首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large blooms of opportunistic green macroalgae such as Enteromorpha intestinalis are of ecological concern in estuaries worldwide. Macroalgae derive their nutrients from the water column but estuarine sediments may also be an important nutrient source. We hypothesized that the importance of these nutrient sources to E. intestinalis varies along a nutrient-resource gradient within an estuary. We tested this in experimental units constructed with water and sediments collected from 3 sites in Upper Newport Bay estuary, California, US, that varied greatly in water column nutrient concentrations. For each site there were three treatments: sediments + water; sediments + water + Enteromorpha intestinalis (algae); inert sand + water + algae. Water in units was exchanged weekly simulating low turnover characteristic of poorly flushed estuaries. The importance of the water column versus sediments as a source of nutrients to E. intestinalis varied with the magnitude of the different sources. When initial water column levels of dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus (SRP) were low, estuarine sediments increased E. intestinalis growth and tissue nutrient content. In experimental units from sites where initial water column DIN was high, there was no effect of estuarine sediments on E. intestinalis growth or tissue N content. Salinity, however, was low in these units and may have inhibited growth. E. intestinalis growth and tissue P content were highest in units from the site with highest initial sediment nutrient content. Water column DIN was depleted each week of the experiment. Thus, the water column was a primary source of nutrients to the algae when water column nutrient supply was high, and the sediments supplemented nutrient supply to the algae when water column nutrient sources were low. Depletion of water column DIN in sediment + water units indicated that the sediments may have acted as a nutrient sink in the absence of macroalgae. Our data provide direct experimental evidence that macroalgae utilize and ecologically benefit from nutrients stored in estuarine sediments.  相似文献   

2.
The effect of phytodetritus derived from Phaeocystis sp. bloom on benthic mineralization processes has been determined at four intertidal stations along the French coast of the eastern English Channel. Sites were chosen to offer a diversity of sediment types, from permeable sandy beach to estuarine mudflats. Sediment Oxygen Demand (SOD) as well as total fluxes of Dissolved Inorganic Nitrogen (DIN) at the sediment–water interface were determined by using whole core incubation technique and diffusive fluxes were predicted from interstitial water concentrations. In the absence of phytodetritus deposits, a marked gradient of granulometric characteristics and organic matter contents were observed, and resulted in more intensive mineralization processes in muddy sediments. Highly significant correlations (P < 0.05) were evidenced between SOD and porosity, bacterial biomass, Organic Carbon and Organic Nitrogen, evidencing the direct link between sediment texture, organic matter accumulation and microbial activity. The spring bloom led to a massive input of organic matter in surficial sediments and mineralization rates significantly increased while higher DIN release towards the water column was observed. A modification of the mineralization pathways was evidenced but clearly depended on the sediment type. With a global view, benthic mineralization processes in the intertidal zone provided significant a part of DIN inputs in the coastal zone while water column was depleted in nutrients.  相似文献   

3.
High ratios of dissolved organic nitrogen (DON) to dissolved inorganic nitrogen (DIN) have been suggested to favor the growth of the brown tide alga Aureococcus anophagefferens. DON could provide a particular advantage in low light levels, as occur when blooms induce self-shading. We examined the effects of varying DON:DIN ratios on the photosynthetic abilities of cultured Aureococcus at two light intensities, 93 and 17 μmol photons m−2 s−1. Glutamic acid and urea were used as DON sources, and the remainder of the nitrogen was added as nitrate.In experiments examining Aureococcus growth with varying ratios of DONGlu:DINNitrate at two light intensities in batch culture, higher growth rates and biomass were observed in treatments containing DIN than in those with DON only, which contrasts with the results of previous studies. In semi-continuous growth experiments with varying DONUrea:DINNitrate ratios, low light cultures with urea had higher growth rates than those without urea. Also, the effective target area for light absorption per cell and photosystem II efficiency were greater for the low light cultures of each nutrient treatment, particularly when DON:DIN mixtures (33 and 67% NUrea) were used. The same pattern was seen in the maximum photosynthetic rates per cell in the light-saturated (Pmcell) and in the initial slope (αcell) of the PE (photosynthesis versus irradiance) curve, and in PON, POC and chlorophyll a cell−1. This indicates that the ability of Aureococcus to acclimate to low light conditions may be enhanced by the presence of both organic and inorganic nitrogen sources. These results suggest that Aureococcus physiology and photosynthesis are different during growth on a mixture of urea-N and nitrate than when either nitrogen source is present alone. Results of this study suggest that Aureococcus may not respond to all DON substrates in the same way, and that mixtures of DON and DIN may provide for higher photosynthetic rates, especially at low light. Our results did not, however, support earlier suggestions that growth on DON alone provides the brown tide alga with a large advantage at low light levels.  相似文献   

