strongest in the face and basicranium at the youngest age intervals, and in the face and neurocranium during adult stages. Females grow substantially more in the cranial base and face during the youngest age groups, while males grow more than females in all anatomical regions later in development. Growth in the palate was similar between sexes. Sexual dimorphism may be produced through the continued growth of one sex relative to the other, representing differences in timing, or growth duration. Dimophism may also result from different growth rates between sexes, where one sex develops faster than the other sex in the same time interval. Orangutan males and females differ in both the rate and duration of their craniofacial development. The data analysis technique used here, EDMA, was integral in identifying dynamic growth processes rather than just the static end results of each developmental stage.  相似文献   

15.
Baboons exhibit marked sexual dimorphism in many aspects of their morphology. Dimorphism is especially pronounced in the face. We use finite-element analysis to investigate the ontogeny of sexual dimorphism in a cross-sectional sample of baboon (Papio sp.) faces. This method provides detailed quantitative information about size and shape changes at anatomical landmarks in the face during growth. Allometric results suggest that sexual dimorphism in facial size and shape is produced by ontogenetic scaling: males and females share a common ontogenetic trajectory. Analyses of growth in time, which complement allometric analyses, show that female growth slows much earlier than male growth, accounting for the differences between sexes. Local size and local shape follow similar patterns of growth, but changes in these variables are slower in females. Local and global facial size are much more dimorphic than local and global facial shape.  相似文献   

16.
This study investigates cross sectional growth patterns in the human skeleton using a recent skeletal sample of known age and sex. Measurements were selected to reflect different functional regions of the cranium, mandible and post cranial skeleton, and growth is evaluated using a single phase Gompertz curve. Different parts of the skeleton vary in the proportion of adult size attained at birth and in their subsequent rate of attainment of adult size. The paper introduces a method for the objective and quantitative comparison of the growth of different samples, and is used in this instance to analyze sexual differences in the growth of the post cranial skeleton. The development of sexual dimorphism is evaluated in terms of differences in the rate and duration of male and female growth. Adult sexual dimorphism is generally lower in early growing variables than in later-growing variables. There is considerable diversity in the ontogenetic basis of sexual dimorphism in the human skeleton demonstrating that the development of sexual dimorphism within a species should not be regarded as a uniform phenomenon. Am J Phys Anthropol 105:57–72, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Contrary to an increasing number of papers that document sexual dimorphism in size (and/or shape) in adults, studies dealing with sex differences in newborn and juvenile snakes are surprisingly scarce. Data about ontogenetic shifts in sexual dimorphism are generally lacking and hence, it is unclear whether sex differences are set at birth or arise post‐natally. In this study, we analyzed patterns of sexual dimorphism in body size, head dimensions and tail length (TL) among newborn, subadult and adult meadow vipers (Vipera ursinii) from the Bjelasica Mt. in Montenegro. Patterns of sexual size dimorphisms differed among traits. There was no significant difference in head dimension of males and females, but adult snakes were sexually dimorphic in body size. Sexual differences in TL were evident since birth but changed in degree throughout ontogeny. Neonate meadow vipers presented highly significant inter‐litter variation in the sexual dimorphism of all traits we have measured. Such family effects may have an important influence on extent of inter‐sexual differences in snakes and should be included in analyses of sexual dimorphism.  相似文献   

18.
An adaptive explanation for environmental sex determination is that it promotes sexual size dimorphism when larger size benefits one sex more than the other. That is, if growth rates are determined by environment during development, then it is beneficial to match developmental environment to the sex that benefits more from larger size. However, larger size may also be a consequence of larger size at hatching or growing for a longer time, i.e., delayed age at first reproduction. Therefore, the adaptive significance of sexual size dimorphism and environmental sex determination can only be interpreted within the context of both growth and maturation. In addition, in those animals that continue to grow after maturation, sexual size dimorphism at age of first reproduction could differ from sexual size dimorphism at later ages as growth competes for energy with reproduction and maintenance. I compared growth using annuli on carapace scales in two species of box turtles (Terrapene carolina and T. ornata) that have similar patterns of environmental sex determination but, reportedly, have different patterns of sexual size dimorphism. In the populations I studied, sexual size dimorphism was in the same direction in both species; adult females were, on average, larger than adult males. This was due in part to males maturing earlier and therefore at smaller sizes than females. In spite of similar patterns of environmental sex determination, patterns of growth differed between the species. In T. carolina, males grew faster than females as juveniles but females had the larger asymptotic size. In T. ornata, males and females grew at similar rates and had similar asymptotic sizes. Sexual size dimorphism was greatest at maturation because, although males matured younger and smaller, they grew more as adults. There was, therefore, no consistent pattern of faster growth for females that may be ascribed to developmental temperature. Received: 20 March 1996 / Accepted: 10 March 1998  相似文献   

19.
太行山猕猴髋骨变量研究初报   总被引:10,自引:1,他引:9  
本文对22例(♂11,♀11)成年太行山地区猕猴髋骨有关变量进行测量,通过有关变量单因素方差分析、R型聚类和回归分析,结果表明:太行山猕猴的髋骨变量有较明显的自身特征,髋骨有关变量在雌雄之间有明显差异。  相似文献   

20.
Variation between the sexes during ontogeny is frequently overlooked in discussions of the phylogenetic patterns of adult sexual dimorphism. Different growth trajectories can produce identical degrees and direction of adult dimorphism and the possibility exists that similarities in adults may be the result of differing growth patterns, suggesting independent evolutionary pathways among species to the seemingly identical adult morphology. We quantified the sexual dimorphism in craniofacial skeletal growth of Cavia porcellus, the guinea pig, using longitudinally collected radiographs. Guinea pigs have male-biased sexual dimorphism in size and in growth parameters, despite literature reports to the contrary. These results, analyzed with equivalent data for five species of rodents, and two outgroups representing similarly sized mammals, a rabbit and a marsupial, indicate that some aspects of sexual differences in growth follow phylogenetic lines, while others are a function of whether the species has male- or female-biased dimorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号