首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Survey results describing the levels and prevalences of zoonotic agents in 1,549 livestock waste samples were analyzed for significance with livestock husbandry and farm waste management practices. Statistical analyses of survey data showed that livestock groups containing calves of <3 months of age, piglets, or lambs had higher prevalences and levels of Campylobacter spp. and Escherichia coli O157 in their wastes. Younger calves that were still receiving milk, however, had significantly lower levels and prevalence of E. coli O157. Furthermore, when wastes contained any form of bedding, they had lowered prevalences and levels of both pathogenic Listeria spp. and Campylobacter spp. Livestock wastes generated by stock consuming a diet composed principally of grass were less likely to harbor E. coli O157 or Salmonella spp. Stocking density did not appear to influence either the levels or prevalences of bacterial pathogens. Significant seasonal differences in prevalences were detected in cattle wastes; Listeria spp. were more likely to be isolated in March to June, and E. coli O157 was more likely to be found in May and June. Factors such as livestock diet and age also had significant influence on the levels and prevalences of some zoonotic agents in livestock wastes. A number of the correlations identified could be used as the basis of a best-practice disposal document for farmers, thereby lowering the microbiological risks associated with applying manures of contaminated livestock to land.  相似文献   

2.
AIMS: To determine the prevalence of four bacterial zoonotic pathogens in beef cattle at time of slaughter in Northern Ireland (NI), in order to assess their potential for reducing beef safety. METHODS AND RESULTS: Faeces were collected postmortem from beef cattle (n =220) at seven EU registered abattoirs. Standard enrichment culturing methods were employed, plus immunomagnetic enrichment in the case of Escherichia coli O157:H7. Campylobacter spp. were found in 52 samples (24.8%), Listeria monocytogenes in 10 (4.8%), E. coli O157:H7 in 2 (0.9%) whilst Salmonella spp. were isolated from six out of 200 samples (3.0%). Five salmonellas were Salmonella Chandans and one was Salmonella Liverpool. CONCLUSIONS: Campylobacter spp. were the most frequently isolated pathogen, despite being relatively rare in beef. Genotyping showed the campylobacters to be very diverse, indicating cattle encounter campylobacters from many sources. The remaining three pathogens, which are associated with meats, occurred at relatively low frequencies, especially E. coli O157:H7. The Salmonella serovars found rarely infect humans. SIGNIFICANCE AND IMPACT OF THE STUDY: The low prevalence of E. coli O157:H7 in NI beef cattle was confirmed and the reasons for this merit further study. The four pathogens should have little impact on beef quality.  相似文献   

3.
Three pathogens, Campylobacter, Salmonella, and Shiga-toxin-producing Escherichia coli, are leading causes of bacterial gastroenteritis in the United States and worldwide. Although these three bacteria are typically considered food-borne pathogens, outbreaks have been reported due to contaminated drinking water and irrigation water. The aim of this research was to develop two types of PCR assays that could detect and quantify three pathogens, Campylobacter spp., E. coli O157:H7, and Salmonella spp., in watershed samples. In conventional PCR, three target strains were detected by multiplex PCR (m-PCR) using each specific primer pair simultaneously. Under optimized m-PCR conditions, the assay produced a 90-bp product for Campylobacter jejuni, a 150-bp product for E. coli O157:H7, and a 262-bp product for Salmonella Typhimurium, and the limitation of detection was approximately 700 copies for all three bacteria. In addition, real-time PCR was performed to quantify the three pathogens using SYBR green fluorescence. The assay was designed so that each target had a different melting temperature [C. jejuni (80.1 °C), E. coli O157:H7 (83.3 °C), and S. Typhimurium (85.9 °C)]. Therefore, this system could quantify and distinguish three pathogens simultaneously in a single reaction.  相似文献   

