首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chitinase gene chiA was identified on the Clostridium thermocellum genome downstream of the endoglucanase gene celA. It contains a catalytic module of glycosyl hydrolase family 18 and a cellulosomal dockerin module. Chi18A hydrolyzes aryl-acetyl-chito-oligosaccharides preferentially. In denaturing electrophoresis of purified cellulosomes, a single chitinase activity band was identified in zymograms and Western blots, indicating that Chi18A is the only chitinase in the cellulosome.  相似文献   

2.
A novel chitinase gene chiC of Clostridium paraputrificum M-21, a chitinolytic and hydrogen-gas-producing bacterium, was characterized along with its translated product. The chi18C gene encodes 683 amino acids (signal peptide included) with a deduced molecular weight of 74,651. Chi18C is a modular enzyme composed of a family-18 catalytic module of glycoside hydrolases, two reiterated modules of unknown function, and a family-12 carbohydrate-binding module. Recombinant Chi18C was active toward soluble and insoluble chitin preparations, and synthetic substrates such as 4-methylumbelliferyl-β-d-N-N-N″-triacetylchitotriose, but not active toward 4-MU-N-acetylglucosamine or 4-MU-β-d-N-N′-diacetylchitobioside. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunological analyses suggested that the expression of chi18C was inducible with chitinous substrates and that Chi18C was secreted into the culture medium. A possible role of Chi18C in the chitinolytic system of C. paraputrificum M-21 is discussed.  相似文献   

3.
利用生物信息学的方法,分析天蓝色链霉菌Streptomyces coelicolor中几丁质酶C(Chi C)的一些基本性质,并针对链霉菌属菌种的几个几丁质酶基因做了进化树,进而验证了天蓝色链霉菌中至少8种几丁质酶的分类;同时对天蓝色链霉菌Streptomyces coelicolor中几丁质酶C(Chi C)蛋白的高级结构作出了预测,得到其编码的属于18家族的蛋白质高级结构图谱。  相似文献   

4.
Streptomyces coelicolor A3(2) has 13 chitinase genes encoding 11 family 18 and two family 19 chitinases. To compare enzymatic properties of family 19 chitinase and family 18 chitinases produced by the same organism, the four chitinases (Chi18bA, Chi18aC, Chi18aD, and Chi19F), whose genes are expressed at high levels in the presence of chitin, were produced in Escherichia coli and purified. The effect of pH on the hydrolytic activity was very different not only among the four chitinases but also among the substrates. The hydrolytic activity of Chi19F, family 19 chitinase, against soluble substrates was remarkably high as compared with three family 18 chitinases, but was the lowest against crystalline substrates among the four chitinases. On the contrary, Chi18aC, a family 18-subfamily A chitinase, showed highest activity against crystalline substrates. Only Chi19F exhibited significant antifungal activity. Based on these observations, the roles of family 19 chitinases are discussed.  相似文献   

5.
Streptomyces coelicolor A3(2) has 13 chitinase genes encoding 11 family 18 and two family 19 chitinases. To compare enzymatic properties of family 19 chitinase and family 18 chitinases produced by the same organism, the four chitinases (Chi18bA, Chi18aC, Chi18aD, and Chi19F), whose genes are expressed at high levels in the presence of chitin, were produced in Eschericha coli and purified. The effect of pH on the hydrolytic activity was very different not only among the four chitinases but also among the substrates. The hydrolytic activity of Chi19F, family 19 chitinase, against soluble substrates was remarkably high as compared with three family 18 chitinases, but was the lowest against crystalline substrates among the four chitinases. On the contrary, Chi18aC, a family 18-subfamily A chitinase, showed highest activity against crystalline substrates. Only Chi19F exhibited significant antifungal activity. Based on these observations, the roles of family 19 chitinases are discussed.  相似文献   

6.
一株Sanguibacter sp.C4产几丁质酶基因的克隆与表达   总被引:1,自引:0,他引:1  
陶勇  金虹  龙章富  张丽  丁秀琼  陶科  刘世贵 《遗传学报》2006,33(11):1037-1046
Chi58是Sanguibacter sp.strain C4产生的一种胞外几丁质酶。通过chiA的特异性PCR引物探测到菌株C4中存在几丁质酶,并将扩增到的几丁质酶基因片段(chiA-F)克隆、测序后,提交GenBank数据库进行同源性搜索。对从GenBank中获得的高同源性序列进行比对,并根据保守区域设计2对PCR引物进行嵌套PCR,扩增出Chi58基因的开放阅读框(ORF)。测序结果表明该酶的ORF由1692个核苷酸组成,编码563个氨基酸,在N端有23个氨基酸的信号肽,其成熟蛋白的分子量应为58.544kDa。对其推导氨基酸的序列分析表明Chi58与沙雷氏菌的几丁质酶(如徂)有高度同源性(88.9%-99.6%),其结构主要包括信号肽序列、PKD结构域和18家族糖苷水解酶结构域。将该基因克隆到pET32a(+)载体构建重组质粒pChi58,转入大肠杆菌BL-21(DE3)进行融合表达。经IPTG诱导后,可见分子量约81.1kDa的融合蛋白的表达。  相似文献   

