首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pyridoxal 5‐phosphate (PLP) cofactor is a significant organic molecule in medicinal chemistry. It is often found covalently bound to lysine residues in proteins to form PLP dependent enzymes. An example of this family of PLP dependent enzymes is γ‐aminobutyric acid aminotransferase (GABA‐AT) which is responsible for the degradation of the neurotransmitter GABA. Its inhibition or inactivation can be used to prevent the reduction of GABA concentration in brain which is the source of several neurological disorders. As a test case for PLP dependent enzymes, we have performed molecular dynamics simulations of GABA‐AT to reveal the roles of the protein residues and its cofactor. Three different states have been considered: the apoenzyme, the holoenzyme, and the inactive state obtained after the suicide inhibition by vigabatrin. Different protonation states have also been considered for PLP and two key active site residues: Asp298 and His190. Together, 24 independent molecular dynamics trajectories have been simulated for a cumulative total of 2.88 µs. Our results indicate that, unlike in aqueous solution, the PLP pyridine moiety is protonated in GABA‐AT. This is a consequence of a pKa shift triggered by a strong charge–charge interaction with an ionic “diad” formed by Asp298 and His190 that would help the activation of the first half‐reaction of the catalytic mechanism in GABA‐AT: the conversion of PLP to free pyridoxamine phosphate (PMP). In addition, our MD simulations exhibit additional strong hydrogen bond networks between the protein and PLP: the phosphate group is held in place by the donation of at least three hydrogen bonds while the carbonyl oxygen of the pyridine ring interacts with Gln301; Phe181 forms a π–π stacking interaction with the pyridine ring and works as a gate keeper with the assistance of Val300. All these interactions are hypothesized to help maintain free PMP in place inside the protein active site to facilitate the second half‐reaction in GABA‐AT: the regeneration of PLP‐bound GABA‐AT (i.e., the holoenzyme). Proteins 2016; 84:875–891. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
Resonance Raman (RR) spectra are reported for aspartate aminotransferase from pig heart cytosol, and for inhibitor complexes. They are interpreted with reference to the previously analyzed spectra of pyridoxal phosphate (PLP) Schiff base adducts. This comparison shows that, as expected, the pyridine N atom is protonated in the native enzyme at pH 5, and in the glutarate complexes at pH 8.5, and that it is also protonated in the alpha-methylaspartate complex; the stabilization of the pyridine proton at high pH must be due to the interaction with aspartate 222 seen in the x-ray crystal structure. RR spectra of the erythro-beta-hydroxy-DL-aspartate complex, representing the p-quinoid enzyme intermediate, as well as of AlIII complexes of PLP Schiff bases with phenylalanine and tyrosine ethyl ester have been obtained via the coherent anti-Stokes Raman scattering technique, and partially assigned. A novel H/D exchange at the coenzyme C4' atom has been observed for the native enzyme in D2O, and has been determined, by a combination of NMR and RR measurements, to be due to the Raman laser irradiation. This photoprocess, which is not observed for PLP Schiff bases in aqueous solution, is attributed to a photoexcited p-quinoid intermediate, similar to that implicated in the enzyme mechanism. It is suggested that this intermediate is stabilized by protein interactions which localize charge on the phenolate O atom, plausibly a hydrogen bond from the nearby tyrosine 225. H/D exchange would then follow via the aldimine-ketimine interconversion known to take place in the enzyme reaction.  相似文献   

3.
Decarboxylation of amino acid is a key step for biosynthesis of several important cellular metabolites in the biological systems. This process is catalyzed by amino acid decarboxylases and most of them use pyridoxal-5'-phosphate (PLP) as a co-factor. PLP is bound to the active site of the enzyme by various interactions with the neighboring amino acid residues. In the present investigation, density functional theory (DFT) and real-time dynamics studies on both ligand-free and ligand-bound dopa decarboxylases (DDC) have been carried out in order to elucidate the factors responsible for facile decarboxylation and also for proper binding of PLP in the active site of the enzyme. It has been found that in the crystal structure Asp271 interacts with the pyridine nitrogen atom of PLP through H-bonding in both native and substrate-bound DDC. On the contrary, Thr246 is in close proximity to the oxygen of 3-OH ofPLP pyridine ring only in the substrate-bound DDC. In the ligand-free enzyme, the distance between the oxygen atom of 3-OH group of PLP pyridine ring and oxygen atom of Thr246 hydroxyl group is not favorable for hydrogen bonding. Thus, present study reveals that hydrogen bonding with 03 of PLP with a hydrogen bond donor residue provided by the enzyme plays an important role in the decarboxylation process.  相似文献   