4.
We investigated the fine pigment structure and composition of phytoplankton and benthic cyanobacterial mats in Ward Hunt Lake at the northern limit of High Arctic Canada and the responses of these two communities to in situ nutrient enrichment. The HPLC analyses showed that more than 98% of the total pigment stocks occurred in the benthos. The phytoplankton contained Chrysophyceae, low concentrations of other protists and Cyanobacteria (notably picocyanobacteria), and the accessory pigments chl c2, fucoxanthin, diadinoxanthin, violaxanthin, and zeaxanthin. The benthic community contained the accessory pigments chl b, chl c2, and a set of carotenoids dominated by glycosidic xanthophylls, characteristic of filamentous cyanobacteria. The black surface layer of the mats was rich in the UV‐screening compounds scytonemin, red scytonemin‐like, and mycosporine‐like amino acids, and the blue‐green basal stratum contained high concentrations of light‐harvesting pigments. In a first bioassay of the benthic mats, there was no significant photosynthetic or growth response to inorganic carbon or full nutrient enrichment over 15 days. This bioassay was repeated with increased replication and HPLC analysis in a subsequent season, and the results confirmed the lack of significant response to added nutrients. In contrast, the phytoplankton in samples from the overlying water column responded strongly to enrichment, and chl a biomass increased by a factor of 19.2 over 2 weeks. These results underscore the divergent ecophysiology of benthic versus planktonic communities in extreme latitudes and show that cold lake ecosystems can be dominated by benthic phototrophs that are nutrient sufficient despite their ultraoligotrophic overlying waters.  相似文献   

5.
Ria Formosa is a Region of Restricted Exchange given its limited connection to coastal water circulation. Furthermore, it is subject to several anthropogenic activities that can lead to an increase in nutrients and potentially to eutrophication. Previous studies have shown the importance of the benthic compartment, specifically the microphytobenthos (MPB) in this shallow coastal lagoon. The dCSTT–MPB model [new version of the dynamic Comprehensive Studies Task Team (dCSTT) model] here described couples the benthic and pelagic compartments. Due to the shallowness of the system, the benthic microalgae are one of the most important primary producers of the system. Preliminary results of the model show a large biomass of benthic microalgae, which strongly influences the pelagic chlorophyll concentration by resuspension. However, algae concentrations in the water column are relatively small due to the high flushing rate of the lagoon. The MPB community is mainly supported by nutrients in the pore water. A sensitivity analysis (SA) has revealed that the factors associated with the benthic compartment were the most important and sensitive to changes. Porosity, benthic chlorophyll recycling, loss of MPB due to grazing and the yield of microphytobenthic chlorophyll from nitrogen were some of the most sensitive parameters, as well as the ones associated with decay of particulate organic nitrogen. The development of our dCSTT–MPB model has itself provided insights into benthic function.  相似文献   