7.
Plant disease caused by fungal pathogens results in vast crop damage globally. Microbial communities of soil that is suppressive to fungal crop disease provide a source for the identification of novel enzymes functioning as bioshields against plant pathogens. In this study, we targeted chitin-degrading enzymes of the uncultured bacterial community through a functional metagenomics approach, using a fosmid library of a suppressive soil metagenome. We identified a novel bacterial chitinase, Chi18H8, with antifungal activity against several important crop pathogens. Sequence analyses show that the chi18H8 gene encodes a 425-amino acid protein of 46 kDa with an N-terminal signal peptide, a catalytic domain with the conserved active site F175DGIDIDWE183, and a chitinase insertion domain. Chi18H8 was expressed (pGEX-6P-3 vector) in Escherichia coli and purified. Enzyme characterization shows that Chi18H8 has a prevalent chitobiosidase activity with a maximum activity at 35 °C at pH lower than 6, suggesting a role as exochitinase on native chitin. To our knowledge, Chi18H8 is the first chitinase isolated from a metagenome library obtained in pure form and which has the potential to be used as a candidate agent for controlling fungal crop diseases. Furthermore, Chi18H8 may also answer to the demand for novel chitin-degrading enzymes for a broad range of other industrial processes and medical purposes.  相似文献   

8.
Abstract Janthinobacterium lividum secretes a major 56-kDa chitinase and a minor 69-kDa chitinase. A chitinase gene was defined on a 3-kb fragment of clone pRKT10, by virtue of fluorescent colonies in the presence of 4-methylumbelliferyl-β-d-N,N',N"-chitotrioside. Nucleotide sequencing revealed an 1998-bp open reading frame with the potential to encode a 69 716-Da protein with amino acid sequences similar to those in other chitinases, suggesting it encodes the minor chitinase (Chi69). Chitinase activity of Escherichia coli (pRKTIO) lysates was detected mainly in the periplasmic fraction and immunoblotting detected a 70-kDa protein in this fraction. Chi69 has an N-terminal secretory leader peptide preceding two probable chitin-binding domains and a catalytic domain. These functional domains are separated by linker regions of proline-threonine repeats. Amino acid sequencing of cyanogen bromide cleavage-derived peptides from the major 56-kDa chitinase suggested that Chi69 may be a precursor of Chi56. In addition, an N-terminally truncated version of Chi69 retained chitinase activity as expected if in vivo processing of Chi69 generates Chi56.  相似文献   

9.
Bacillus licheniformis CBFOS-03 is a chitinase producing bacteria isolated from oyster (Crassostrea gigas) shell waste. We have cloned and expressed the chi18B gene of B. licheniformis CBFOS-03, which encodes a glycohydrolase family 18 chitinase (GH18). Chi18B is a predicted 598 amino acid protein that consists of a catalytic domain (GH18), a fibronectin type III domain (Fn3), and a chitin binding domain (CBD). Purified Chi18B showed optimum chitinase activity at pH 9 and 55 °C, and activity was stimulated with 25 mM Mn2+. In kinetic analysis, Chi18B showed Km values of 9.07?±?0.65 μM and 129.27?±?0.38 μM with the substrates 4-methylumbelliferyl-N-N′-diacetylchitobiose and α-chitin, respectively. Studies of C-terminal deletion constructs revealed that the GH18 domain with one amino acid in C-terminal region was sufficient for chitinase activity; however, fusions of full length and CBD-deleted constructs to green florescent protein (GFP) and yellow florescent protein (YFP) suggest that the C-terminus is supposedly important in binding to shell powder. Full length Chi18B with GFP showed green fluorescence with oyster shell powder, but GH18+Fn3 with GFP did not. Similarly, full length Chi18B with YFP showed yellow fluorescence with clam (Chamelea gallina) shell and disk abalone (Haliotis discus) shell powder, but GH18+Fn3 with YFP construct did not. So, the CBD domain of Chi18B appears to play an important role in binding of oyster and other marine shells. It is likely to be used as a probe to identify the presence of chitin in marine shells like oyster shell, clam shell, and disk abalone shell using fusions of Chi18B with fluorescent proteins.  相似文献   