4.
Cystathionine β-synthase (CBS) catalyzes the pyridoxal 5′-phosphate (PLP)-dependent condensation of l-serine and l-homocysteine to form l-cystathionine in the first step of the reverse transsulfuration pathway. Residue S289 of yeast CBS, predicted to form a hydrogen bond with the pyridine nitrogen of the PLP cofactor, was mutated to alanine and aspartate. The kcat/Kml-Ser of the S289A mutant is reduced by a factor of ~ 800 and the β-replacement activity of the S289D mutant is undetectable. Fluorescence energy transfer between tryptophan residue(s) of the enzyme and the PLP cofactor, observed in the wild-type enzyme and diminished in the S289A mutant, is absent in S289D. These results demonstrate that residue S289 is essential in maintaining the properties and orientation of the pyridine ring of the PLP cofactor. The reduction in activity of ytCBS-S289A suggests that ytCBS catalyzes the α,β-elimination of l-Ser via an E1cB mechanism.  相似文献   

5.
Griswold WR  Fisher AJ  Toney MD 《Biochemistry》2011,50(26):5918-5924
The 1.8 ? resolution crystal structures of Escherichia coli aspartate aminotransferase reconstituted with 1-deazapyridoxal 5'-phosphate (deazaPLP; 2-formyl-3-hydroxy-4-methylbenzyl phosphate) in the internal aldimine and L-aspartate external aldimine forms are reported. The L-aspartate·deazaPLP external aldimine is extraordinarily stable (half-life of >20 days), allowing crystals of this intermediate to be grown by cocrystallization with L-aspartate. This structure is compared to that of the α-methyl-L-aspartate·PLP external aldimine. Overlays with the corresponding pyridoxal 5'-phosphate (PLP) aldimines show very similar orientations of deazaPLP with respect to PLP. The lack of a hydrogen bond between Asp222 and deazaPLP, which serves to "anchor" PLP in the active site, releases strain in the deazaPLP internal aldimine that is enforced in the PLP internal aldimine [Hayashi, H., Mizuguchi, H., Miyahara, I., Islam, M. M., Ikushiro, H., Nakajima, Y., Hirotsu, K., and Kagamiyama, H. (2003) Biochim. Biophys. Acta1647, 103] as evidenced by the planarity of the pyridine ring and the Schiff base linkage with Lys258. Additionally, loss of this anchor causes a 10° greater tilt of deazaPLP toward the substrate in the external aldimine. An important mechanistic difference between the L-aspartate·deazaPLP and α-methyl-L-aspartate·PLP external aldimines is a hydrogen bond between Gly38 and Lys258 in the former, positioning the catalytic base above and approximately equidistant between Cα and C4'. In contrast, in the α-methyl-L-aspartate·PLP external aldimine, the ε-amino group of Lys258 is rotated ~70° to form a hydrogen bond to Tyr70 because of the steric bulk of the methyl group.  相似文献   

6.
5-Aminolevulinate synthase (ALAS), the first enzyme of the heme biosynthetic pathway in mammalian cells, is a member of the alpha-oxoamine synthase family of pyridoxal 5'-phosphate (PLP)-dependent enzymes. In all structures of the enzymes of the -oxoamine synthase family, a conserved histidine hydrogen bonds with the phenolic oxygen of the PLP cofactor and may be significant for substrate binding, PLP positioning, and maintenance of the pKa of the imine nitrogen. In ALAS, replacing the equivalent histidine, H282, with alanine reduces the catalytic efficiency for glycine 450-fold and decreases the slow phase rate for glycine binding by 85%. The distribution of the absorbing 420 and 330 nm species was altered with an A420/A330 ratio increased from 0.45 to 1.05. This shift in species distribution was mirrored in the cofactor fluorescence and 300-500 nm circular dichroic spectra and likely reflects variation in the tautomer distribution of the holoenzyme. The 300-500 nm circular dichroism spectra of ALAS and H282A diverged in the presence of either glycine or aminolevulinate, indicating that the reorientation of the PLP cofactor upon external aldimine formation is impeded in H282A. Alterations were also observed in the K(Gly)d value and spectroscopic and kinetic properties, while the K(PLP)d increased 9-fold. Altogether, the results imply that H282 coordinates the movement of the pyridine ring with the reorganization of the active site hydrogen bond network and acts as a hydrogen bond donor to the phenolic oxygen to maintain the protonated Schiff base and enhance the electron sink function of the PLP cofactor.  相似文献   