6.
Coupling between the seasonal phytoplankton growth cycle and resuspension mechanisms in low depth areas was studied. Tidal flood in an estuarine inlet with a large area of intertidal flats was investigated with respect to nutrients and suspended particulate matter, during two different periods of the year. A prespring bloom period in March and another during the productive summer term in August were picked. Results indicate that tidal resuspension mechanisms are important in mobilizing NH4 + from the sediment surface pool, and that this additional input of the limiting nutrient is rapidly consumed in the flooding water column, in benefit of microphytes resident in the nutrient-poor, incoming,coastal waters.  相似文献   

7.
The combined effects of temperature and salinity on growth of Alexandrium monilatum were studied in laboratory cultures. This toxic, red-tide dinoflagellate grew faster with higher temperatures, up to a maximum of approximately 1 division per day at 31 °C. Salinities above 15 psu had a lesser effect on growth rate, as might be expected for an estuarine species. Growth rates of cultures exposed to natural light and temperature fluctuations were comparable to laboratory cultures. The minimum N cell quota suggested that high N flux would be required to support bloom development. A literature survey of documented A. monilatum blooms indicated that within US waters, blooms occur in July–September in nearshore or estuarine regions of the Gulf of Mexico and the Florida Atlantic coast. Temperature and salinity measured during blooms correspond to the optimal growth conditions of the laboratory cultures. Nevertheless, the occurrence of A. monilatum blooms is sporadic compared to the occurrence of seemingly optimal growth conditions. Laboratory growth experiments predict when blooms of this species are unlikely due to low growth rates, but so far cannot predict individual blooms.  相似文献   

8.
We investigated phytoplankton biomass, assemblage structure and production along an environmental gradient to evaluate if chlorophyll-a (as proxy for biomass) and primary production peaked under conditions hypothesised to favour phytoplankton growth. During Spring 2003, a wide area from shallow estuarine waters to the shelf slope off the Río de la Plata was sampled and routine measurements included CTD profiles, nutrients, chlorophyll-a, phytoplankton composition and abundance, seston and organic matter loads, downwelling light and, at selected stations, production versus irradiance experiments. Spatial differences in abiotic variables suggested distinct hydrographic zones that differed in phytoplankton biomass and productivity. Chlorophyll-a was highest under estuarine influence and peaked at low salinity when strong stratification developed in the outer estuary, and was minimum at the shelf break and slope. In that area, however, relatively high chlorophyll-a was associated to oceanographic fronts and to the occurrence of Sub Antarctic water within the photic depth range. Productivity was maximum in shallow waters, but biomass-specific productivity peaked at the outer shelf in oceanographic fronts or in upwelled Sub Antarctic waters. Over shelf and slope waters productivity and biomass were not tightly coupled, as indicated by situations of high biomass and low productivity (Station 9), low biomass and high productivity (Station 10), or both high biomass and productivity (Station 22). Ordination analysis of phytoplankton taxa suggested that assemblages changed gradually along the environmental gradient and correlated to abiotic variables defining geographic zones. Overall results were consistent with an interpretation that phytoplankton biomass and growth were modulated by light in estuarine and coastal waters, and by hydrographic processes on the continental shelf and slope. Handling editor: Luigi Naselli-Flores  相似文献   

9.
Sediment porewater nutrients often occur at concentrations that are orders of magnitude higher than nutrients in overlying waters, and accordingly may subsidise growth of benthic macroalgal mats in estuarine ecosystems. The relative contribution of porewater nutrients is expected to be particularly important for macroalgae entrained in intertidal mudflat sediments, where access to water column nutrients is tidally constrained. In this study, filamentous Gracilaria chilensis thalli were simultaneously exposed to sediment and overlying water nutrient sources, labelled using 15N tracers (15NH4+ or 15NO3?) during a 5-day experiment. Dissolved inorganic N (DIN) uptake from porewater and overlying water accounted for 33 and 52%, respectively, of the N estimated as necessary to support the growth of G. chilensis, despite the two-fold lower DIN concentration of the overlying water and its periodic availability (8 h day?1). Of the total N assimilated by the plants,?~?15% could not be accounted for, supporting the acquisition of other N forms in order to meet demand. We also found that regardless of background NH4+:NO3? ratios (i.e. 1:3 in overlying water and 12:1 in porewater), plants accumulated 15NH4+ significantly more readily than 15NO3?, indicating a preference for NH4+. This ability to utilise multiple sources and species of N relatively rapidly may partly explain the competitive success of entrained macroalgae relative to non-entrained species and historically abundant seagrass beds in these environments. These results underscore the significance of both internal nutrient loading and external inputs as important in sustaining opportunistic macroalgal blooms in shallow estuaries.  相似文献   

