首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the intrinsic bending of DNA at sites where proteins bind, we analyzed catabolite gene activator protein (CAP) binding sites and various operators from the viewpoint of DNA bending flexibility. Theoretical conformational analysis. DNase I digestion and x-ray crystallography data indicate that bending of B-DNA is highly anisotropic and sequence-dependent. Certain dimers prefer to bend into the major groove ("major-philic") and others prefer to bend into the minor groove ("minor-philic" dimers). From these data we considered TA, CG, CA:TG and GG:CC as major-philic dimers and AT,AA:TT and GT:AC as minor-philic ones. Analysis of 31 CAP binding sites has identified strong major-philic tendencies 5-7 base pairs (bp) away from the center. In addition, we found minor-philic poly-A tracts extending 4-5 bp away from the proposed major-philic bends. Finally, to analyze the central regions we followed the lead of Shumilov and classified the DNA sites by their spacer lengths [V.Y. Shumilov, Mol. Biol. (Mosk) 21, 168-187 (1987)]. In this way, we identified two subsets of CAP binding sites: one with 6 bp between the TGTGA:TCACA consensus boxes (N6-set) and one with 8 central bp (N8-set). We discovered that the dimer at the center of an N6-set site was usually major-philic, whereas at the center of an N8-set site more often minor-philic. Analysis of phages 434, P22 lambda and trp operators revealed similar results. In conclusion, our data show that CAP binding sites have major-philic and minor-philic dimers at specific positions; the location of these dimers may facilitate wrapping of DNA around CAP. A similar pattern is seen in nucleosomes.  相似文献   

2.
The effect of catabolite activator protein, CAP, on the thermal stability of DNA was examined. Site specific binding was studied with a 62 bp DNA restriction fragment containing the primary CAP site of the E. coli lactose (lac) promoter. A 144 bp DNA containing the lac promoter region and a 234 bp DNA from the pBR322 plasmid provided other DNA sites. Thermal denaturation of protein-DNA complexes was carried out in a low ionic strength solvent with 40% dimethyl sulfoxide, DMSO. In this solvent free DNA denatured below the denaturation temperature of CAP. The temperature stability of CAP for site specific binding was monitored using an acrylamide gel electrophoresis assay. Results show that both specific and non-specific CAP binding stabilize duplex DNA. Site specific binding to the 62 bp DNA produced a 13.3 degrees C increase in the transition under conditions where non-specific binding stabilized this DNA by 2-3 degrees C.  相似文献   

3.
4.
5.
6.
Abstract

To investigate the intrinsic bending of DNA at sites where proteins bind, we analyzed catabolite gene activator protein (CAP) binding sites and various operators from the viewpoint of DNA bending flexibility. Theoretical conformational analysis, DNase I digestion and x-ray crystallography data indicate that bending of B-DNA is highly anisotropic and sequence-dependent. Certain dimers prefer to bend into the major groove (“major-philic”) and others prefer to bend into the minor groove (“minor-philic” dimers). From these data we considered TA CG, CA:TG and GG:CC as major-philic dimers and AT, AA:TT and GT:AC as minor-philic ones.

Analysis of 31 CAP binding sites has identified strong major-philic tendencies 5–7 base pairs (bp) away from the center. In addition, we found minor-philic poly-A tracts extending 4–5 bp away from the proposed major-philic bends. Finally, to analyze the central regions we followed the lead of Shumilov and classified the DNA sites by their spacer lengths [V.Y. Shumilov, Mol. Biol. (Mosk) 21, 168–187 (1987)]. In this way, we identified two subsets of CAP binding sites: one with 6 bp between the TGTGA:TCACA consensus boxes (N6-set) and one with 8 central bp (N8-set). We discovered that the dimer at the center of an N6-set site was usually major-philic, whereas at the center of an N8-set site more often minor-philic. Analysis of phages 434, P22, λ and trp operators revealed similar results.

In conclusion, our data show that CAP binding sites have major-philic and minor-philic dimers at specific positions; the location of these dimers may facilitate wrapping of DNA around CAP. A similar pattern is seen in nucleosomes.  相似文献   

7.
Tang L  Li J  Katz DS  Feng JA 《Biochemistry》2000,39(11):3052-3060
To study the DNA bending induced by non-sequence-specific HMG-1 domain proteins, we have engineered a fusion protein linking the yeast NHP6A with a sequence-specific DNA binding domain, the DNA binding domain of the Hin recombinase, Hin-DBD. A series of biochemical experiments were carried out to characterize the DNA binding property of this fusion protein. Our data showed that the fusion protein not only specifically recognizes a DNA fragment containing the Hin-DBD binding site, but also binds DNA with a higher affinity in comparison with either domain alone. Both domains of the fusion protein are bound to the DNA in juxtaposition. Permutation assays showed that the fusion protein induced a DNA bending at the site of NHP6A binding by an estimated value of 63 degrees. We believe that this experimental design provides an effective vehicle to determine the DNA bending induced by nonspecific HMG-1 proteins.  相似文献   

