首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relativistic microwave electronics faces the problem of using high currents of relativistic electron beams; i.e., it is possible to use beams the current of which is lower than that of actually existing high-current accelerators. We show the possibility of increasing the power of radiation generated in a plasma relativistic microwave oscillator (PRMO) due to an increase in the absolute value of current. For the beam currents close to the value of limiting vacuum current, the efficiency of microwave generation decreases; therefore, we study PRMO schemes with a high value of limiting vacuum current, i.e., schemes with a small gap between a hollow relativistic electron beam and the waveguide wall. The results of the experiment and numerical simulation are discussed.  相似文献   

2.
A new type of beam discharge, i.e., beam discharge with a distributed virtual cathode (VC) is proposed and considered by numerical simulation. The discharge is established during counter motion of high-current electron beams in a gas-filled equipotential cavity and is characterized by a state of hot dense electron plasma of primary electrons. The discharge temporal dynamics is studied. It is shown that the VC lifetime depends linearly from this sum in a wide range of the sum of beam currents, from the boundary current of two-beam instability to the critical current of Pierce instability. Generation of nonlinear electrostatic structures shaped as phase bubbles in the discharge is detected, and their dynamics is studied. The parameters are determined, at which the multiple coexistence of phase bubbles and their coalescence during collisions is observed.  相似文献   

3.
The amplitude?temporal characteristics of a supershort avalanche electron beam (SAEB) with an amplitude of up to 100 A, as well as of the breakdown voltage and discharge current, are studied experimentally with a picosecond time resolution. The waveforms of discharge and SAEB currents are synchronized with those of the voltage pulses. It is shown that the amplitude?temporal characteristics of the SAEB depend on the gap length and the designs of the gas diode and cathode. The mechanism for the generation of runaway electron beams in atmospheric-pressure gases is analyzed on the basis of the obtained experimental data.  相似文献   

4.
At PSI (Paul Scherrer Institute), Switzerland, a superconducting cyclotron called “COMET” delivers proton beam of 250 MeV pulsed at 72.85 MHz for proton radiation therapy. Measuring proton beam currents (0.1–10nA) is of crucial importance for the treatment safety and is usually performed with invasive monitors such as ionisation chambers (ICs) which degrade the beam quality. A new non-invasive beam current monitor working on the principle of electromagnetic resonance is built to replace ICs in order to preserve the beam quality delivered. The fundamental resonance frequency of the resonator is tuned to 145.7 MHz, which is the second harmonic of the pulse rate, so it provides signals proportional to beam current. The cavity resonator installed in the beamline of the COMET is designed to measure beam currents for the energy range 238–70 MeV. Good agreement is reached between expected and measured resonator response over the energy range of interest. The resonator can deliver beam current information down to 0.15 nA for a measurement integration time of 1 s. The cavity resonator might be applied serving as a safety monitor to trigger interlocks within the existing domain of proton radiation therapy. Low beam currents limit the abilities to detect sufficiently, however, with the potential implementation of FLASH proton therapy, the application of cavity resonator as an online beam-monitoring device is feasible.  相似文献   

5.
An elementary theory of an annular high-current electron beam in a uniform transport channel and a coaxial magnetically insulated diode is generalized to the case of counterpropagating electron beams with a spread over kinetic energies. Expressions for the sum of the absolute values of the forward and backward currents in a uniform transport channel and for the flux of the longitudinal component of the generalized momentum in a coaxial magnetically insulated diode as functions of the maximum electron kinetic energy are derived for different values of the relative width of the energy distribution function. It is shown that, in a diode with an expanding transport channel and a virtual cathode limiting the extracted current, counterpropagating particle flows are established between the cathode and the virtual cathode within a certain time interval after the beginning of electron emission. The accumulation of electrons in these flows is accompanied by an increase in their spread over kinetic energies and the simultaneous decrease in the maximum kinetic energy. The developed model agrees with the results of particle-in-cell simulations performed using the KARAT and OOPIC-Pro codes.  相似文献   