10.
The high degree of physical factors in intertidal estuarine ecosystem increases material processing between benthic and pelagic compartments. In these ecosystems, microphytobenthos resuspension is a major phenomenon since its contribution to higher trophic levels can be highly significant. Understanding the sediment and associated microphytobenthos resuspension and its fate in the water column is indispensable for measuring the food available to benthic and pelagic food webs. To identify and hierarchize the physical/biological factors potentially involved in MPB resuspension, the entire intertidal area and surrounding water column of an estuarine ecosystem, the Bay des Veys, was sampled during ebb tide. A wide range of physical parameters (hydrodynamic regime, grain size of the sediment, and suspended matter) and biological parameters (flora and fauna assemblages, chlorophyll) were analyzed to characterize benthic-pelagic coupling at the bay scale. Samples were collected in two contrasted periods, spring and late summer, to assess the impact of forcing variables on benthic-pelagic coupling. A mapping approach using kriging interpolation enabled us to overlay benthic and pelagic maps of physical and biological variables, for both hydrological conditions and trophic indicators. Pelagic Chl a concentration was the best predictor explaining the suspension-feeders spatial distribution. Our results also suggest a perennial spatio-temporal structure of both benthic and pelagic compartments in the ecosystem, at least when the system is not imposed to intense wind, with MPB distribution controlled by both grain size and bathymetry. The benthic component appeared to control the pelagic one via resuspension phenomena at the scale of the bay. Co-inertia analysis showed closer benthic-pelagic coupling between the variables in spring. The higher MPB biomass observed in summer suggests a higher contribution to filter-feeders diets, indicating a higher resuspension effect in summer than in spring, in turn suggesting an important role of macrofauna bioturbation and filter feeding (Cerastoderma edule).  相似文献   

11.
Many harmful algal blooming (HAB) species transition between a vegetative, motile phase in the water column and a dormant, non-motile resting phase in the sediments. These life history transitions potentially regulate the timing, location and persistence of bloom events. Motility promotes aggregation and influences vertical distributions in the water column. However, the contribution of this behavior to benthic distributions of resting cells is currently unknown. We used video-tracking techniques to test the hypothesis that algal cells use active down-swimming during pelagic-benthic transition to favorably influence benthic distributions. In an experimental water column, we monitored cell swimming trajectories of Heterosigma akashiwo for 14 days after cells were signaled to enter the benthic resting stage. Using the statistical characteristics of individual cell trajectories, we developed a video-based motion assay to assign each tracked Heterosigma cell to one of three cell states known to occur during pelagic-benthic transition: induced motile, transitional and resting. The primary swimming characteristic influencing benthic distribution, net vertical velocity, was essentially the same for all three cell states. Hence, we found no evidence that active down-swimming influences benthic distributions. Our data suggest that benthic distributions of Heterosigma resting cells are similar to distributions of slowly sedimenting passive particles. These observations suggest that Heterosigma benthic resting cell distributions can be predicted by modeling the effects of cell sedimentation rates combined with geophysical flow patterns.  相似文献   

