首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 686 毫秒
1.
Aphids feed on a protein-poor diet and are insensitive to several serine protease inhibitors. However, among the Bowman-Birk family of plant trypsin inhibitors (BBI), some members display significant toxicity to the pea aphid Acyrthosiphon pisum. A BBI isoform purified from pea seeds (PsTI-2) displays an IC50 of 41 microM and a LC50 of 48 microM at 7 days. Our data show that the chymotrypsin-directed active site from these bifunctional inhibitors is responsible for this activity, and that artificial cyclic peptides bearing the Bowman-Birk anti-chymotrypsin head induce much greater toxicity and growth inhibition than their anti-trypsin counterparts. The toxic syndrome included a rapid behavioural response of aphids on diets containing the toxic peptides, with induced restlessness after only 1 h of exposure to the chymotrypsin inhibitor. Nevertheless, chymotrypsin activity was not detected in aphid guts, using two chromogenic chymotrypsin substrates, and the physiological target of the chymotrypsin inhibitor remains unknown. These data show for the first time that plant chymotrypsin inhibitors, still widely unexplored, may act as paradoxical toxicants to aphids and serve as defensive metabolites for phloem-feeding insects.  相似文献   

2.
Abstract. A major problem for aphids is the avoidance of dehydration due to a high dietary osmotic pressure. Their adaptations include a high osmotic pressure in the haemolymph and polymerization of dietary sugars to oligosaccharides. The pea aphid, Acyrthosiphon pisum (Harris), was fed on an artificial diet containing Relabelled sucrose, and the fate of dietary sucrose was studied using quantitative paper chromatography. The haemolymph of A. pisum , feeding on artificial diet containing 25% w/v (730 mM) sucrose, contained two main sugars: trehalose (255 nw) and fructose (129 mM). No sucrose was found in the haemolymph. The honeydew sugars (350 mM) of aphids fed the same diet were mainly oligosaccharides (220 mM). The polymerization of sucrose was responsible for a 34% reduction in molarity of sugars in the honeydew. At low dietary sucrose concentrations, the honeydew contained mainly mono- and disaccharides. At dietary sucrose concentrations of 15% or more, oligosaccharides were predominant. This is consistent with the idea that osmoregulation is carried out by oligosaccharide synthesis. Analysis of the stomach contents revealed that oligosaccharide synthesis occurs there, and tissue incubation showed that die gut is much more active in oligosaccharide synthesis than the eviscerated body tissues. The function of the filter chamber, found in some aphid species, is considered and it is suggested that this is a mechanism for reducing the osmotic pressure of the ingested diet.  相似文献   

3.
Hemipteran pests including aphids are not particularly susceptible to the effects of insecticidal Cry toxins derived from the bacterium Bacillus thuringiensis. We examined the physiological basis for the relatively low toxicity of Cry1Ac and Cry3Aa against the pea aphid, Acyrthosiphon pisum (Harris). Cry1Ac was efficiently hydrolyzed by aphid stomach membrane associated cysteine proteases (CP) producing a 60 kDa mature toxin, whereas Cry3Aa was incompletely processed and partially degraded. Cry1Ac bound to the aphid gut epithelium but showed low aphid toxicity in bioassays. Feeding of aphids on Cry1Ac in the presence or absence of GalNAc, suggested that Cry1Ac gut binding was glycan mediated. In vitro binding of biotinylated-Cry1Ac to gut BBMVs and competition assays using unlabeled Cry1Ac and GalNAc confirmed binding specificity as well as glycan mediation of Cry1Ac binding. Although Cry3Aa binding to the aphid gut membrane was not detected, Cry3Aa bound 25 and 37 kDa proteins in aphid gut BBMV in ligand blot analysis and competition assays confirmed the binding specificity of Cry3Aa. This, combined with low toxicity in feeding assays, suggests that Cry3Aa does bind the gut epithelium to some extent. This is the first systematic examination of the physiological basis for the low efficacy of Cry toxins against aphids, and analysis of Cry toxin-aphid gut interaction.  相似文献   