4.
Survival of the green fluorescent protein-transformed human pathogens Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium was studied in a laboratory-simulated lettuce production chain. Dairy cows were fed three different roughage types: high-digestible grass silage plus maize silage (6:4), low-digestible grass silage, and straw. Each was adjusted with supplemental concentrates to high and low crude protein levels. The pathogens were added to manure, which was subsequently mixed (after 56 and 28 days for E. coli O157:H7 and Salmonella serovar Typhimurium, respectively) with two pairs of organically and conventionally managed loamy and sandy soil. After another 14 days, iceberg lettuce seedlings were planted and then checked for pathogens after 21 days of growth. Survival data were fitted to a logistic decline function (exponential for E. coli O157:H7 in soil). Roughage type significantly influenced the rate of decline of E. coli O157:H7 in manure, with the fastest decline in manure from the pure straw diet and the slowest in manure from the diet of grass silage plus maize silage. Roughage type showed no effect on the rate of decline of Salmonella serovar Typhimurium, although decline was significantly faster in the manure derived from straw than in the manure from the diet of grass silage plus maize silage. The pH and fiber content of the manure were significant explanatory factors and were positively correlated with the rate of decline. With E. coli O157:H7 there was a trend of faster decline in organic than in conventional soils. No pathogens were detected in the edible lettuce parts. The results indicate that cattle diet and soil management are important factors with respect to the survival of human pathogens in the environment.  相似文献   

5.
Aim:  To investigate the potential transfer of Escherichia coli O157:H7 and Salmonella from contaminated manure slurry into the tissue of tall fescue plants.
Methods and Results:  Tall fescue plants ( n  =   50) were fertilized with a manure slurry inoculated with E. coli O157:H7 and Salmonella . Soil was collected and tall fescue plants ( n  =   10 per day) harvested on day 1, 2, 4, 8, and 14 after manure slurry fertilization. Soil samples were positive for E. coli O157:H7 on all days and on day 1, 2, 8, and 14 for Salmonella . None of the plant tissue samples were positive for E. coli O157:H7 on day 1 or 2; however, 20%, 30% and 40% of plant tissue samples were positive for E. coli O157:H7 on day 4, 8, and 14, respectively.
Conclusions:  It may be possible that E. coli O157:H7 can become transmitted and internalized into tall fescue plant tissue within 4 days after exposure to an E. coli O157:H7-contaminated manure slurry. Salmonella did not appear to be transferred to tall fescue plant tissue.
Significance and Impact of the Study:  Faeces contaminated with E. coli O157:11H7 may be one means by which grazing ruminants spread bacterial pathogens to additional animals.  相似文献   

6.
Accurate and conservative information about pathogen inactivation rates is needed as the basis for safe manure management on beef cattle feedlots. The survival of indicators and pathogens in faecal pen manure, stockpiled manure and manure compost was measured with autochthonous indicator bacteria (Escherichia coli, Clostridium perfringens, enterococci, total coliforms) and pathogens (Listeria monocytogenes, Campylobacter jejuni) using culture and/or real-time quantitative PCR (qPCR) methods. Additionally, the manures were incubated at 20, 37, 50 and 60 °C in microcosms to quantify the persistence of autochthonous microorganisms and selected process performance surrogates (Clostridium sporogenes, green fluorescent protein-labelled E. coli and L. monocytogenes). Estimated qPCR cell counts indicated that up to four orders of magnitude more target cells were present compared with the culturable counts. Corresponding T(90) estimates were up to sixfold higher. This study demonstrates the benefits of nucleic acid-based quantification of pathogen inactivation in cattle manures and concludes that the concurrent analysis of microorganisms by molecular and culture methods provides complementary value.  相似文献   

7.
AIM: To measure the decline rates of zoonotic agents introduced into liquid livestock wastes in on-farm storage tanks. METHODS AND RESULTS: Salmonella spp., Escherichia coli O157, Campylobacter jejuni, Listeria monocytogenes and Cryptosporidium parvum, propagated in laboratory-controlled conditions, were inoculated into 35,000-l volumes of fresh livestock wastes (pig slurries, cattle slurries and dirty waters). D-values for bacteria were six to 44 days, and for C. parvum were 133 to 345 days. Campylobacter jejuni declined significantly more rapidly than the other bacterial pathogens, while E. coli O157 declined significantly more slowly. On average, bacterial declines were not affected by the season of waste deposition and storage or by the dry matter content of the wastes, but were more rapid in dirty waters than in pig slurries. The physiciochemical composition of wastes in each category varied significantly. CONCLUSIONS: Zoonotic agents can survive for several months during storage of liquid livestock wastes. Livestock wastes should be batch-stored and not subjected to continuous additions. SIGNIFICANCE AND IMPACT OF THE STUDY: This study indicates that batches of liquid livestock waste, if contaminated with bacterial pathogens, should be stored for 6 months to reduce contamination levels. Alternative strategies for reducing C. parvum levels in liquid livestock wastes should be explored.  相似文献   