8.
H DeGrazia  D Brown  S Cheung  R M Wartell 《Biochemistry》1988,27(17):6359-6365
Raman spectra from three subfragments of the Escherichia coli lactose promoter region were obtained in 0.1 M NaCl. The three DNAs are 21, 40, and 62 bp in length. The 21 and 62 bp DNAs contain the binding site for the catabolite gene activator protein (CAP). The 40 bp DNA contains the binding site for the lac repressor. A quantitative analysis of Raman band characteristics indicates an overall B-type conformation for these gene regulatory sites. Bands which correspond to A-family (807 cm-1) and B-family (834 cm-1) deoxyribose phosphate vibrations have the same intensities as bands found in heterogeneous DNAs. The spectra of the 21 bp CAP site have, however, a small band at 867 cm-1 and several other small differences similar to some characteristics observed in C-DNA spectra. Several dG nucleosides in the CAP site appear to be altered from the conventional C2'-endo/anti conformation. At 45 degrees C, well below the melting region of these DNAs, small changes occur in the spectra of the 40 bp lac repressor site which are not observed in the other DNAs. A weak band occurs at 705 cm-1, and intensity changes are observed at 497, 682, and 792 cm-1. The changes suggest that the conformations of several dG nucleosides are altered and that a small region may exist with characteristics of an A-family backbone. This conformational change at 45 degrees C coincides with previous NMR observations indicating an enhanced imino proton exchange rate at a GTG sequence within the lac operator site.  相似文献   

9.
We report measurements of the relative binding affinity of CAP for DNA sequences which have been systematically mutated in the region flanking the consensus binding site. Our experiments focus on the locus one helical turn from the dyad axis where DNA bending toward the minor groove is induced upon C-AP binding. The binding free energy and extent of bending are moderately well correlated for the set of 56 sequences. Changes in binding affinity spanning a factor of about 50 could be accounted for by additive contributions of dinucleotides; with a few exceptions, the relative ranking of dinucleotide contributions to binding and bending are similar. We conclude that dinucleotides are the smallest independent unit required for quantitative interpretation of CAP-induced DNA bending and binding in the distal domains of the CAP consensus binding site. The imperfect correlation between binding strength and extent of bending implies that sequence changes affect protein binding strength not only by altering the DNA deformation energy required to form the complex, but also by affecting directly the free energy of interaction between protein and DNA.  相似文献   

10.
The effect of the catabolite activator protein, CAP, on the ligation of a 144 bp DNA was examined. This DNA has EcoRI ends and contains the lac operon CAP site and promoter-operator region. At low DNA concentrations (nM) and 37 degrees C the presence of CAP and cAMP enables T4 ligase to convert the linear duplex to a covalently closed ring. Nuclease digestion and sedimentation equilibrium studies show that the ring is a monomer circle. Ring formation does not occur in the absence of either CAP or cAMP. The kinetics of ring closure, and the bimolecular joining of two fragments were measured. The presence of CAP decreased the rate of bimolecular joining of the EcoRI ends of linear DNAs. Thus the measured rates of ring closure are likely to be a lower limit for this process. Closure reactions carried out with ethidium bromide indicate that CAP induced bending rather than twisting is responsible for ring formation. The all or none nature of the closure reaction suggests that persistence length DNAs may be useful in a simple assay for protein induced DNA bending.  相似文献   

11.
The catabolite activator protein (CAP) bends DNA in the CAP-DNA complex, typically introducing a sharp DNA kink, with a roll angle of approximately 40 degrees and a twist angle of approximately 20 degrees, between positions 6 and 7 of the DNA half-site, 5'-A1A2A3T4G5T6G7A8T9C10T11 -3' ("primary kink"). In previous work, we showed that CAP recognizes the nucleotide immediately 5' to the primary-kink site, T6, through an "indirect-readout" mechanism involving sequence effects on energetics of primary-kink formation. Here, to understand further this example of indirect readout, we have determined crystal structures of CAP-DNA complexes containing each possible nucleotide at position 6. The structures show that CAP can introduce a DNA kink at the primary-kink site with any nucleotide at position 6. The DNA kink is sharp with the consensus pyrimidine-purine step T6G7 and the non-consensus pyrimidine-purine step C6G7 (roll angles of approximately 42 degrees, twist angles of approximately 16 degrees ), but is much less sharp with the non-consensus purine-purine steps A6G7 and G6G7 (roll angles of approximately 20 degrees, twist angles of approximately 17 degrees). We infer that CAP discriminates between consensus and non-consensus pyrimidine-purine steps at positions 6-7 solely based on differences in the energetics of DNA deformation, but that CAP discriminates between the consensus pyrimidine-purine step and non-consensus purine-purine steps at positions 6-7 both based on differences in the energetics of DNA deformation and based on qualitative differences in DNA deformation. The structures further show that CAP can achieve a similar, approximately 46 degrees per DNA half-site, overall DNA bend through a sharp DNA kink, a less sharp DNA kink, or a smooth DNA bend. Analysis of these and other crystal structures of CAP-DNA complexes indicates that there is a large, approximately 28 degrees per DNA half-site, out-of-plane component of CAP-induced DNA bending in structures not constrained by end-to-end DNA lattice interactions and that lattice contacts involving CAP tend to involve residues in or near biologically functional surfaces.  相似文献   