4.
The natural diet of aphids, plant phloem sap, generally contains high concentrations of sucrose. When pea aphids (Acyrthosiphon pisum) were fed on chemically defined diets containing sucrose radiolabelled in the glucose or fructose moiety, 2 to 12-fold and 87 to 110-fold more radioactivity was recovered from the tissues and honeydew, respectively, of aphids that ingested [U-(14)C-glucose]-sucrose than from those ingesting [U-(14)C-fructose]-sucrose. The total radioactivity recovered was 70% of the ingested [U-(14)C-glucose]-sucrose and <5% of ingested [U-(14)C-fructose]-sucrose. The dominant honeydew sugars produced by aphids feeding on 0.75 M sucrose diets were oligosaccharides comprising glucose. In vitro the guts of pea aphids had high sucrase activity, 1-5 U mg(-1) protein, generating equimolar glucose and fructose except at high sucrose concentrations where glucose production was inhibited (K(si)=0.1 M). These data suggest that the fructose moiety of ingested sucrose is assimilated very efficiently and may be preferentially respired by the aphid, and that the glucose moiety of sucrose is incorporated into oligosaccharides by the transglucosidase activity of the gut sucrase at high sucrose concentrations. These differences in the fate of sucrose-derived glucose and fructose are important elements in both the carbon nutrition and osmoregulation of aphids.  相似文献   

5.
Aphidius ervi and Aphidius eadyi, two parasitoids of the pea aphid Acyrthosiphon pisum, were attracted to components of the aphid sex pheromone in laboratory bioassays. Pre-test experience with host aphids in the presence of aphid sex pheromone did not affect the response of A. ervi to pheromone in a 4-way olfactometer, compared with that of naive parasitoids. Aphidius ervi females exposed only to the pheromone prior to testing did not respond in the olfactometer, suggesting habituation to the foraging cue by the parasitoid. In a wind tunnel, aphid sex pheromone increased the attraction of A. ervi to the plant-host complex (Vicia faba/A. pisum), suggesting an additive effect when two different foraging cues are present simultaneously.  相似文献   

6.
An aphid-borne bacterium allied to the secondary symbionts of whitefly   总被引:8,自引:0,他引:8  
Bacterial 16S rDNA amplified by PCR from the pea aphid Acyrthosiphon pisum included a sequence with >98% similarity to secondary symbionts in the whitefly Bemisia tabaci. The 'pea aphid Bemisia-like bacterium' (PABS) and B. tabaci secondary symbionts are estimated to have diverged 17-34 million years ago, a time considerably more recent than the common ancestor of aphids and whitefly and suggestive of horizontal transmission of this bacterial lineage. PABS was scored in both the gut and ovaries of aphids by PCR and identified as a small rod by in situ hybridisation. PABS was not universal in pea aphids: 2/3 laboratory strains and 13/35 of field aphids were PABS-positive. It is suggested that the incidence of PABS in pea aphids is determined by the balance between loss (processes may include occasional failure of vertical transmission and selection against PABS-positive aphids) and horizontal transfer between insects.  相似文献   

7.
Pandora neoaphidis is an aphid-specific entomopathogen that produces infective conidia. As aphid movement increases, so does the likelihood of contact with conidia. Volatile distress signals released in response to aphid infestation as an indirect defence against herbivory may affect aphid foraging and, therefore, the fungus-aphid interaction. In this study, two different methods were used to investigate the effect of plant volatiles and P. neoaphidis-sporulating cadavers on (1) the colonisation of Vicia faba plants by Acyrthosiphon pisum and (2) P. neoaphidis transmission. This study indicates that A. pisum does not avoid bean plants containing P. neoaphidis and that transmission of conidia occurs during plant colonisation and, to a lesser extent, during in situ feeding. Although significantly more aphids were recovered from damaged plants compared to undamaged plants, the likelihood of infection was not affected by previous infestation by aphids.  相似文献   

8.
In North America, the pea aphid Acyrthosiphon pisum encompasses ecologically and genetically distinct host races that offer an ideal biological system for studies on sympatric speciation. In addition to its obligate symbiont Buchnera, pea aphids harbour several facultative and phylogenetically distant symbionts. We explored the relationships between host races of A. pisum and their symbiotic microbiota to gain insights into the historical process of ecological specialization and symbiotic acquisition in this aphid. We used allozyme and microsatellite markers to analyse the extent of genetic differentiation between populations of A. pisum on pea, alfalfa and clover in France. In parallel, we examined: (i) the distribution of four facultative symbionts; and (ii) the genetic variation in the Buchnera genome across host-associated populations of A. pisum. Our study clearly demonstrates that populations of A. pisum on pea, clover and alfalfa in France are genetically divergent, which indicates that they constitute distinct host races. We also found a very strong association between host races of A. pisum and their symbiotic microbiota. We stress the need for phylogeographic studies to shed light on the process of host-race formation and acquisition of facultative symbionts in A. pisum. We also question the effects of these symbionts on aphid host fitness, including their role in adaptation to a host plant.  相似文献   