8.
Escherichia coli O157:H7 and Listeria monocytogenes were able to grow for a period of 2 days in fresh chicken manure at 20 degrees C with a resulting 1-2 log units increase in CFU; Salmonella typhimurium remained stable. Prolongation of the storage time to 6 days resulted in a 1-2 log decreases of S. typhimurium compared to the initial count and a 3-4 log decrease of E. coli O157:H7; the number of L. monocytogenes did not decrease below the initial. These changes were accompanied by an increase in pH and accumulation of ammonia in the manure. The destruction of the three microorganisms was greatly increased by drying the manure to a moisture content of 10% followed by exposure to ammonia gas in an amount of 1% of the manure wet weight; S. typhimurium and E. coli O157:H7 were reduced by 8 log units, L. monocytogenes by 4.  相似文献   

9.
Livestock manures contain numerous microorganisms which can infect humans and/or animals, such as Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., and Mycobacterium avium subsp. paratuberculosis (Mycobacterium paratuberculosis). The effects of commonly used manure treatments on the persistence of these pathogens have rarely been compared. The objective of this study was to compare the persistence of artificially inoculated M. paratuberculosis, as well as other naturally occurring pathogens, during the treatment of dairy manure under conditions that simulate three commonly used manure management methods: thermophilic composting at 55 degrees C, manure packing at 25 degrees C (or low-temperature composting), and liquid lagoon storage. Straw and sawdust amendments used for composting and packing were also compared. Manure was obtained from a large Ohio free-stall dairy herd and was inoculated with M. paratuberculosis at 10(6) CFU/g in the final mixes. For compost and pack treatments, this manure was amended with sawdust or straw to provide an optimal moisture content (60%) for composting for 56 days. To simulate liquid storage, water was added to the manure (to simulate liquid flushing and storage) and the slurry was placed in triplicate covered 4-liter Erlenmeyer flasks, incubated under ambient conditions for 175 days. The treatments were sampled on days 0, 3, 7, 14, 28, and 56 for the detection of pathogens. The persistence of M. paratuberculosis was also assessed by a PCR hybridization assay. After 56 days of composting, from 45 to 60% of the carbon in the compost treatments was converted to CO2, while no significant change in carbon content was observed in the liquid slurry. Escherichia coli, Salmonella, and Listeria were all detected in the manure and all of the treatments on day 0. After 3 days of composting at 55 degrees C, none of these organisms were detectable. In liquid manure and pack treatments, some of these microorganisms were detectable up to 28 days. M. paratuberculosis was detected by standard culture only on day 0 in all the treatments, but was undetectable in any treatment at 3 and 7 days. On days 14, 28, and 56, M. paratuberculosis was detected in the liquid storage treatment but remained undetectable in the compost and pack treatments. However, M. paratuberculosis DNA was detectable through day 56 in all treatments and up to day 175 in liquid storage treatments. Taken together, the results indicate that high-temperature composting is more effective than pack storage or liquid storage of manure in reducing these pathogens in dairy manure. Therefore, thermophilic composting is recommended for treatment of manures destined for pathogen-sensitive environments such as those for vegetable production, residential gardening, or application to rapidly draining fields.  相似文献   

10.
针对8种常见的食源性致病菌(金黄色葡萄球菌、副溶血弧菌、单核细胞增生李斯特菌、沙门氏菌、阪崎肠杆菌、志贺氏菌、肠出血性大肠杆菌O157:H7和空肠弯曲杆菌),建立了基于单碱基延伸标签反应原理的基因芯片检测方法。筛选和整合8种食源性致病菌基因组中的特异性序列和相应PCR引物,致病菌靶DNA片段被扩增和纯化作为单碱基延伸标签反应的模板,反应产物在DNA芯片上与探针进行杂交反应,然后通过扫描基片的荧光强度进行判断。实验结果表明,可采用基于单碱基延伸标签反应的基因芯片方法同时特异性检测8种食源性致病菌,基因组DNA多重检测灵敏度可达到0.1pg,以鼠伤寒沙门氏菌为单一检测对象的细菌纯培养物灵敏度可达到5×102CFU/mL。本方法可以快速灵敏地检测食源性致病菌,为食源性疾病的诊断和防治提供了一个有效的方法。  相似文献   