7.
ESIPT and ESPT are the only photochemical deactivation pathways of the singlet excited states of 2-, 3- and 4-(2'-hydroxyphenyl)pyridines. Due to the existence of an intramolecular hydrogen bond in 2-(2'-hydroxyphenyl)pyridine, ESIPT leads only to protonation of the pyridine nitrogen. On the other hand, the singlet excited states of 3- and 4-(2'-hydroxyphenyl)pyridine undergo protonation of both nitrogen and carbon atoms of the pyridine ring, via ESIPT or ESPT. The extent of ESIPT to carbon (as measured by extent of deuterium incorporation) can be controlled by the amount of water in the solvent system.  相似文献   

8.
The chemical and spectroscopic properties of 6-fluoropyridoxal 5'-phosphate, of its Schiff base with valine, and of 6-fluoropyridoxamine 5'-phosphate have been investigated. The modified coenzymes have also been combined with the apo form of cytosolic aspartate aminotransferase, and the properties of the resulting enzymes and of their complexes with substrates and inhibitors have been recorded. Although the presence of the 6-fluoro substituent reduces the basicity of the ring nitrogen over 10 000-fold, the modified coenzymes bind predominately in their dipolar ionic ring forms as do the natural coenzymes. Enzyme containing the modified coenzymes binds substrates and dicarboxylate inhibitors normally and has about 42% of the catalytic activity of the native enzyme. The fluorine nucleus provides a convenient NMR probe that is sensitive to changes in the state of protonation of both the ring nitrogen and the imine or the -OH group of free enzyme and of complexes with substrates or inhibitors. The NMR measurements show that the ring nitrogen of bound 6-fluoropyridoxamine phosphate is protonated at pH 7 or below but becomes deprotonated at high pH around a pKa of 8.2. The bound 6-fluoropyridoxal phosphate, which exists as a Schiff base with a dipolar ionic ring at high pH, becomes protonated with a pKa of approximately 7.1, corresponding to the pKa of approximately 6.4 in the native enzyme. Below this pKa a single 19F resonance is seen, but there are two light absorption bands corresponding to ketoenamine and enolimine tautomers of the Schiff base. The tautomeric ratio is altered markedly upon binding of dicarboxylate inhibitors. From the chemical shift values, we conclude that during the rapid tautomerization a proton is synchronously moved from the ring nitrogen (in the ketoenamine) onto the aspartate-222 carboxylate (in the enolimine). The possible implications for catalysis are discussed.  相似文献   

9.
Molecular dynamics simulations using a combined quantum mechanical and molecular mechanical (QM/MM) potential have been carried out to investigate the internal proton transfer equilibrium of the external aldimine species in l-dopa decarboxylase, and carbanion stabilization by the enzyme cofactor in the active site of alanine racemase. Solvent effects lower the free energy of the O-protonated PLP tautomer both in aqueous solution and in the active site, resulting a free energy difference of about -1 kcal/mol relative to the N-protonated Schiff base in the enzyme. The external aldimine provides the dominant contribution to lowering the free energy barrier for the spontaneous decarboxylation of l-dopa in water, by a remarkable 16 kcal/mol, while the enzyme l-dopa decarboxylase further lowers the barrier by 8 kcal/mol. Kinetic isotope effects were also determined using a path integral free energy perturbation theory on the primary (13)C and the secondary (2)H substitutions. In the case of alanine racemase, if the pyridine ring is unprotonated as that in the active site, there is destabilizing contribution to the formation of the α-carbanion in the gas phase, although when the pyridine ring is protonated the contribution is stabilizing. In aqueous solution and in alanine racemase, the α-carbanion is stabilized both when the pyridine ring is protonated and unprotonated. The computational studies illustrated in this article show that combined QM/MM simulations can help provide a deeper understanding of the mechanisms of PLP-dependent enzymes. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology.  相似文献   