9.
The hydrolysis of sucrose, the principal dietary source of carbon for aphids, is catalysed by a gut alpha-glucosidase/transglucosidase activity. An alpha-glucosidase, referred to as APS1, was identified in both a gut-specific cDNA library and a sucrase-enriched membrane preparation from guts of the pea aphid Acyrthosiphon pisum by a combination of genomic and proteomic techniques. APS1 contains a predicted signal peptide, and has a predicted molecular mass of 68 kDa (unprocessed) or 66.4 kDa (mature protein). It has amino acid sequence similarity to alpha-glucosidases (EC 3.2.1.20) of glycoside hydrolase family 13 in other insects. The predicted APS1 protein contains two domains: an N-terminal catalytic domain, and a C-terminal hydrophobic domain. In situ localisation and RT-PCR studies revealed that APS1 mRNA was expressed in the gut distal to the stomach, the same localisation as sucrase activity. When expressed heterologously in Xenopus embryos, APS1 was membrane-bound and had sucrase activity. It is concluded that APS1 is a dominant, and possibly sole, protein mediating sucrase activity in the aphid gut.  相似文献   

10.
Regional variation in the number of pea aphids caught in the suction traps of the Rothamsted Insect Survey (RIS) was associated with the proportion of each region under pea crops. The degree of infestation of crops was similar in areas of high and low pea production as the mean annual abundance of aphids per hectare of crop remained constant. Yearly variation in abundance was loosely associated with temperature from January to July. Cold weather in January and February resulted in large numbers of aphids. Warm weather in February led to early colonization, and emigration from, pea crops as well as making early sowing of the crop more likely. A forecast of the time of first appearance of Acyrthosiphon pisum in the aerial plankton can be made, based on February temperature. Populations of A. pisum on peas appear to be regulated by alata production. High densities of aphids resulted in almost all the nymphs developing into alatae which, on reaching maturity, emigrated, causing populations on the crop to decline. This explains population crashes of the pea aphid observed at early growth stages of the crop, on vining and combining peas. Late sowing of peas, a probable effect of cold winters, results in higher aphid densities at flowering. The probable explanation for this is that late-sown crops are colonized at an earlier growth stage, so that the aphid population has a longer period of time in which to develop.  相似文献   

11.
The bacterial communities of aphids were investigated by terminal restriction fragment length polymorphism and denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments generated by PCR with general eubacterial primers. By both methods, the gamma-proteobacterium Buchnera was detected in laboratory cultures of six parthenogenetic lines of the pea aphid Acyrthosiphon pisum and one line of the black bean aphid Aphis fabae, and one or more of four previously described bacterial taxa were also detected in all aphid lines except one of A. pisum. These latter bacteria, collectively known as secondary symbionts or accessory bacteria, comprised three taxa of gamma-proteobacteria (R-type [PASS], T-type [PABS], and U-type [PAUS]) and a rickettsia (S-type [PAR]). Complementary analysis of aphids from natural populations of four aphid species (A. pisum [n = 74], Amphorophora rubi [n = 109], Aphis sarothamni [n = 42], and Microlophium carnosum [n = 101]) from a single geographical location revealed Buchnera and up to three taxa of accessory bacteria, but no other bacterial taxa, in each aphid. The prevalence of accessory bacterial taxa varied significantly among aphid species but not with the sampling month (between June and August 2000). These results indicate that the accessory bacterial taxa are distributed across multiple aphid species, although with variable prevalence, and that laboratory culture does not generally result in a shift in the bacterial community in aphids. Both the transmission patterns of the accessory bacteria between individual aphids and their impact on aphid fitness are suggested to influence the prevalence of accessory bacterial taxa in natural aphid populations.  相似文献   