12.
In the lower St. Lawrence estuary (LSLE, eastern Canada), blooms of the toxic dinoflagellate Alexandrium tamarense are a recurrent phenomenon, resulting in paralytic shellfish poisoning outbreaks every summer. A first coupled physical–biological model of A. tamarense blooms was developed for this system in order to explore the interactions between cyst germination, cellular growth and water circulation and to identify the effect of physical processes on bloom development and transport across the estuary. The simulated summer (1998) was characterized by an A. tamarense red tide with concentrations reaching 2.3 × 106 cells L−1 along the south shore of the LSLE. The biological model was built with previously observed A. tamarense cyst distribution, cyst germination rate and timing, and A. tamarense growth limitation by temperature and salinity. The coupled model successfully reproduced the timing of the A. tamarense bloom in 1998, its coincidence with the combined plumes from the Manicouagan and Aux-Outardes (M-O) rivers on the north shore of the estuary, and the temporal variations in the north-south gradients in cell concentrations. The simulation results reveal that the interaction between cyst germination and the estuarine circulation generates a preferential inoculation of the surface waters of the M-O river plume with newly germinated cells which could partly explain the coincidence of the blooms with the freshwater plume. Furthermore, the results suggest that the spatio-temporal evolution of the bloom is dominated by alternating periods of retention and advection of the M-O plume: east or north-east winds favor the retention of the plume close to the north shore while west or north-west winds result in its advection toward the south shore. The response of the simulated freshwater plume to fluctuating wind forcing controls the delivery of the A. tamarense bloom from the northern part of the estuary to the south shore. In addition, our results suggest that a long residence time of the M-O plume and associated A. tamarense population in the LSLE during the summer 1998 contributed to the development of the red tide. We thus hypothesize that the wind-driven dynamics of the M-O plume could partly determine the success of A. tamarense blooms in the LSLE by influencing the residence time of the blooms and water column stability, which in turn affects A. tamarense vertical migrations and growth.  相似文献   

13.
We isolated eleven strains of the harmful algal bloom (HAB)-forming dinoflagellate Karlodinium veneficum during a bloom event in the NW Mediterranean coastal waters and we studied the inter-strain variability in several of their physiological and biochemical traits. These included autotrophic growth parameters, feeding capabilities (mixotrophy), lipid composition, and, in some cases, their responses to biotic and abiotic factors. The strains were found to differ in their growth rates (0.27–0.53 d−1) and in the maximum cell concentrations achieved during stationary phase (6.1 × 104–8.6 × 104 cells mL−1). Their ingestion performance, when offered Rhodomonas salina as prey, was also diverse (0.22–1.3 cells per K. veneficum per day; 8–52% of their daily ration). At least two strains survived for several months under strict heterotrophic conditions (no light, low inorganic nutrients availability, and R. salina as food source). These strains also showed very distinct fatty acid compositions, with very low contents of monounsaturated and polyunsaturated fatty acids. According to a Bray Curtis similarity analysis, three or four strain groups able to perform different roles in bloom development were identified. We further analyzed one strain from each of the two most distinct groups with respect to prey concentration, light intensity, nutrient availability, and we determined the functional responses (growth and feeding rates) to food concentration. Taken together, the results served to highlight the role of mixotrophy and clone variability in the formation of HABs.  相似文献   

14.
M. Dickman  X. Hang 《Hydrobiologia》1995,306(2):131-146
Crawford Lake, a meromictic lake located near Toronto, Canada, was cored to determine if algal pigments preserved in its sediments would make it possible to infer past changes in lake productivity over the last five hundred years. From 1500 to 1910 A.D. the sediments display extremely high levels of oscillaxanthin and myxoxanthophyll while chlorophyll derivatives and total carotenoids were relatively low. As the lake became increasingly more eutrophic in the latter part of the twentieth century, this relationship reversed itself. Competition for light between the deep dwelling cyanobacteria in the algal mat on the lake's bottom (8–14 m) and phytoplankton in the overlying surface layers of the water column (5–7 m) was attributed to the observed reduction in oscillaxanthin and myxoxanthophyll as Crawford Lake eutrophied. Because the major cyanobacteria in Crawford Lake are benthic mat forming Lyngbya and Oscillatoria, and not phytoplankton, competition for light with the overlying phytoplankton is critical in determining the total quantity of oscillaxanthin and myxoxanthophyll preserved in the lake's profundal sediments. These findings have major implications for the use of cyanobacterial pigments as indicators of lake trophic status in lakes where benthic algal mats are present.  相似文献   