10.
Daum S  Tai CH  Cook PF 《Biochemistry》2003,42(1):106-113
O-Acetylserine sulfhydrylase catalyzes the synthesis of l-cysteine from O-acetyl-l-serine (OAS) and inorganic bisulfide. An anti-E2 mechanism has been proposed for the OASS-catalyzed elimination of acetate from OAS (Tai, C.-H., and Cook, P. F. (2001) Acc. Chem. Res. 34, 49-59). Site-directed mutagenesis was used to change S272 to alanine, which would be expected to eliminate the hydrogen bond to N1 of PLP or to aspartate, which would be expected to enhance the hydrogen-bonding interaction. Both mutant enzymes catalyze the overall reaction and are in fact still good enzymes, consistent with the proposed anti-E2 mechanism. Data suggest that hydrogen bonding to the pyridine ring does not play a significant role in the alpha,beta-elimination reaction catalyzed by OASS-A. The V/K(OAS), which reflects the first half-reaction, is identical to the wild-type enzyme in the case of the S272D mutant enzyme and is decreased by only a factor of 3 in the case of the S272A mutant enzyme. In the case of the alanine mutation, and to a lesser extent the aspartate mutation, a decrease in the rate of the elimination is compensated by an increase in affinity for OAS, leading to the observed second-order rate constant, V/K. The decrease in the rate of the elimination is proposed to result from a change in the orientation of the bound cofactor, as might be expected since one of the ligands that determines the position of the bound PLP has been changed. Consistent with a change in the orientation of the cofactor are the results from a number of the spectral probes. The visible CD data for the internal Schiff base have a molar ellipticity 50% that of wild-type enzyme, and the alpha-aminoacrylate intermediate has a molar ellipticity 25% that of wild-type enzyme. The alpha-aminoacrylate intermediate can be formed from l-cysteine and l-serine with the S272A,D mutant enzymes, but not with the wild-type enzyme, and taken together with the increased K(d) for the serine external Schiff base is consistent with a change in cofactor orientation in the active site. The long wavelength fluorescence emission for the S272A mutant enzyme, attributed to F?rster resonance energy transfer (McClure, G. D., Jr., and Cook, P. F. (1994) Biochemistry 33, 1647-1683) has an intensity near zero, as compared to significant fluorescence for the wild-type enzyme.  相似文献   

11.
Asp222 is an invariant residue in all known sequences of aspartate aminotransferases from a variety of sources and is located within a distance of strong ionic interaction with N(1) of the coenzyme, pyridoxal 5'-phosphate (PLP), or pyridoxamine 5'-phosphate (PMP). This residue of Escherichia coli aspartate aminotransferase was replaced by Ala, Asn, or Glu by site-directed mutagenesis. The PLP form of the mutant enzyme D222E showed pH-dependent spectral changes with a pKa value of 6.44 for the protonation of the internal aldimine bond, slightly lower than that (6.7) for the wild-type enzyme. In contrast, the internal aldimine bond in the D222A or D222N enzyme did not titrate over the pH range 5.3-9.5, and a 430-nm band attributed to the protonated aldimine persisted even at high pH. The binding affinity of the D222A and D222N enzymes for PMP decreased by 3 orders of magnitude as compared to that of the wild-type enzyme. Pre-steady-state half-transamination reactions of all the mutant enzymes with substrates exhibited anomalous progress curves comprising multiphasic exponential processes, which were accounted for by postulating several kinetically different enzyme species for both the PLP and PMP forms of each mutant enzyme. While the replacement of Asp222 by Glu yielded fairly active enzyme species, the replacement by Ala and Asn resulted in 8600- and 20,000-fold decreases, respectively, in the catalytic efficiency (kmax/Kd value for the most active species of each mutant enzyme) in the reactions of the PLP form with aspartate. In contrast, the catalytic efficiency of the PMP form of the D222A or D222N enzyme with 2-oxoglutarate was still retained at a level as high as 2-10% of that of the wild-type enzyme. The presteady-state reactions of these two mutant enzymes with [2-2H]aspartate revealed a deuterium isotope effect (kH/kD = 6.0) greater than that [kH/kD = 2.2; Kuramitsu, S., Hiromi, K., Hayashi, H., Morino, Y., & Kagamiyama, H. (1990) Biochemistry 29, 5469-5476] for the wild-type enzyme. These findings indicate that the presence of a negatively charged residue at position 222 is particularly critical for the withdrawal of the alpha-proton of the amino acid substrate and accelerates this rate-determining step by about 5 kcal.mol-1. Thus it is concluded that Asp222 serves as a protein ligand tethering the coenzyme in a productive mode within the active site and stabilizes the protonated N(1) of the coenzyme to strengthen the electron-withdrawing capacity of the coenzyme.  相似文献   