12.
The pyrokinins (PK) are multifunctional neuropeptides found in a variety of arthropod species, including the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae). A series of biostable pyrokinin analogs based on the shared C-terminal pentapeptide core region were fed in solutions of artificial diet to the pea aphid over a period of three days and evaluated for antifeedant and aphicidal activity. The analogs contained either modified Pro residues Oic or Hyp and or a d-amino acid in key positions to enhance resistance to tissue-bound peptidases and retain activity in a number of PK bioassays. A series of PK analogs conjugated with two lengths of polyethyleneglycol (PEG) polymers were also evaluated in the aphid feeding assay. Three of the biostable PK analogs demonstrated potent antifeedant activity, with a marked reduction in honeydew formation and very high mortality after 1 day. In contrast, a number of unmodified, natural pyrokinins and several other analogs containing some of the same structural components that promote biostability were inactive. Two of the most active analogs, Oic analog PK-Oic-1 (FT[Oic]RL-NH(2)) and PEGylated analog PK-dF-PEG(8) [(P(8))-YF[dF]PRL-NH(2)], featured aphicidal activity calculated at LC(50)'s of 0.042nmol/μl [0.029μg/μl] (LT(50) of 1.0 day) and 0.126nmol/μl (LT(50) of 1.3 days), respectively, matching the potency of some commercially available aphicides. Notably, a PEGylated analog of a PK antagonist can block over 55% of the aphicidal effects of the potent PK agonist PK-Oic-1, suggesting that the aphicidal effects are mediated by a PK receptor. The mechanism of this activity has yet to be established, though the aphicidal activity of the biostable analogs may result from disruption of digestive processes by interfering with gut motility patterns, a process shown to be regulated by the PKs in other insects. The active PK analogs represent potential leads in the development of selective, environmentally friendly aphid pest control agents.  相似文献   

13.
Abstract 1. Motivated by a community study on aphids and their fungal pathogens, three hypotheses were tested experimentally to investigate the influence of the fungal pathogen, Erynia neoaphidis Remaudière and Hennebert, on aphid population and community ecology.
2. Field experiments were performed in 2 years to test whether two susceptible aphid species on different host plants might interact through the shared fungal pathogen. No strong pathogen-mediated indirect interactions (apparent competition) between populations of pea aphid Acyrthosiphon pisum Harris and nettle aphid Microlophium carnosum Buckton were detected.
3. In the first of the field experiments, pea aphids exposed to the fungus showed a weak tendency to produce more winged dispersal morphs than control populations not exposed to the fungus. In a laboratory test, however, no support was found for the hypothesis that the presence of volatiles from fungus-infected cadavers promotes production of winged offspring.
4. The response of the pea aphid parasitoid Aphidius ervi Halliday to colonies containing hosts infected 1 and 3 days previously was assessed. Wasps initiated fewer attacks on 1-day-old infected colonies than on healthy colonies, with the numbers on 3-day-old fungus-infected colonies intermediate.  相似文献   

14.
Abstract.  1. In ecological speciation , adaptation to variation in the external environment provides the crucial push that starts the process of genetic divergence and eventually leads to speciation. This emphasis on the role of ecological specialisation in speciation events has brought with it a renewed interest in its proximate mechanisms in recently diverged groups such as host races. Here, the proximate mechanisms of feeding specialisation are investigated in two host races of the pea aphid Acyrthosiphon pisum .
2. Using alfalfa and clover extracts, enclosed in diet chambers or applied on whole plants, it is shown that feeding specialisation depends on recognition of stimulants specific to the host plant, not on deterrents or toxins specific to the non-host plants.
3. Because pea aphids mate on their host plant, feeding specialisation leads to de facto assortative mating. This study suggests that behavioural recognition of host-specific chemicals, rather than avoidance of deterrents or/and plant toxins, contributes to gene flow restriction between the alfalfa and clover host races.  相似文献   

15.
The impact of host nutrition on symbiont regulation in the pea aphid Acyrthosiphon pisum was investigated. The population density of the obligate symbiont Buchnera aphidicola positively correlated with dietary nitrogen levels. In contrast, the population density of the facultative symbiont Serratia symbiotica increased in aphids reared on low-nitrogen diets, indicating distinct regulatory mechanisms in the same insect host.  相似文献   

16.
Pea aphids, Acyrthosiphon pisum, were fed on artificial diet containing various concentrations of melatonin. Under long-day conditions (16h light:8h dark) their progeny included males and virginoparous/oviparous (asexual/sexual) intermediate females, which normally occur only in short days or around critical night-length. Endogenous melatonin in pea aphids was measured by radioimmunoassay and verified by parallelism with a melatonin standard curve and by thin layer chromatography. However, melatonin titres showed large variations and although they tended to be higher during the scotophase than during the photophase they were not significantly different. The possibility of melatonin being involved in photoperiodism is discussed.  相似文献   