15.
Diatom blooms in the middle reaches of the shallow, freshwater, Hunter River, Australia, are a frequent nuisance to river users. During a 4-year study, blooms of Cyclotella meneghiniana and Nitzschia spp. coincided with water temperatures above 23°C and flows below 400 Ml d−1 that lasted for more than 12 days. Redundancy analysis showed that water temperature was positively related, and antecedent flow was negatively related, to the abundance of both taxa. Addition experiments indicated that nutrients are seldom limiting to growth. It is suggested that a combination of faster growth rates at higher temperatures and longer retention times at low flows allows bloom populations to develop. Simulation modelling showed that flow regulation and water extraction have decreased flows in the river during summer, and consequently have probably increased the number of diatom blooms. Environmental flows have been provided to the river, but are not sufficient to prevent blooms. Discharges required for bloom suppression are described.  相似文献   

16.
Benthic microalgal communities are important components of estuarine food webs and make substantial contributions to coastal materials cycling. Nitrogen is generally the limiting factor for marine primary production; however other factors can limit benthic primary producers because of their access to the additional nutrients found in sediment porewater. Field and laboratory experiments were conducted to test the hypothesis that water column nitrogen supply affects estuarine sandflat benthic microalgal community structure and function. Our field and mesocosm experiments assessed changes at both the population and functional group levels. Simulated water column nitrogen additions increased maximum community photosynthesis in most cases (Pbmax from photosynthesis vs. irradiance curves). Additional changes that resulted from nitrogen additions were decreases in porewater phosphate, increases in porewater ammonium, shifts in community composition from N2 fixing cyanobacteria toward diatoms, and detectable, though not statistically significant increases in biomass (as chlorophyll a). Results from field and laboratory experiments were quite similar, suggesting that laboratory experiments support accurate predictions of the response of intertidal benthic microalgae to changes in water column nutrient conditions.  相似文献   

17.
De Sève  M. A. 《Hydrobiologia》1993,269(1):225-233
Phytoplankton biomass and species composition were studied from June to September 1991 at the mouth of four major rivers and in the freshwater (sal. 0 %), the estuarine (sal. 2–10%) and the coastal (sal. 10–12%) zones of Rupert Bay, located at the southeast tip of James Bay, Canada.A chlorophyll a maximum (5–14 µg 1–1) was observed in the freshwater zone from July to September. Chlorophyll values were low at the mouth of the rivers and in the estuarine and coastal zones (chl a < 1.00 µg 1–1). Diatoms were dominant in the freshwater zone (30–80 % abundance), with flagellates dominating in the estuarine and coastal zones (60–95% abundance). Diversity was low (H: 1.5–2.5) in the freshwater zone and decreased seaward (H: 0.5–1.5).The diatom bloom was composed almost exclusively of the autochthonous planktonic diatom Cyclotella meneghiniana Kütz., which contributed 25–85% of the species composition, and of the subdominant benthic species Diploneis smithii, Navicula lanceolata and Surirella robusta. Peak abundance occurred upstream of the turbidity maximum, in the tidal freshwater zone. In this zone the mean photic depth was 1 m and residence time was from 7 to 8 days during the bloom. Residence time is considered to be the dominant factor controlling the phytoplankton bloom, with light not acting as a limiting factor. The high turbidity due to resuspension and shallow depth of the bay controlled the species composition.  相似文献   

