首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Intake of cruciferous vegetable is inversely associated with the risk of several cancer types. Isothiocyanates (ITCs) are believed to be important constituents contributing to these cancer-preventive effects. Although several mechanisms, including induction of apoptosis, have been proposed for the anti-carcinogenesis activities of ITCs, detailed upstream triggering events are still not fully understood. Identification of ITC binding targets in cellular proteins is crucial for not only mechanistic studies but also future drug screening and design. In this review, we summarize recent progress in discovery of ITC protein targets from a technical perspective. The advantages and limitations of each method are discussed to facilitate future studies on target discovery of ITCs and perhaps other compounds.  相似文献   

2.
3.
Ecological restoration in the Convention on Biological Diversity targets   总被引:1,自引:0,他引:1  
Ecological restoration has been incorporated into several Multilateral Environmental Agreements, including the United Nations Convention on Biological Diversity (CBD). Target 15 of the Aichi Targets for 2020 sets a numerical goal of restoration of 15 percent of degraded ecosystems; however, the CBD has not established a clear statement defining restoration within this context. Without such a definition, the CBD will be unable to measure progress against the goal. The adopted definition of ecological restoration would have to allow for measurement against the numerical target, or the target should be modified to match the chosen definition.  相似文献   

4.
Dengue infection is a major cause of morbidity in tropical and subtropical regions, bringing nearly 40% of the world population at risk and causing more than 20,000 deaths per year. But there is neither a vaccine for dengue disease nor antivirai drugs to treat the infection. In recent years, dengue infection has been particularly prevalent in India, Southeast Asia, Brazil, and Guangdong Province, China. In this article, we present a brief summary of the biological characteristics of dengue virus and associated flaviviruses, and outline the prowess on studies of vaccines and drugs based on potential targets of the dengue virus.  相似文献   

5.
Isothiocyanates, membrane-permeable electrophiles that form adducts with thiols, have been suggested to have important medical benefits. Here we shed light on isothiocyanate-thiol conjugates and studied their electrophilic potential transferring an isothiocyanate moiety to cellular proteins. When we examined the effect of sulfhydryl molecules on cellular response induced by 6-methylsulfinylhexyl isothiocyanate (6-HITC), an analog of sulforaphane isolated from broccoli, we observed significant induction of heme oxygenase-1 by 6-HITC even in the presence of N-acetyl-L-cysteine or glutathione (GSH). In addition, the authentic 6-HITC-β-mercaptoethanol (6-HITC-ME) conjugate markedly up-regulated the enzyme expression, suggesting the electrophilic potential of thiolated isothiocyanates. To gain a chemical insight into the cellular response induced by thiolated isothiocyanates, we studied the occurrence of transthiocarbamoylation of sulfhydryl molecules by 6-HITC-ME and observed that, upon incubation of 6-HITC-ME with GSH, a single product corresponding to the GSH conjugate of 6-HITC was generated. To test the functional ability of thiolated isothiocyanates to thiocarbamoylate proteins in living cells, we designed a novel probe, combining an isothiocyanate-reactive group and an alkyne functionality, and revealed that the transthiocarbamoylation of proteins occurred in the cells upon exposure to 6-HITC-ME. The target of thiocarbamoylation included heat shock protein 90 β (Hsp90β), a chaperone ATPase of the Hsp90 family implicated in protein maturation and targeting. To identify the sites of the Hsp90β modification, we utilized nano-LC/MALDI-TOF MS/MS and suggested that a thiol group on the peptide containing Cys-521 reacted with 6-HITC, resulting in a covalent adduct in a 6-HITC-treated recombinant Hsp90β in vitro. The site-selective binding to Cys-521 was supported by in silico modeling. Further study on the thiocarbamoylation of Hsp90β suggested that the formation of 6-HITC-Hsp90β conjugate might cause activation of heat shock factor-1, rapidly signaling a potential heat shock response. These data suggest that thiolated isothiocyanates are an active metabolite that could contribute to cellular responses through transthiocarbamoylation of cellular proteins.  相似文献   