10.
The chitinase Chi58 is an extracellular chitinase produced by Sanguibacter sp.strain C4. The gene-specific PCR primers were used to detect the presence of the chiA gene in strain C4. A chiA fragment (chiA-F) was amplified from the C4 genomic DNA and was used to blast-search the related sequences from the GenBank dadabase. By alignment and selection of the highly conserved regions of the homologous sequences, two pairs of primers were designed to amplify the open reading frame (ORF) of the chitinase from strain C4 by nested PCR. The results revealed that the Chi58 ORF consisted of 1 692 nucleotides encoding a protein of 563 amino acid residues. The molecular weight of the mature protein was predicted to be 58.544 kDa. The Chi58 ORF was a modular enzyme composed of a signal peptide sequence, a polycystic kidney disease I domain, and a glycosyl hydrolase family 18 domain. The chitinase of C4 exhibited a high level of similarity to the chitinase A of Serratia (88.9%-99.6%) at the amino acid sequence level. The Chi58 gene was cloned into the expression vector pET32a to construct the recombinant plasmid pChi58 and was expressed in E. coli BL-21 (DE3) cells with IPTG induction. The molecular weight of the Trx-Chi58 fusion protein was estimated to be 81.1 kDa by SDS-PAGE.  相似文献   

11.
The gene encoding an extracellular chitinase from marine Alteromonas sp. strain O-7 was cloned in Escherichia coli JM109 by using pUC18. The chitinase produced was not secreted into the growth medium but accumulated in the periplasmic space. A chitinase-positive clone of E. coli produced two chitinases with different molecular weights from a single chitinase gene. These proteins showed almost the same enzymatic properties as the native chitinase of Alteromonas sp. strain O-7. The N-terminal sequences of the two enzymes were identical. The nucleotide sequence of the 3,394-bp SphI-HindIII fragment that included the chitinase gene was determined. A single open reading frame was found to encode a protein consisting of 820 amino acids with a molecular weight of 87,341. A putative ribosome-binding site, promoter, and signal sequence were identified. The deduced amino acid sequence of the cloned chitinase showed sequence homology with chitinases A (33.4%) and B (15.3%) from Serratia marcescens. Regardless of origin, the enzymes of the two bacteria isolated from marine and terrestrial environments had high homology, suggesting that these organisms evolved from a common ancestor.  相似文献   

12.
We analyzed the lung mRNA expression profiles of a murine model of COPD developed using a lung-specific IL-18-transgenic mouse. In this transgenic mouse, the expression of 608 genes was found to vary more than 2-fold in comparison with control WT mice, and was clustered into 4 groups. The expression of 140 genes was constitutively increased at all ages, 215 genes increased gradually with aging, 171 genes decreased gradually with aging, and 82 genes decreased temporarily at 9 weeks of age. Interestingly, the levels of mRNA for the chitinase-related genes chitinase 3-like 1 (Chi3l1), Chi3l3, and acidic mammalian chitinase (AMCase) were significantly higher in the lungs of transgenic mice than in control mice. The level of Chi3l1 protein increased significantly with aging in the lungs and sera of IL-18 transgenic, but not WT mice. Previous studies have suggested Chi3l3 and AMCase are IL-13-driven chitinase-like proteins. However, IL-13 gene deletion did not reduce the level of Chi3l1 protein in the lungs of IL-18 transgenic mice. Based on our murine model gene expression data, we analyzed the protein level of YKL-40, the human homolog of Chi3l1, in sera of smokers and COPD patients. Sixteen COPD patients had undergone high resolution computed tomography (HRCT) examination. Emphysema was assessed by using a density mask with a cutoff of -950 Hounsfield units to calculate the low-attenuation area percentage (LAA%). We observed significantly higher serum levels in samples from 28 smokers and 45 COPD patients compared to 30 non-smokers. In COPD patients, there was a significant negative correlation between serum level of YKL-40 and %FEV(1). Moreover, there was a significant positive correlation between the serum levels of YKL-40 and LAA% in COPD patients. Thus our results suggest that chitinase-related genes may play an important role in establishing pulmonary inflammation and emphysematous changes in smokers and COPD patients.  相似文献   