18.
Plankton communities of an acidic,polymictic, brown-water lake   总被引:2,自引:2,他引:0  
The plankton of an acidic, polymictic, brown-water lake was investigated over a one-year period. The phytoplankton community was dominated by Chlamydomonas sp., Melosira varians and Peridinium pusillum during different times of the year. Densities were abnormally low, with a maximum of only 13,781 individuals per liter during the March bloom. The water column was nearly void of phytoplankton during the fall. These low densities were attributed to several of the physical and chemical characteristics of the water, including low pH, low levels of nutrients and light limitation. The latter factor was important because of low light transmission into the highly colored water, shading from macrophytes and the nearly continuous transport of the phytoplankton into the aphotic zone due to mixing of the water column by sea breezes.The zooplankton was dominated by Diaptomus floridanus, Polyarthra vulgaris, Keratella cochlearis and Daphnia ambigua. The observed densities were typical of southeastern oligotrophic lakes. The zooplankton community did not exhibit a decrease in density that corresponded with the observed low phytoplankton densities, suggesting the possibility that they relied heavily on bacterial and detrital food sources.  相似文献   

19.
The first recorded bloom of Karenia spp., resulting in brevetoxin in oysters, in the low salinity waters of the Northern Gulf of Mexico (NGOMEX) occurred in November 1996. It raised questions about the salinity tolerance of Karenia spp., previously considered unlikely to occur at salinities <24 psu, and the likelihood that the bloom would reoccur in the NGOMEX. Salinity was investigated as a factor controlling Karenia spp. abundance in the field, using data from the NGOMEX 1996 bloom and Florida coastal waters from 1954 to 2004, and growth and toxin production in cultures of Karenia brevis (Davis) G. Hansen and Moestrup. During the NGOMEX bloom, Karenia spp. occurred much more frequently at low salinities than in Florida coastal waters over the last 50 years. The data suggest that the NGOMEX bloom started on the NW Florida Shelf, an area with a higher frequency of Karenia spp. at low salinities than the rest of Florida, and was transported by an unusual westward surface current caused by Tropical Storm Josephine. The minimum salinity at which growth occurred in culture ranged between 17.5 and 20 psu, but the optimal salinity ranged between low values of 20 or 25 and high values of 37.5–45 psu, depending on the clone. The effect of salinity on toxin production in one clone of K. brevis was complex, but at all salinities brevetoxin levels were highest during the stationary growth phase, suggesting that aging, high density blooms may pose the greatest public health threat. The results demonstrate that Karenia spp. can be a public health threat in low salinity areas, but the risk in the NGOMEX is relatively low. No bloom has occurred since the 1996 event, which was probably associated with a special set of conditions: a bloom along the Florida Panhandle and a tropical storm with a track that set up a westward current.  相似文献   

20.
It is well established that cyst-forming phytoplankton species are transported in ships' ballast tanks. However, there is increasing evidence that other phytoplankton species which do not encyst are also capable of surviving ballast transit. These species have alternative modes of nutrition (hetero- or mixotrophy) and/or are able to survive long-term darkness. In our studies of no-ballast-on-board vessels arriving in the Great Lakes, we tested for the presence of the harmful algal bloom species Aureococcus anophagefferens (brown tide) in residual (i.e., unpumpable) ballast water using methods based on the PCR. During 2001, the brown tide organism was detected in 7 of 18 ballast water tanks in commercial ships following transit from foreign ports. Furthermore, it was detected after 10 days of ballast tank confinement during a vessel transit in the Great Lakes, a significant result given the large disparity between the salinity tolerance for active growth of Aureococcus (>22 ppt) and the low salinity of the residual ballast water (~2 ppt). We also investigated the potential for smaller, recreational vessels to transport and distribute Aureococcus. During the summer of 2002, 11 trailered boats from the inland bays of Delaware and coastal bays of Maryland were sampled. Brown tide was detected in the bilge water in the bottoms of eight boats, as well as in one live-well sample. Commercial ships and small recreational boats are therefore implicated as potential vectors for long-distance transport and local-scale dispersal of Aureococcus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号