首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Vertebrates belong to the group of chordates characterized by a dorsal neural tube and an anteroposterior axis, the notochord. They are the only chordates to possess an embryonic and pluripotent structure associated with their neural primordium, the neural crest (NC). The NC is at the origin of multiple cell types and plays a major role in the construction of the head, which has been an important asset in the evolutionary success of vertebrates. We discuss here the contribution of the rostral domain of the NC to craniofacial skeletogenesis. Moreover, recent data show that cephalic NC cells regulate the activity of secondary brain organizers, hence being critical for preotic brain development, a role that had not been suspected before.  相似文献   

3.
4.
Development and evolution of the neural crest: an overview   总被引:1,自引:0,他引:1  
The neural crest is a multipotent and migratory cell type that forms transiently in the developing vertebrate embryo. These cells emerge from the central nervous system, migrate extensively and give rise to diverse cell lineages including melanocytes, craniofacial cartilage and bone, peripheral and enteric neurons and glia, and smooth muscle. A vertebrate innovation, the gene regulatory network underlying neural crest formation appears to be highly conserved, even to the base of vertebrates. Here, we present an overview of important concepts in the neural crest field dating from its discovery 150 years ago to open questions that will motivate future research.  相似文献   

5.
Neural crest cells are an important cell type present in all vertebrates, and elaboration of the neural crest is thought to have been a key factor in their evolutionary success. Genomic comparisons suggest there were two major genome duplications in early vertebrate evolution, raising the possibility that evolution of neural crest was facilitated by gene duplications. Here, we review the process of early neural crest formation and its underlying gene regulatory network (GRN) as well as the evolution of important neural crest derivatives. In this context, we assess the likelihood that gene and genome duplications capacitated neural crest evolution, particularly in light of novel data arising from invertebrate chordates.  相似文献   

6.
Gene-regulatory interactions in neural crest evolution and development   总被引:2,自引:0,他引:2  
In this review, we outline the gene-regulatory interactions driving neural crest development and compare these to a hypothetical network operating in the embryonic ectoderm of the cephalochordate amphioxus. While the early stages of ectodermal patterning appear conserved between amphioxus and vertebrates, later activation of neural crest-specific factors at the neural plate border appears to be a vertebrate novelty. This difference may reflect co-option of genetic pathways which conferred novel properties upon the evolving vertebrate neural plate border, potentiating the evolution of definitive neural crest.  相似文献   

7.
Summary: The migrating cranial neural crest cells of birds, fish, and mammals have been shown to form the membranous bones of the cranium and face. These findings have been extrapolated to suggest that all the dermal bones of the vertebrate exoskeleton are derived from the neural crest ectomesenchyme. However, only one group of extant animals, the Chelonians, has an extensive bony exoskeleton in the trunk. We have previously shown that the autapomorphic carapacial and plastron bones of the turtle shell arise from dermal intramembranous ossification. Here, we show that the bones of the plastron stain positively for HNK‐1 and PDGFRα and are therefore most likely of neural crest origin. This extends the hypothesis of the neural crest origin of the exoskeleton to include the turtle plastron. genesis 31:111–117, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

8.
9.
10.
The neural crest     
Graham A 《Current biology : CB》2003,13(10):R381-R384
  相似文献   

11.
12.
13.
New genes in the evolution of the neural crest differentiation program   总被引:2,自引:0,他引:2  

Background  

Development of the vertebrate head depends on the multipotency and migratory behavior of neural crest derivatives. This cell population is considered a vertebrate innovation and, accordingly, chordate ancestors lacked neural crest counterparts. The identification of neural crest specification genes expressed in the neural plate of basal chordates, in addition to the discovery of pigmented migratory cells in ascidians, has challenged this hypothesis. These new findings revive the debate on what is new and what is ancient in the genetic program that controls neural crest formation.  相似文献   

14.
15.
Chick embryos carrying transplants labeled with tritiated thymidine demonstrate that the neural crest originates in the anterior epiblast, at the junction of areas destined for epidermis and neural tube. As the neural tube begins to fold and the axis lengthens, cells along this junction are drawn dorsomedially; at the seven-somite stage they begin to separate from the epithelium of the head, and migrate into the angle between the epidermis and the neural tube. The paraxial mesoderm already populating this angle originates in more posterior and medial portions of the epiblast than do the neural crest cells; after invagination at the primitive streak, it migrates anterolaterally, ventral to the ectoderm layer, until it too is folded dorsomedially into the angle between the epidermis and the neural tube.  相似文献   

16.
Summary The cells of the neural crest have APUD properties at an early stage of devel opment (72 hours in the chick embryo). The FIF procedure provides a cytochemical means for their distinction.Using mouse embryos from mothers injected, intraperitoneally, 1 hr before removal, with l-DOPA (100 mg/kg), the peripheral stream of neural crest cells was clearly identifiable at the 7-somite stage (7–8 days). At the 10-somite stage (8–9 days) the cells were observed to invade the lateral processes of the foregut, and the foregut itself. A particularly high concentration of fluorescent APUD cells was observed in the anterior portion of the IVth pharyngeal pouch, destined to become the ultimobranchial body.At the 14-somite stage (11–12 days) the developing ultimobranchial body still contains fluorescent cells of neural crest origin.The implications of these findings on the question of the origin of the entire APUD series of endocrine polypeptide cells is discussed.  相似文献   

17.
18.
In the vertebrate embryo, the neurectodermal neural crest cells (NCC) have remarkably broad potencies, giving rise, after a migratory phase, to neurons and glial cells in the peripheral nervous system, and to skin melanocytes, being all designated here as “neural” derivatives. NC-derived cells also include non-neural, “mesenchymal” cell types like chondrocytes and bone cells, myofibroblasts and adipocytes, which largely contribute to the head structures in amniotes. Similar to the blood cell system, the NC is therefore a valuable model to investigate the mechanisms of cell lineage diversification in vertebrates. Whether NCC are endowed with multiple differentiation potentials or if, conversely, they are a mosaic of different committed cells is an important ongoing issue to understand the ontogeny of NC derivatives in normal development and pathological conditions. Here we focus on recent findings that established the presence in the early migratory NC of the avian embryo, of a multipotent progenitor endowed with both mesenchymal and neural differentiation capacities. This “mesenchymal-neural” clonogenic cell lies upstream of all the other NC progenitors known so far and shows increased frequency when single cell cultures are treated with the Sonic Hedgehog signaling molecule. These findings are discussed in the context of the broad potentials of NC stem cells recently evidenced in certain adult mammalian tissues.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号