12.
The lactose promoter-operator region of Escherichia coli contains two binding sites for cyclic AMP receptor protein (CAP), two for the lactose repressor, and two for RNA polymerase. The high density of binding sites makes cooperative interactions between these proteins likely. In this study, we used the gel electrophoresis mobility shift assay and binding partition analysis techniques to determine whether the secondary CAP site influences the binding of CAP to the principal CAP site in the lactose promoter when both are present on a linear DNA molecule. Such an effect could occur through the formation of a bridged DNA-CAP-DNA structure, through the interaction of CAP molecules bound to each of the sites, or through allosteric effects caused by CAP-mediated DNA bending. We found, however, that the interaction of CAP with these sites was not cooperative, indicating that CAP sites 1 and 2 bind CAP in an independent manner.  相似文献   

13.
DNA bending and expression of the divergent nagE-B operons.   总被引:2,自引:0,他引:2       下载免费PDF全文
Repression of the divergent nagE - B operons requires NagC binding to two operators which overlap the nagE and nagB promoters, resulting in formation of a DNA loop. Binding of the cAMP/CAP activator to its site, adjacent to the nagE operator, stabilizes the DNA loop in vitro. The DNA of the nagE-B intergenic region is intrinsically bent, with the bend centred on the CAP site. We show that displacement of the CAP site by 6 bp results in complete derepression of the two operons. This derepression is observed even in the absence of cAMP/CAP binding and despite the fact that the two NagC operators are still in phase, demonstrating that the inherently bent structure of the DNA loop is important for repression. Since no interaction between NagC and CAP has been detected, we propose that the role of CAP in the repression loop is architectural, stabilizing the intrinsic bend. The cAMP/CAP complex is necessary for activation of the nagE-B promoters. In this case protein-protein contacts between CAP and RNA polymerase are necessary for full activation, but at least a part of the activation is likely due to an effect of CAP binding altering DNA structure.  相似文献   

14.
Two observations suggest that DNA, upon binding to E. coli catabolite gene activator protein (CAP), is sharply bent by a total angle of at least 100-150 degrees: (1) The electrostatic potential field of CAP shows regions of positive potential that form a ramp on 3 sides of the protein. (2) The DNA binding site size as determined by DNA ethylation interference with binding, (Majors: "Control of the E. coli Lac Operon at the Molecular Level." Ph.D. Thesis, Harvard University, Cambridge, 1977) and by relative affinities of DNA fragments of various lengths (Liu-Johnson et al.: Cell 47:995-1005, 1986) requires severe bending of the DNA to maintain its favorable electrostatic contact with the protein.  相似文献   

15.
The HMG domains of the chromosomal high mobility group proteins homologous to the vertebrate HMG1 and HMG2 proteins preferentially recognize distorted DNA structures. DNA binding also induces a substantial bend. Using fluorescence resonance energy transfer (FRET), we have determined the changes in the end-to-end distance consequent on the binding of selected insect counterparts of HMG1 to two DNA fragments, one of 18 bp containing a single dA(2) bulge and a second of 27 bp with two dA(2) bulges. The observed changes are consistent with overall bend angles for the complex of the single HMG domain with one bulge and of two domains with two bulges of approximately 90-100 degrees and approximately 180-200 degrees, respectively. The former value contrasts with an inferred value of 150 degrees reported by Heyduk et al. (1) for the bend induced by a single domain. We also observe that the induced bend angle is unaffected by the presence of the C-terminal acidic region. The DNA bend of approximately 95 degrees observed in the HMG domain complexes is similar in magnitude to that induced by the TATA-binding protein (80 degrees), each monomeric unit of the integration host factor (80 degrees), and the LEF-1 HMG domain (107 degrees). We suggest this value may represent a steric limitation on the extent of DNA bending induced by a single DNA-binding motif.  相似文献   

16.
17.
18.
19.
CAP binding to B and Z forms of DNA.   总被引:3,自引:1,他引:2       下载免费PDF全文
We have examined the interaction between the cyclic AMP receptor protein (CAP) and a small DNA fragment containing its specific recognition sequence by circular dichroism spectroscopy. The binding of CAP to this fragment induces a B to "C-like" change in the CD spectrum, which is different from that observed for non-specific binding. A one-to-one (CAP dimer to DNA) binding stoichiometry was deduced from spectroscopic titration data, as was a non-specific binding site size of 17 bp/dimer. In addition, we have compared the non-specific binding affinity of CAP for the B and Z forms of synthetic DNA copolymers. A slight preference for the B form was found. These results do not support the recent specific suggestion that CAP binds to a left-handed form of DNA (1), but indicate more generally that an optically detectable conformational change takes place in DNA on binding CAP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号