6.
Bak JS  Ko JK  Han YH  Lee BC  Choi IG  Kim KH 《Bioresource technology》2009,100(3):1285-1290
Rice straw was irradiated using an electron beam at currents and then hydrolyzed with cellulase and beta-glucosidase to produce glucose. The pretreatment by electron beam irradiation (EBI) was found to significantly increase the enzyme digestibility of rice straw. Specifically, when rice straw that was pretreated by EBI at 80 kGy at 0.12 mA and 1 MeV was hydrolyzed with 60 FPU of cellulase and 30 CBU of beta-glucosidase, the glucose yield after 132 h of hydrolysis was 52.1% of theoretical maximum. This value was significantly higher than the 22.6% that was obtained when untreated rice straw was used. In addition, SEM analysis of pretreated rice straw revealed that EBI caused apparent damage to the surface of the rice straw. Furthermore, EBI pretreatment was found to increase the crystalline portion of the rice straw. Finally, the crystallinity and enzyme digestibility were found to be strongly correlated between rice straw samples that were pretreated by EBI under different conditions.  相似文献   

7.
Results are presented from experimental studies of hard X-ray (HXR) emission in the photon energy range above 20 keV from dense radiating Z-pinch plasmas. The work is aimed at revealing the nature of fast-electron (electron beam) generation during the implosion of cylindrical and conical wire arrays in the Angara-5-1 facility at currents of up to 3 MA. It is found that the plasma implosion zippering caused by the inclination of wires affects the parameters of the HXR pulse emitted during the implosion of a conical array. It is shown that HXR emission correlates well with the decay of the plasma column near the cathode in the stagnation phase. HXR images of the pinch are produced by the bremsstrahlung of fast electrons generated during plasma column decay and interacting with plasma ions and the anode target. It is found that the use of conical arrays makes it possible to control the direction of plasma implosion zippering and the spatiotemporal and energy parameters of the pinch X-ray emission, in particular the X-ray yield. For wire array with diameters of 12 mm and linear masses of 200–400 μg/cm, the current of the fast electron beam is 20 kA and its energy is 60 J, which is about 1/500 of the energy of the main soft X-ray pulse.  相似文献   

8.
The conditions and mechanisms of virtual cathode formation in relativistic and ultrarelativistic electron beams are analyzed with allowance for the magnetic self-field for different magnitudes of the external magnetic field. The typical behavior of the critical current at which an oscillating virtual cathode forms in a relativistic electron beam is investigated as a function of the electron energy and the magnitude of the uniform external magnetic field. It is shown that the conditions for virtual cathode formation in a low external magnetic field are determined by the influence of the magnetic self-field of the relativistic electron beam. In particular, azimuthal instability of the electron beam caused by the action of the beam magnetic self-field, which leads to a reduction in the critical current of the relativistic electron beam, is revealed.  相似文献   

9.
The dynamics of a relativistic electron beam in the vicinity of an injector in the form of a spherical conducting body in a space plasma is considered. An equation describing the radial evolution of a steady electron beam with a self-similar density profile in the electric field of the injector is formulated. A method for calculating the radial evolution of a relativistic electron beam in the vicinity of an injector is developed. The method is based on the numerical integration of a set of ordinary differential equations for the beam radius and field potential in the space charge region under the relevant boundary conditions at the injector surface. Results are presented from numerical simulations of the radial dynamics of an electron beam in the vicinity of a spherical screen system for neutralizing the electric charge carried away by the beam. The numerical results show that the electric field of the injector hastens the beam expansion.  相似文献   

10.
Results are presented from numerical particle simulations of the transport and acceleration of a high-current tubular ion beam through one to five magnetically insulated accelerating gaps. The ion beam is neutralized by an accompanying electron beam. The possibility of transporting a high-current neutralized ion beam through five cusps is demonstrated. It is shown that the quality of the distribution function of a high-current ion beam at the exit from the accelerator can be substantially improved by optimizing the energy of the neutralizing electron beam. It is also shown that, by injecting additional high-current electron beams into the cusps, the accelerated ion beam can be made more monoenergetic and its divergence can be reduced.  相似文献   