17.
The pea aphid, Acyrthosiphon pisum, shows significant reproductive isolation and host plant specialization between populations on alfalfa and clover in New York. We examine whether specialization is seen in pea aphids in California, and whether fitness on alternative host plants is associated with the presence of bacterial symbionts. We measured the fitness of alfalfa- and clover-derived aphids on both types of plants and found no evidence for specialization when all aphid lineages were considered simultaneously. We then screened all aphids for the presence of four facultative bacterial symbionts: PAR, PASS, PABS and PAUS. Aphids with PAUS were host-plant specialized, having twice as many offspring as other aphids on clover, and dying on alfalfa. Other aphids showed no evidence of specialization. Additionally, aphids with PABS had 50% more offspring than aphids with PASS when on alfalfa. Thus, specialist and generalist aphid lineages coexist, and specialization is symbiont associated. Further work will resolve whether PAUS is directly responsible for this variation in fitness or whether PAUS is incidentally associated with host-plant specialized aphid lineages.  相似文献   

18.
  1. Viral insect-borne plant pathogens have devastating impacts in agroecosystems. Vector-borne pathogens are often transmitted by generalist insects that move between non-crop and crop hosts. Insect vectors can have wide diet breadths, but it is often unknown which hosts serve as pathogen reservoirs and which non-crop host harbours the highest density of vectors.
  2. In the Pacific Northwest USA, the pea aphid (Acyrthosiphon pisum) is a key virus vector in pulse crops. Despite pea aphid having a large number of potential non-crop plant hosts occuring in the region, no reservoir has yet been identified for the economically-costly pathogen Pea Enation Mosaic Virus (PEMV).
  3. We addressed these issues by linking field surveys of an aphid vector and plant virus with statistical models to develop risk assessments for common non-crop legumes; in 2018, we completed a 65-site survey where aphids were surveyed in weedy legumes within and outside dry pea fields.
  4. We quantified the abundance of pea aphids on 17 hosts, and plant tissue was tested for PEMV. Relatively high densities of A. pisum were found in habitats dominated by hairy vetch (Vicia villosa), which was the only legume other than cultivated dry pea where PEMV was detected.
  5. Our results indicate that V. villosa is a key alternative host for PEMV, and that pest management practices in this region should consider the distribution and abundance of this weedy host in viral disease mitigation efforts for pulses.
  相似文献   

19.
The evolutionary maintenance of sex, despite competition from asexual reproduction, has long intrigued the evolutionary biologists owing to its numerous apparent short-term costs. In aphids, winter climate is expected to determine the maintenance of sexual lineages in the high latitude zones owing to their exclusive ability to produce frost-resistant eggs. However, diverse reproductive modes may coexist at a local scale where climatic influence is counteracted by microgeographical factors. In this study, we tested the influence of local habitat characteristics on regional coexistence of reproductive modes in the pea aphid, Acyrthosiphon pisum. In the laboratory, the induction of sexual morph production of many pea aphid genotypes from the local fields of annual (pea and faba bean) and perennial (alfalfa and red clover) crops in Western France indicated that A. pisum lineages from annual crops had a significantly higher investment in sexual reproduction than A. pisum lineages from the perennial hosts. We propose that temporal habitat variability exerts a selective pressure to maintain the sexual reproduction in A. pisum. The ecological and evolutionary consequences of the association between the mode of reproduction and the host population on gene flow restriction and on ecological specialization are discussed.  相似文献   

20.
Artificial aphid diets have been previously developed for the pea aphid, Acyrthosiphon pisum (Harris), and the green peach aphid, Myzus persicae (Sulzer). The ability to rear aphids on an artificial diet allows for selectively adding or subtracting compounds from an aphid's food source to determine the effect on fecundity and longevity. Five diets previously developed for the green peach aphid and the pea aphid were tested for their suitability for rearing soybean aphid, Aphis glycines Matsumura. The best diet, originally developed for the green peach aphid and based on the amino acid profile of young potato plants, allowed 12 generations of soybean aphids to develop. For all diets tested, aphid fecundity, and longevity were greatly reduced in comparison with aphids reared on soybean, Glycine max (L.) Merr., plants or on detached soybean leaves. In addition, mean developmental time was significantly longer for aphids reared on artificial diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号