11.
This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria (FIB), and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manure-amended agricultural soils. Known concentrations of transformed green fluorescent protein-expressing Escherichia coli O157:H7/pZs and red fluorescent protein-expressing Salmonella enterica serovar Typhimurium/pDs were added to laboratory-scale manure-amended soil microcosms with moisture contents of 60% or 80% field capacity and incubated at temperatures of -20°C, 10°C, or 25°C for 120 days. A two-stage first-order decay model was used to determine stage 1 and stage 2 first-order decay rate coefficients and transition times for each organism and qPCR genetic marker in each treatment. Genetic markers for FIB (Enterococcus spp., E. coli, and Bacteroidales) exhibited decay rate coefficients similar to that of E. coli O157:H7/pZs but not of S. enterica serovar Typhimurium/pDs and persisted at detectable levels longer than both pathogens. Concentrations of these two bacterial pathogens, their counterpart qPCR genetic markers (stx1 and ttrRSBCA, respectively), and FIB genetic markers were also correlated (r = 0.528 to 0.745). This suggests that these qPCR genetic markers may be reliable conservative surrogates for monitoring fecal pollution from manure-amended land. Host-associated qPCR genetic markers for microbial source tracking decayed rapidly to nondetectable concentrations, long before FIB, Salmonella enterica serovar Typhimurium/pDs, and E. coli O157:H7/pZs. Although good indicators of point source or recent nonpoint source fecal contamination events, these host-associated qPCR genetic markers may not be reliable indicators of nonpoint source fecal contamination events that occur weeks following manure application on land.  相似文献   

12.
Frequency of Escherichia coli O157:H7 isolation from stool specimens   总被引:8,自引:0,他引:8  
During a 6-month period, 7252 faeces specimens were examined for Escherichia coli serotype O157:H7. Forty-nine specimens (0.7%) from 19 patients yielded this organism. Escherichia coli O157:H7 was the third most frequently isolated bacterial pathogen, following Campylobacter jejuni and (or) Salmonella sp. Although regional variation between laboratories determined whether Campylobacter jejuni or Salmonella was the primary bacterial pathogen isolated, E. coli O157:H7 was consistently isolated more frequently than either Shigella or Yersinia enterocolitica.  相似文献   

13.
The Oldman River watershed in southern Alberta, Canada, is an extensively irrigated region in which intensive agricultural practices have flourished. Concern over water quality in the basin has been expressed because of high levels of enteric disease indigenous to the region. To address these concerns, we conducted a 2-year study to estimate the prevalence of Escherichia coli O157:H7 and Salmonella spp. in surface water within the basin. This study is the first of its kind to identify E. coli O157:H7 repeatedly in surface water collected from a Canadian watershed. Prevalence of E. coli O157:H7 and Salmonella spp. in water samples was 0.9% (n = 1,483) and 6.2% (n = 1,429), respectively. While data examined at a regional level show a relationship between high livestock density and high pathogen levels in southern Alberta, statistical analysis of point source data indicates that predicted manure output from bovine, swine, and poultry feeding operations was not directly associated with either Salmonella spp. or E. coli O157:H7 prevalence. However, geography and weather variables, which are likely to influence bacterial runoff, were not considered in this model. We also postulate that variations in time, amount, and frequency of manure application onto agricultural lands may have influenced levels of surface-water contamination with these bacterial pathogens.  相似文献   

14.
Ma L  Zhang G  Doyle MP 《PloS one》2011,6(4):e18083
Many food safety-related studies require tracking of introduced foodborne pathogens to monitor their fate in complex environments. The green fluorescent protein (GFP) gene (gfp) provides an easily detectable phenotype so has been used to label many microorganisms for ecological studies. The objectives of this study were to label major foodborne pathogens and related bacteria, including Listeria monocytogenes, Listeria innocua, Salmonella, and Escherichia coli O157:H7 strains, with GFP and characterize the labeled strains for stability of the GFP plasmid and the plasmid's effect on bacterial growth. GFP plasmids were introduced into these strains by a CaCl(2) procedure, conjugation or electroporation. Stability of the label was determined through sequential propagation of labeled strains in the absence of selective pressure, and rates of plasmid-loss were calculated. Stability of the GFP plasmid varied among the labeled species and strains, with the most stable GFP label observed in E. coli O157:H7. When grown in nonselective media for two consecutive subcultures (ca. 20 generations), the rates of plasmid loss among labeled E. coli O157:H7, Salmonella and Listeria strains ranged from 0%-30%, 15.8%-99.9% and 8.1%-93.4%, respectively. Complete loss (>99.99%) of the plasmid occurred in some labeled strains after five consecutive subcultures in the absence of selective pressure, whereas it remained stable in others. The GFP plasmid had an insignificant effect on growth of most labeled strains. E. coli O157:H7, Salmonella and Listeria strains can be effectively labeled with the GFP plasmid which can be stable in some isolates for many generations without adversely affecting growth rates.  相似文献   