12.
W W Bachovchin 《Biochemistry》1986,25(23):7751-7759
Nitrogen-15 NMR spectroscopy has been used to study the hydrogen-bonding interactions involving the histidyl residue in the catalytic triad of alpha-lytic protease in the resting enzyme and in the transition-state or tetrahedral intermediate analogue complexes formed with phenylmethanesulfonyl fluoride and diisopropyl fluorophosphate. The 15N shifts indicate that a strong hydrogen bond links the active site histidine and serine residues in the resting enzyme in solution. This result is at odds with interpretations of the X-ray diffraction data of alpha-lytic protease and of other serine proteases, which indicate that the serine and histidine residues are too far apart and not properly aligned for the formation of a hydrogen bond. In addition, the nitrogen-15 shifts demonstrate that protonation of the histidine imidazole ring at low pH in the transition-state or tetrahedral intermediate analogue complexes formed with phenylmethanesulfonyl fluoride and diisopropyl fluorophosphate triggers the disruption of the aspartate-histidine hydrogen bond. These results suggest a catalytic mechanism involving directed movement of the imidazole ring of the active site histidyl residue.  相似文献   

13.
We have measured the pH-dependent (1)H, (13)C, and (15)N NMR spectra of pyridoxal 5'-phosphate ((13)C(2)-PLP) mixed with equal amounts of either doubly (15)N-labeled diaminopropane, (15)N(α)-labeled l-lysine, or (15)N(ε)-labeled l-lysine as model systems for various intermediates of the transimination reaction in PLP-dependent enzymes. At low pH, only the hydrate and aldehyde forms of PLP and the free protonated diamines are present. Above pH 4, the formation of single- and double-headed aldimines (Schiff bases) with the added diamines is observed, and their (13)C and (15)N NMR parameters have been characterized. For 1:1 mixtures the single-headed aldimines dominate. In a similar way, the NMR parameters of the geminal diamine formed with diaminopropane at high pH are measured. However, no geminal diamine is formed with l-lysine. In contrast to the aldimine formed with the ε-amino group of lysine, the aldimine formed with the α-amino group is unstable at moderately high pH but dominates slightly below pH 10. By analyzing the NMR data, both the mole fractions of the different PLP species and up to 6 different protonation states including their pK(a) values were obtained. Furthermore, the data show that all Schiff bases are subject to a proton tautomerism along the intramolecular OHN hydrogen bond, where the zwitterionic form is favored before deprotonation occurs at high pH. This observation, as well as the observation that around pH 7 the different PLP species are present in comparable amounts, sheds new light on the mechanism of the transimination reaction.  相似文献   

14.
Glutamate decarboxylase: computer studies of enzyme evolution   总被引:2,自引:0,他引:2  
The homology of subunit primary sequence of 40 glutamate decarboxylases (GAD) of different origin was analyzed by multiple alignment. A phylogenetic tree was designed on the basis of the resulting data. The following groups are distinguished in the consensus tree: archeans, bacteria, plant eukaryotes, and animal eukaryotes. The latter are clearly divided into two branches according to two enzyme isoforms. Borders of PLP domains in each enzyme were detected. The consensus phylogenetic tree for PLP domains is structurally rather similar to that obtained for subunits. Twenty homologous motifs of from 15 to 87 amino acid residues were revealed in all GAD studied. The results revealed the division of all of the enzymes into groups with characteristic sets of motifs in each and a fixed order of their arrangement along the sequence. Thus, we can show the divergent evolution of the enzyme. The results of multiple alignments during structural analysis of the 40 GAD confirmed and extended our previous data on conserved residues that arrange the position of the coenzyme (PLP) in the enzyme active center. The following residues should be noted: lysine forming a Schiff base with the PLP aldehyde group, an adjacent histidine, and aspartic acid that establishes a link with nitrogen of the PLP pyridine ring. The homology of the primary sequence fragments was also found in the residues in contact with the PLP phosphate group. Comparison of the GAD amino acid sequence with that of another PLP enzyme, aspartate aminotransferase, revealed a binding site for carboxylic group of the substrate—glutamic acid. The structures carrying out a particular catalytic function of all GAD studied were detected, i.e., convergent evolution of the enzyme was revealed.  相似文献   