6.
Data are presented concerning the antifungal activity of 11 natural isothiocyanates and 27 synthetized analogues in Aspergillus niger, Penicillium cyclopium, and Rhizopus oryzae, as well as in 13 additional saprophytic and parasitic fungi. A remarkable antifungal activity was observed in some analogues of benzylisothiocyanate and beta-phenylethylisothiocyanate. The latter-mentioned compounds have not been described previously. In the group of benzylisothiocyanates, a correlation, which was inversely proportional, was detected between ed(100) values for A. niger and R. oryzae and the corresponding molar solubilities of compounds in water. In contradistinction, no relationship was observed between antifungal activity and chemical reactivity of investigated derivatives.  相似文献   

7.
Isothiocyanates (ITCs) are the main sulfur-containing metabolites found in cruciferous vegetables. There is evidence that some ITCs may act as chemopreventive agents against different tumor types and induce apoptosis and modulate cell-cycle progression of highly proliferative cancer cells. However, there are also studies reporting genotoxic or co-carcinogenic effects for some ITCs, such as benzyl ITC and phenyl ITC. Since selectivity for transformed cells and absence of genotoxicity for healthy cells are important pre-requisites for new chemopreventive agents, we investigated micronucleus formation and induction of apoptosis by 4-(methylthio)butylisothiocyanate (MTBITC), sulforaphane and a mixture of ITCs in human T-lymphocyte cultures. We demonstrate that MTBITC, sulforaphane and the mixture of ITCs did not induce micronuclei. Moreover, sulforaphane induced a dose-dependent increase in the number of apoptotic cells, which was significant at the highest concentration tested (30 microM) (41% versus 18% in the untreated samples, P<0.05). The mixture of ITCs presented a trend similar to that found for sulforaphane. In fact, the mixture of ITCs was able to induce a dose-dependent increase in the percentage of apoptotic cells, which reached a maximum value at the concentration of 13 microg/ml (46% versus 19% in control samples, P<0.05). Induction of apoptosis was not observed in cultures treated with MTBITC. Our results suggest that different ITCs can have different effects. Moreover, although the mixture of glucosinolates (GLs) used in the present study does not reflect the exact composition of broccoli, our findings demonstrate that the quantitative effects of a single, specific ITC can be significantly different from those of an ITC mixture, where other ITCs of the mixture contribute to the outcome observed.  相似文献   

8.
Concurrent with the increase in our knowledge of the genetic and environmental factors that lead to glucosinolate accumulation in plants, and the role of these compounds and their derivatives in mediating plant–herbivore interactions, there has been significant advances in our understanding of how glucosinolates and their products may contribute to a reduction in risk of carcinogenesis and heart disease when consumed as part of the diet. In this paper, we review the epidemiological evidence for the health promoting effects of cruciferous vegetables, the processes by which glucosinolates and isothiocyanates are absorbed and metabolised by humans, with particular regard to the role of glutathione S-transferases, and the biological activity of isothiocyanates towards mammalian cells and tissues.  相似文献   

9.
10.
Glucosinolates and isothiocyanates have both been objects of research for more than half a century. Interest in these unique phytochemicals escalated following the discovery that sulforaphane, an isothiocyanate from broccoli, potently induces mammalian cytoprotective proteins through the Keap1-Nrf2-ARE pathway. In parallel with the advances in understanding the molecular regulation of this pathway and its critical role in protection against electrophiles and oxidants, there have been increased efforts toward translating this knowledge to improve human health and combat disease. This review focuses on the animal studies demonstrating the beneficial effects of glucosinolates and isothiocyanates in models of carcinogenesis, and cardiovascular and neurological diseases, as well as on the intervention studies of their safety, pharmacokinetics, and efficacy in humans.  相似文献   