11.
Results are presented from experimental studies of the interaction of a modulated relativistic electron beam with a plasma. The electron energy spectra at the exit from the interaction chamber are measured for electron beams with energies of about 50 and 20 MeV. The coherent interaction of an electron beam with a microwave-driven plasma is studied. It is shown that, in strong electric fields that can be generated in the coherent interaction, the beam current is very sensitive to the phase of the microwave field.  相似文献   

12.
A study was made of the nonlinear low-frequency interaction of a longitudinal ion beam with a virtual cathode of a relativistic high-current electron beam injected into a cylindrical drift chamber. Cases are considered in which the electron and ion beams have the same radii and in which the radius an ion beam is greaterthan that of an electron beam.  相似文献   

13.
The quasilinear relaxation of a low-density electron beam under the action of plasma turbulence, which is generated during the development of a beam instability, when the beam is formed due to rapid local electron heating (acceleration) is analyzed in the one-dimensional approximation. It is shown that quasilinear diffusion results in the formation of a local plateau at the top of the electron distribution function without causing any significant spread in velocities of the beam electrons and that the relaxation process proceeds primarily through the spatial expansion of electrons with different velocities.  相似文献   

14.
A self-consistent equilibrium state of a thin-walled annular electron beam in an external magnetic field is investigated with allowance for diamagnetic effect and relativistic effects in the beam rotational motion. An equation for the relativistic angular velocities of the beam rotation is derived in the hydrodynamic approximation. The main parameters of the beam equilibrium state are obtained analytically and are calculated numerically. The parameters of a longitudinally homogeneous, relativistic diamagnetic high-density electron beam are determined.  相似文献   

15.
Recently, the application of electron backscatter diffraction (EBSD) in halide perovskites has enabled the correlation of the micro‐structural arrangement of polycrystalline grains with other properties (optical, electrical, mechanical, and chemical) in a “pixel‐by‐pixel” approach. Most studies so far have used an ultra‐sensitive electron beam detector that has sensitivity thousands of times higher than a traditional scintillator screen and charge coupled device camera, enabling much lower beam currents. An alternative approach has been the use of low vacuum measurement conditions to avoid charge buildup that leads to damage. This review focuses on introducing the classical EBSD technique to the halide perovskite community, where it has been highly underutilized due to beaminduced damage in these relatively unstable materials. Recent research is used to dispel some common misconceptions about grain boundaries in halide perovskites and highlight what has been learned by comparing and correlating EBSD with other techniques. Additionally, the remaining limitations, development challenges, and future of the EBSD technique for halide perovskites are discussed. Successful utilization of the EBSD technique as a common characterization tool in the halide perovskite community will enable scientists and engineers to develop maps of cross correlated properties, helping to unlock the full potential of this complex material system.  相似文献   

16.
Phenomena accompanying the injection of a dense plasma beam from the payload of a rocket into ionospheric plasma are analyzed. The dynamics of both the quasineutral plasma beam and the beam-induced disturbances in the ionospheric plasma are investigated. It is shown that the electric field in the beam has a complicated structure, which leads to the generation of currents in both the beam and the ambient ionospheric plasma. The transverse size of the disturbance zone in the ionospheric plasma is found to greatly exceed the beam diameter. The proposed model of the current closing in the ionospheric plasma agrees well with the experimental data. The xenon beam temperature at moderate distances from the injector is determined by using the plasma shadow theory. It is found that the ion beam temperature is at least four times lower than the plasma temperature in the injection zone. This unexpected result is explained by the adiabatic cooling of the current system. The critical radius beyond which a constant temperature in the beam is established is found to be less than 11 m.  相似文献   