15.
O-Acetylserine sulfhydrylase (OASS) catalyzes the elimination of acetate from O-acetyl-L-serine (OAS) followed by addition of bisulfide to give L-cysteine. Site-directed mutagenesis has been used to replace the active site serine, S272, which forms a hydrogen bond to N1 of pyridoxal 5'-phosphate (PLP) with alanine and aspartate. Based on UV-visible spectral and steady-state kinetic studies, both mutant enzymes catalyze the elimination reaction with an efficiency equal to that of the wild-type enzyme. Data are consistent with an anti-E(2) reaction proposed for the elimination reaction.  相似文献   

16.
Escherichia coli pyridoxine 5'-phosphate oxidase (PNPOx) catalyzes the oxidation of either pyridoxine 5'-phosphate (PNP) or pyridoxamine 5'-phosphate (PMP), forming pyridoxal 5'-phosphate (PLP). This reaction serves as the terminal step in the de novo biosynthesis of PLP in E. coli and as a part of the salvage pathway of this coenzyme in both E. coli and mammalian cells. Recent studies have shown that in addition to the active site, PNPOx contains a noncatalytic site that binds PLP tightly. The crystal structures of PNPOx with one and two molecules of PLP bound have been determined. In the active site, the PLP pyridine ring is stacked almost parallel against the re-face of the middle ring of flavin mononucleotide (FMN). A large protein conformational change occurs upon binding of PLP. When the protein is soaked with excess PLP an additional molecule of this cofactor is bound about 11 A from the active site. A possible tunnel exists between the two sites. Site mutants were made of all residues at the active site that make interactions with the substrate. Stereospecificity studies showed that the enzyme is specific for removal of the proR hydrogen atom from the prochiral C4' carbon of PMP. The crystal structure and the stereospecificity studies suggest that the pair of electrons on C4' of the substrate are transferred to FMN as a hydride ion.  相似文献   

17.
Smith AT  Su Y  Stevens DJ  Majtan T  Kraus JP  Burstyn JN 《Biochemistry》2012,51(32):6360-6370
Cystathionine β-synthase (CBS) is an essential pyridoxal 5'-phosphate (PLP)-dependent enzyme of the transsulfuration pathway that condenses serine with homocysteine to form cystathionine; intriguingly, human CBS also contains a heme b cofactor of unknown function. Herein we describe the enzymatic and spectroscopic properties of a disease-associated R266K hCBS variant, which has an altered hydrogen-bonding environment. The R266K hCBS contains a low-spin, six-coordinate Fe(III) heme bearing a His/Cys ligation motif, like that of WT hCBS; however, there is a geometric distortion that exists at the R266K heme. Using rR spectroscopy, we show that the Fe(III)-Cys(thiolate) bond is longer and weaker in R266K, as evidenced by an 8 cm(-1) downshift in the ν(Fe-S) resonance. Presence of this longer and weaker Fe(III)-Cys(thiolate) bond is correlated with alteration of the fluorescence spectrum of the active PLP ketoenamine tautomer. Activity data demonstrate that, relative to WT, the R266K variant is more impaired in the alternative cysteine-synthesis reaction than in the canonical cystathionine-synthesis reaction. This diminished cysteine synthesis activity and a greater sensitivity to exogenous PLP correlate with the change in PLP environment. Fe-S(Cys) bond weakening causes a nearly 300-fold increase in the rate of ligand switching upon reduction of the R266K heme. Combined, these data demonstrate cross talk between the heme and PLP active sites, consistent with previous proposals, revealing that alteration of the Arg(266)-Cys(52) interaction affects PLP-dependent activity and dramatically destabilizes the ferrous thiolate-ligated heme complex, underscoring the importance of this hydrogen-bonding residue pair.  相似文献   