11.
Based upon our preceding studies of the hydration of CO2, COS and CS2, accelerated by the carbonic anhydrase (CA) using simplified [ZnL3OH]+ complexes as model catalysts, we calculated the hydration mechanisms of both the uncatalyzed and the [ZnL3OH]+-catalyzed reactions (L = NH3) of isothiocyanates RNCS on the B3LYP/6-311+G(d,p) level of theory. Interestingly, the transition state for the favored metal mediated reaction with the lowest Gibbs free energy is only slightly higher than in the case of CO2 (depending on the attacking atom (N or S). Calculations under inclusion of solvent corrections show a reduction of the selectivity and a slight decrease of the Gibbs free energy in the rate-determining steps. The most plausible pathway prefers the mechanism via a Lindskog proton-shift transition state leading to the thermodynamically most stable product, the carbamatic-S-acid. Furthermore, powerful electron withdrawing substituents R of the cumulenic substrates influence the selectivity of the reaction to a significant extent. Especially the CF3-group in trifluoromethylisothiocyanate reverses the selectivity. This investigation demonstrates that reaction principles developed by nature can be translated to develop efficient catalytic methods, in this case presumably for the transformation of a wide variety of heterocumulenes aside from CO2, COS and CS2. Figure Competing transition structures for the [ZnL3OH]+-mediated activation of isothiocyanates Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Isothiocyanates, occurring in many dietary cruciferous vegetables, show interesting chemopreventive activities against several chronic-degenerative diseases, including cancer, cardiovascular diseases, neurodegeneration, diabetes. The electrophilic carbon residue in the isothiocyanate moiety reacts with biological nucleophiles and modification of proteins is recognized as a key mechanism underlying the biological activity of isothiocyanates. The nuclear factor-erythroid-2-related factor 2 system, which orchestrates the expression of a wide array of antioxidant genes, plays a role in the protective effect of isothiocyanates against almost all the pathological conditions reported above. Recent emerging findings suggest a further common mechanism. Chronic inflammation plays a central role in many human diseases and isothiocyanates inhibit the activity of many inflammation components, suppress cyclooxygenase 2, and irreversibly inactivate the macrophage migration inhibitory factor. Due to their electrophilic reactivity, some isothiocyanates are able to form adducts with DNA and induce gene mutations and chromosomal aberrations. DNA damage has been demonstrated to be involved in the pathogenesis of various chronic-degenerative diseases of epidemiological relevance. Thus, the genotoxicity of the isothiocyanates should be carefully considered. In addition, the dose-response relationship for genotoxic compounds does not suggest evidence of a threshold. Thus, chemicals that are genotoxic pose a greater potential risk to humans than non-genotoxic compounds. Dietary consumption levels of isothiocyanates appear to be several orders of magnitude lower than the doses used in the genotoxicity studies and thus it is highly unlikely that such toxicities would occur in humans. However, the beneficial properties of isothiocyanates stimulated an increase of dietary supplements and functional foods with highly enriched isothiocyanate concentrations on the market. Whether such concentrations may exert a potential health risk cannot be excluded with certainty and an accurate evaluation of the toxicological profile of isothiocyanates should be prompted before any major increase in their consumption be recommended or their clinical use suggested.  相似文献   

13.
AIDS-related cancer diseases are malignancies with low incidence on healthy people that affect mostly subjects already immunocompromised. The connection between HIV/AIDS and these cancers has not been established yet, but a weakened immune system is certainly the main cause. We envisaged the possibility to screen a small library of compounds synthesized in our laboratory against opportunistic tumors mainly due to HIV infection like Burkitt’s Lymphoma. From cellular assays and gene expression analysis we identified two promising compounds. These derivatives have the dual action required inhibiting HIV replication in human TZM-bl cells infected with HIV-1 NL4.3 and showing cytotoxic activity on human colon HT-29 and breast adenocarcinoma MCF-7 cells. In addition, preclinical in vitro adsorption, distribution, metabolism, and excretion studies highlighted a satisfactory pharmacokinetic profile.  相似文献   

14.
The fungicidal activity of 10 monosubstituted phenyl isothiocyanates was observed with four plant pathogens. The ortho- and meta-substituted derivatives possessed a fair activity while the para-substituted ones proved to be highly fungicidal when compared to the control Agrosan GN.  相似文献   