17.
Excitation of surface waves by a relativistic electron beam propagating over a conducting cylindrical medium (metal or highly ionized plasma) is investigated theoretically. Dispersion relations describing the linear interaction of surface electromagnetic waves with a monoenergetic electron beam are derived, and the growth rates and spatial amplification factors of excited waves are determined. Condition for the nonlinear trapping of the beam electrons by a surface wave is used to determine the maximum amplitude of the excited wave and the optimal radiator length. The electric field of a surface wave excited by an electron beam is estimated for a particular case.  相似文献   

18.
Y H Mika  Y Palti 《Biophysical journal》1994,67(4):1455-1463
Single ion channel currents can only provide indirect information on channel molecular events (except for timing). In contrast, the electric displacement currents associated with channel gating, termed gating currents, can provide direct information regarding the channel molecule's conformational changes. However, thus far gating currents have been measured only from ensembles of numerous stochastically activated channels and therefore the information they provide is limited. This work presents, for the first time, measurements of gating currents from a single channel molecule. Averaging close to 8000 pre-open currents, aligned to the single channel opening time, enabled the detection of single channel gating currents with a resolution of 2 electron charges. The measured charge displacements show: 1) a slow component, approximately 2 fA above baseline level, assumed to represent stochastic conformational changes, and 2) transients, the most significant of which occur 1.1 and 0.3 ms before channel opening. The transients most likely represent apparent deterministic stages in the gating process. The largest transient current peak was 5.1 +/- 1.6 fA and the total equivalent charge transported across the membrane was 4.7 +/- 2.5 electron charges. This data is unique also in that it presents monitoring of the behavior of a single, well-defined macromolecule.  相似文献   

19.
The advantages of environmental scanning electron microscopy (ESEM) make it a suitable technique for studying plant tissue in its native state. There have been few studies on the effects of ESEM environment and beam damage on the viability of plant tissue. A simple plant tissue, Allium cepa (onion) upper epidermal tissue was taken as the model for study. The change of moisture content of samples was studied at different relative humidities. Working with the electron beam on, viability tests were conducted for samples after exposure in the ESEM under different operating conditions to investigate the effect of electron beam dose on the viability of samples. The results suggested that without the electron beam, the ESEM chamber itself can prevent the loss of initial moisture if its relative humidity is maintained above 90%. With the electron beam on, the viability of Allium cepa (onion) cells depends both on the beam accelerating voltage and the electron dose/unit area hitting the sample. The dose can be controlled by several of the ESEM instrumental parameters. The detailed process of beam damage on cuticle-down and cuticle-up samples was investigated and compared. The results indicate that cuticular adhesion to the cell wall is relatively weak, but highly resistant to electron beam damage. Systematic study on the effect of ESEM operation parameters has been done. Results qualitatively support the intuitive expectations, but demonstrate quantitatively that Allium cepa epidermal cells are able to be kept in a hydrated and viable state under relevant operation condition inside ESEM, providing a basis for further in situ experiments on plant tissues.  相似文献   

20.
Electron beam microscopy and related characterization techniques play an important role in revealing the microstructural, morphological, physical, and chemical information of halide perovskites and their impact on associated optoelectronic devices. However, electron beam irradiation usually causes damage to these beam‐sensitive materials, negatively impacting their device performance, and complicating this interpretation. In this article, the electron microscopy and spectroscopy techniques are reviewed that are crucial for the understanding of the crystallization and microstructure of halide perovskites. In addition, special attention is paid to assessing and mitigating the electron beam‐induced damage caused by these techniques. Since the halide perovskites are fragile, a protocol involving delicate control of both electron beam dose and dose rate, coupled with careful data analysis, is key to enable the acquisition of reliable structural and compositional information such as atomic‐resolution images, chemical elemental mapping and electron diffraction patterns. Limiting the electron beam dose is critical parameter enabling the characterization of various halide perovskites. Novel methods to unveil the mechanisms of device operation, including charge carrier generation, diffusion, and extraction are presented in scanning electron microscopy studies combined with electron‐beam‐induced current and cathodoluminescence mapping. Future opportunities for electron‐beam‐related characterizations of halide perovskites are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号