15.
Farm animal manure or manure slurry may disseminate, transmit, or propagate Escherichia coli O157:H7. In this study, the survival and growth of E. coli O157:H7 in ovine or bovine feces under various experimental and environmental conditions were determined. A manure pile collected from experimentally inoculated sheep was incubated outside under fluctuating environmental conditions. E. coli O157:H7 survived in the manure for 21 months, and the concentrations of bacteria recovered ranged from <102 to 106 CFU/g at different times over the course of the experiment. The DNA fingerprints of E. coli O157:H7 isolated at month 1 and month 12 were identical or very similar. A second E. coli O157:H7-positive ovine manure pile, which was periodically aerated by mixing, remained culture positive for 4 months. An E. coli O157:H7-positive bovine manure pile was culture positive for 47 days. In the laboratory, E. coli O157:H7 was inoculated into feces, untreated slurry, or treated slurry and incubated at −20, 4, 23, 37, 45, and 70°C. E. coli O157:H7 survived best in manure incubated without aeration at temperatures below 23°C, but it usually survived for shorter periods of time than it survived in manure held in the environment. The bacterium survived at least 100 days in bovine manure frozen at −20°C or in ovine manure incubated at 4 or 10°C for 100 days, but under all other conditions the length of time that it survived ranged from 24 h to 40 days. In addition, we found that the Shiga toxin type 1 and 2 genes in E. coli O157:H7 had little or no influence on bacterial survival in manure or manure slurry. The long-term survival of E. coli O157:H7 in manure emphasizes the need for appropriate farm waste management to curtail environmental spread of this bacterium. This study also highlights the difficulties in extrapolating laboratory data to on-farm conditions.  相似文献   

16.
目的检测通过基因工程获得的片球菌素Pediocin PA-1抑菌活性。方法采用琼脂扩散法检测片球菌素Pediocin PA-1对单核细胞增生李斯特杆菌、金黄色葡萄球菌、铜绿假单胞菌、沙门菌和大肠埃希菌O157的抑菌活性。结果片球菌素Pediocin PA-1对单核细胞增生李斯特杆菌、金黄色葡萄球菌、沙门菌、铜绿假单胞菌和大肠埃希菌O157等均有抑制作用。其中对单核细胞增生李斯特杆菌、沙门菌、大肠埃希菌和金黄色葡萄球菌的抑制作用效果明显,对铜绿假单胞菌有微弱的抑制作用。结论通过基因工程获得的片球菌素Pediocin PA-1具有抑菌活性。  相似文献   

17.
Diploscapter, a thermotolerant, free-living soil bacterial-feeding nematode commonly found in compost, sewage, and agricultural soil in the United States, was studied to determine its potential role as a vehicle of Salmonella enterica serotype Poona, enterohemorrhagic Escherichia coli O157:H7, and Listeria monocytogenes in contaminating preharvest fruits and vegetables. The ability of Diploscapter sp. strain LKC25 to survive on agar media, in cow manure, and in composted turkey manure and to be attracted to, ingest, and disperse food-borne pathogens inoculated into soil or a mixture of soil and composted turkey manure was investigated. Diploscapter sp. strain LKC25 survived and reproduced in lawns of S. enterica serotype Poona, E. coli O157:H7, and L. monocytogenes on agar media and in cow manure and composted turkey manure. Attraction of Diploscapter sp. strain LKC25 to colonies of pathogenic bacteria on tryptic soy agar within 10, 20, 30, and 60 min and 24 h was determined. At least 85% of the worms initially placed 0.5 to 1 cm away from bacterial colonies migrated to the colonies within 1 h. Within 24 h, > or =90% of the worms were embedded in colonies. The potential of Diploscapter sp. strain LKC25 to shed pathogenic bacteria after exposure to bacteria inoculated into soil or a mixture of soil and composted turkey manure was investigated. Results indicate that Diploscapter sp. strain LKC25 can shed pathogenic bacteria after exposure to pathogens in these milieus. They also demonstrate its potential to serve as a vector of food-borne pathogenic bacteria in soil, with or without amendment with compost, to the surface of preharvest fruits and vegetables in contact with soil.  相似文献   