18.
Eliot AC  Kirsch JF 《Biochemistry》2002,41(11):3836-3842
The active sites of the homologous pyridoxal phosphate- (PLP-) dependent enzymes 1-aminocyclopropane-1-carboxylate (ACC) synthase and aspartate aminotransferase (AATase) are almost entirely conserved, yet the pK(a)'s of the two internal aldimines are 9.3 and 7.0, respectively, to complement the substrate pK(a)'s (S-adenosylmethionine pK(a) = 7.8 and aspartate pK(a) = 9.9). This complementation is required for maximum enzymatic activity in the physiological pH range. The most prominent structural difference in the active site is that Ile232 of ACC synthase is replaced by alanine in AATase. The I232A mutation was introduced into ACC synthase with a resulting 1.1 unit decrease (from 9.3 to 8.2) in the aldimine pK(a), thus identifying Ile232 as a major determinant of the high pK(a) of ACC synthase. The mutation also resulted in reduced k(cat) (0.5 vs 11 s(-1)) and k(cat)/K(m) values (5.0 x 10(4) vs 1.2 x 10(6) M(-1) s(-1)). The effect of the mutation is interpreted as the result of shortening of the Tyr233-PLP hydrogen bond. Addition of the Y233F mutation to the I232A ACC synthase to generate the double mutant I232A/Y233F raised the pK(a) from 8.2 to 8.8, because the Y233F mutation eliminates the hydrogen bond between that residue and PLP. The introduction of the retro mutation A224I into AATase raised the aldimine pK(a) of that enzyme from 6.96 to 7.16 and resulted in a decrease in single-turnover k(max) (108 vs 900 s(-1) for aspartate) and k(max)/K(m)(app) (7.5 x 10(4) vs 3.8 x 10(5) M(-1) s(-1)) values. The distance from the pyridine nitrogen of the cofactor to a conserved aspartate residue is 2.6 A in AATase and 3.8 A in ACC synthase. The D230E mutation introduced into ACC synthase to close this distance increases the aldimine pK(a) from 9.3 to 10.0, as would be predicted from a shortened hydrogen bond.  相似文献   

19.
Bovine pancreatic ribonuclease A (RNase A) has a conserved His ... Asp catalytic dyad in its active site. Structural analyses had indicated that Asp121 forms a hydrogen bond with His119, which serves as an acid during catalysis of RNA cleavage. The enzyme contains three other histidine residues including His12, which is also in the active site. Here, 1H-NMR spectra of wild-type RNase A and the D121N and D121A variants were analyzed thoroughly as a function of pH. The effect of replacing Asp121 on the microscopic pKa values of the histidine residues is modest: none change by more than 0.2 units. There is no evidence for the formation of a low-barrier hydrogen bond between His119 and either an aspartate or an asparagine residue at position 121. In the presence of the reaction product, uridine 3'-phosphate (3'-UMP), protonation of one active-site histidine residue favors protonation of the other. This finding is consistent with the phosphoryl group of 3'-UMP interacting more strongly with the two active-site histidine residues when both are protonated. Comparison of the titration curves of the unliganded enzyme with that obtained in the presence of different concentrations of 3'-UMP shows that a second molecule of 3'-UMP can bind to the enzyme. Together, the data indicate that the aspartate residue in the His ... Asp catalytic dyad of RNase A has a measurable but modest effect on the ionization of the adjacent histidine residue.  相似文献   

20.
This work presents a theoretical analysis of the molecular determinants responsible for the pharmacological activity (K(+) channel blocking) of aminopyridines. Thus, DFT theory at the B3LYP/cc-pVDZ level is applied to a series of active compounds: 2-aminopyridine, 3-aminopyridine, 4-aminopyridine, 3,4-diaminopyridine, and 4-aminoquinoleine. The two forms present in the biological environment, neutral and cationic (protonated), are considered in vacuum as well as in aqueous solution. The results show pyramidal and planar structures for the neutral and cationic forms, respectively. An analysis of the topology of the electron density show that an increase in conjugation between the pyridine ring and the amine group is responsible for the observed planarity of the protonated forms. By computing the Laplacian of the charge density we found the pyridine nitrogen to be the preferred protonation site, as a consequence of a much higher curvature of the charge density field. Also, from three-dimensional (3D) isoLaplacian diagrams a common reactivity pattern is only found in the charged forms. This reactivity pattern implies that interaction with the biological receptor site is mediated by electrostatic interactions and hydrogen bonding. Development of a physical-mathematical model allows identification of the specific relationship of the pharmacological activity index with the affinity for the receptor and the protonation ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号