15.
Tandem Staudinger-aza-Wittig reaction of primary azidodeoxy sugars with triphenylphosphine-carbon disulfide affords the corresponding primary deoxyisothiocyanato sugars in high yield. No products arising from O --> N acyl migration or formation of dimeric carbodiimides were observed. Interestingly, a polymer-supported triarylphosphine can advantageously replace triphenylphosphine, thus limiting the purification step to a simple filtration process. The reaction also allows the preparation of 5-deoxy-5-isothiocyanato sugars, a hitherto unknown class of compounds, from the corresponding azide precursors. Secondary sugar azides bearing the azido group at an endocyclic carbon atom afforded much lower isothiocyanation yields under these reaction conditions.  相似文献   

16.
Although it has been documented that plants generate isothiocyanates (ITCs) through the glucosinolate-myrosinase system to defend against biotic stresses, the roles of ITCs in defending against abiotic stresses have scarcely been studied. Here, we report that exogenously applied ITCs enhance the heat tolerance of Arabidopsis thaliana. Pre-administration of phenethyl ITC to Arabidopsis plants mitigated growth inhibition after heat stress at 55?°C for 1?h. Although methyl ITC and allyl ITC also tended to reduce the growth inhibition that the same heat treatment caused, the reduction effects were weaker. The expression levels of heat shock protein 70 genes in Arabidopsis were elevated after phenethyl ITC treatment. These results suggest that ITCs may act as heat-tolerance enhancers in plants.  相似文献   

17.
Biofumigation can be used as an alternative to conventional soil fumigation to control soil-borne pests. With biofumigation, plant tissue with a natural content of glucosinolates (cruciferous plants) is damaged and incorporated into the topsoil. When the plant tissue is damaged, the glucosinolates come into contact with the endogenous enzyme myrosinase, which catalyse the hydrolysis of glucosinolates into various products depending on the reaction conditions. Isothiocyanates are among the potential products formed from these reactions. We investigated if the isothiocyanates from rape plant material were leached through the soil to drain depth when a heavy rainstorm followed the biofumigation. We applied isothiocyanates from rape plant material (1,480 μmol m−2) to four large (0.6 m diameter, 1.0 m long) intact soil monoliths from a loamy and a sandy soil and conducted a leaching experiment under semi-field conditions. The soil monoliths were irrigated with 70–90 mm (10 mm h−1) and the concentrations of three isothiocyanates (3-butenyl, 4-pentenyl and 2-phenethyl) were monitored in the leachate. Between 0 and 14.8 mmol isothiocyanates were leached for each mol of isothiocyanates applied during application of 70–90 mm irrigation. The distribution coefficient estimated from leached concentrations was 0.04–1.19 for 3-butenyl, 0.04–1.15 for 4-pentenyl isothiocyanate and 0.037–0.97 for 2-phenethyl isothiocyanate. The concentration of total isothiocyanates in the leachate was in the same order of magnitude as the LD50 of isothiocyanates for sensitive aquatic organisms.  相似文献   

18.
19.
We have re-examined hexose-transport inhibition by hexose isothiocyanates and find that the inhibition is incomplete, probably because of decomposition of the reagent. The inhibition type is 'mixed', because hexose-transporter ligands such as maltose and cytochalasin B only give partial protection from inhibition. This suggests that a liganded-transporter-hexose isothiocyanate ternary complex is formed. We have compared the labelling of red-blood-cell membranes by [14C]MITC (D-maltose isothiocyanate) with the labelling obtained using a photoaffinity probe (ASA-BMPA [2-N-(4-azidosalicyloyl)-1,3-bis-(D-mannos-4'-yloxy)-2 -propylamine]) which gives specific labelling of the hexose transporter in band 4.5. [14C]MITC gives a partially D-glucose-displaceable labelling of a band 3 component in the same cell preparations which show ASA-BMPA labelling of band 4.5. This eliminates the possibility that band 4.5 labelling can only occur when the HITC (hexose isothiocyanate) binding protein in band 3 is proteolysed. HITC pretreatment does not decrease ASA-BMPA labelling of the exofacial site of band 4.5. This is also consistent with the formation of ternary complex. However, HITC pretreatment inhibits both reversible and photoactivated covalent [3H]cytochalasin B binding to band 4.5. These results suggest that, in the intact cell, interactions between a band 3 HITC-binding component and the inside cytochalasin B-binding site on the hexose transporter in band 4.5 may occur.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号