18.
AIMS: Thermal inactivation of a mixture of five strains of Listeria monocytogenes, four strains of Escherichia coli O157:H7 and eight serotypes of Salmonella were compared with that of indigenous microflora in 75% lean ground beef. METHODS AND RESULTS: Inoculated meat was packaged in bags that were completely immersed in a circulating water bath and held at 55, 57.5 and 60 degrees C for predetermined lengths of time. The surviving cell population was enumerated by spiral plating heat-treated samples onto tryptic soya agar supplemented with 0.6% yeast extract and 1% sodium pyruvate. D-values, determined by linear regression, in beef were 77.49, 21.9, and 10.66 min at 55, 57.5, and 60 degrees C, respectively, for indigenous microflora (z = 5.81 degrees C). When either of the three pathogens were heated in beef, their D-values calculated were significantly lower (P < 0.05) than those of indigenous microflora at all temperatures. The slope of the thermal death time curve for L. monocytogenes, E. coli O157:H7 and indigenous microflora were similar. Using a survival model for nonlinear survival curves, the D1-values at all temperatures for L. monocytogenes were significantly higher (P < 0.05) compared with those for Salmonella serotypes, E. coli O157:H7 or indigenous microflora. However, higher recovery of a subpopulation of the indigenous microflora in beef exposed to heating at 55, 57.5 or 60 degrees C resulted in significantly higher (P < 0.05) D2-values at all three temperatures, compared with those of the three pathogens at the same test temperatures. CONCLUSIONS: If the thermal process is designed to ensure destruction of indigenous microbial flora, it should also provide an adequate degree of protection against L. monocytogenes, Salmonella serotypes or E. coli O157:H7. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this study will assist the retail food industry in designing acceptance limits on critical control points that ensure safety, without introducing pathogens in a retail food environment, against L. monocytogenes, E. coli O157:H7 and Salmonella in cooked ground beef.  相似文献   

19.
AIMS: A study was performed to determine D values of acid-adapted and unadapted cells of Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes in cantaloupe juice and watermelon juice. METHODS AND RESULTS: Salmonella enterica serotype Poona, S. enterica serotype Saphra, two strains of E. coli O157:H7, and two strains of L. monocytogenes were grown in tryptic soy broth (TSB) and TSB supplemented with 1% glucose for 24 h at 37 degrees C. Decimal reduction times (D values) of cells suspended in unpasteurized cantaloupe juice and watermelon juice were determined. Acid-adapted cells of Salmonella and E. coli O157:H7, but not L. monocytogenes, had increased thermal tolerance compared with cells that were not acid-adapted. There was no correlation between soluble solids content of the two types of juice and thermal resistance. CONCLUSIONS: Growth of Salmonella and E. coli O157:H7 in cantaloupe juice, watermelon juice, or other acidic milieu, either in preharvest or postharvest environments, may result in cross protection to heat. The pasteurization conditions necessary to achieve elimination of pathogens from these juices would consequently have to be more severe if cells are habituated to acidic environments. SIGNIFICANCE AND IMPACT OF THE STUDY: Insights from this study provide guidance to developing pasteurization processes to eliminate Salmonella, E. coli O157:H7, and L. monocytogenes in cantaloupe juice and watermelon juice.  相似文献   

20.
AIMS: A microbiological study of uncooked ready-to-eat organic vegetables was undertaken to determine the microbiological quality of these vegetables on retail sale in the UK. METHODS AND RESULTS: Organic vegetables were collected and examined according to a standardized protocol. The majority (3185 of 3200; 99.5%) of samples were found to be of satisfactory/acceptable quality whilst only 15 (0.5%) were of unsatisfactory quality. Unsatisfactory results were due to Escherichia coli and Listeria spp. (not L. monocytogenes) levels in excess of 102 cfu g-1. CONCLUSIONS: The absence of pathogens (L. monocytogenes, Salmonella, Campylobacter and E. coli O157) and the low incidence (1.5%) of E. coli and Listeria spp. associated with these organic vegetables indicates that overall agricultural, hygiene, harvesting and production practices were good. SIGNIFICANCE AND IMPACT OF THE STUDY: There has been a significant expansion of the UK organic market since 1998/99. Of the various commodity sectors making up the organic market, fruit and vegetables is the largest sector and this has been reflected in an increased interest in their microbiological safety. This is the first study to provide information on the microbiological quality of organic vegetables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号