13.
Alteromonas sp. strain O-7 secretes chitinase A (ChiA), chitinase B (ChiB), and chitinase C (ChiC) in the presence of chitin. A gene cluster involved in the chitinolytic system of the strain was cloned and sequenced upstream of and including the chiA gene. The gene cluster consisted of three different open reading frames organized in the order chiD, cbp1, and chiA. The chiD, cbp1, and chiA genes were closely linked and transcribed in the same direction. Sequence analysis indicated that Cbp1 (475 amino acids) was a chitin-binding protein composed of two discrete functional regions. ChiD (1,037 amino acids) showed sequence similarity to bacterial chitinases classified into family 18 of glycosyl hydrolases. The cbp1 and chiD genes were expressed in Escherichia coli, and the recombinant proteins were purified to homogeneity. The highest binding activities of Cbp1 and ChiD were observed when alpha-chitin was used as a substrate. Cbp1 and ChiD possessed a chitin-binding domain (ChtBD) belonging to ChtBD type 3. ChiD rapidly hydrolyzed chitin oligosaccharides in sizes from trimers to hexamers, but not chitin. However, after prolonged incubation with large amounts of ChiD, the enzyme produced a small amount of (GlcNAc)(2) from chitin. The optimum temperature and pH of ChiD were 50 degrees C and 7.0, respectively.  相似文献   

14.
Bacterial chitinases are useful in the biocontrol of agriculturally important pests and fungal pathogens. However, the utility of naturally occurring bacterial chitinases is often limited by their low enzyme activity. In this study, we constructed mutants of a Bacillus thuringiensis chitinase with enhanced activity based on homology modeling, molecular docking, and the site-directed mutagenesis of target residues to modify spatial positions, steric hindrances, or hydrophilicity/hydrophobicity. We first identified a gene from B. thuringiensis YBT-9602 that encodes a chitinase (Chi9602) belonging to glycosyl hydrolase family 18 with conserved substrate-binding and substrate-catalytic motifs. We constructed a structural model of a truncated version of Chi9602 (Chi960235-459) containing the substrate-binding domain using the homologous 1ITX protein of Bacillus circulans as the template. We performed molecular docking analysis of Chi960235-459 using di-N-acetyl-D-glucosamine as the ligand. We then selected 10 residues of interest from the docking area for the site-directed mutagenesis experiments and expression in Escherichia coli. Assays of the chitinolytic activity of the purified chitinases revealed that the three mutants exhibited increased chitinolytic activity. The ChiW50A mutant exhibited a greater than 60 % increase in chitinolytic activity, with similar pH, temperature and metal ion requirements, compared to wild-type Chi9602. Furthermore, ChiW50A exhibited pest-controlling activity and antifungal activity. Remarkable synergistic effects of this mutant with B. thuringiensis spore-crystal preparations against Helicoverpa armigera and Caenorhabditis elegans larvae and obvious activity against several plant-pathogenic fungi were observed.  相似文献   

15.
Aeromonas caviae CB101 secretes four chitinases (around 92, 82, 70, and 55 kDa) into the culture supernatant. A chitinase gene chi1 (92 kDa) was previously studied. To identify the genes encoding the remaining three chitinases, a cosmid library of CB101 was constructed to screen for putative chitinase genes. Nine cosmid clones were shown to contain a chitinase gene on chitin plates. Surprisingly, all the positive clones contained chi1. In parallel, we purified the 55-kDa chitinase (Chi55) from the CB101 culture supernatant by continuous DEAE-Sepharose and Mono-Q anion exchange chromatography. The N-terminal amino acid sequence of the purified chitinase exactly matched the N-terminal sequence of mature Chi1, indicating that the purified chitinase (Chi55) is a truncated form of Chi1. The N- and C-terminal domains of chi1 were cloned, expressed, and purified, separately. Western blots using anti-sera to the N- and C-terminal domains of chi1 on the chitinases of CB101 showed that the four chitinases in the culture supernatant are either chi1 or C-terminal truncations of Chi1. In addition, the CB101 chi1 null mutant showed no chitinolytic activity, while CB101 chi1 null mutant complemented by pUC19chi1 containing chi1 showed all four chitinases in gel activity assay. These data indicated that all four chitinases secreted by CB101 in the culture supernatant are the product of one chitinase gene chi1.  相似文献   

16.
The gene encoding chitinase 92 (Chi92) from Aeromonas hydrophila JP10 has been displayed on the cell surface of Escherichia coli using the N-terminal region of ice nucleation proteins (INPN) as an anchoring motif. Immunofluorescence microscopy confirmed that Chi92 was anchored on the cell surface. Western blot analysis further identified the synthesis of INP derivatives containing the N-terminal domain INPN-Chi92 fusion protein of the expected size (112 kDa). Whole cell enzyme assay indicated that the displayed Chi92 showed enhanced catalytic activity toward colloidal chitin. In addition, the Chi92-displayed cells exhibited inhibitory effects on the mycelial growth of phytopathogenic fungi, including Fusarium decemcellulare, Sclerotium rolfsii, Rhizoctonia solani kuhn, and Fusarium oxysporum f.sp. melonis. This study suggested that the INP-based display systems can be used to express a large protein (90 kDa Chi92) on the cell surface of E. coli without growth inhibition. In addition, the display of chitinase on the cell surface may provide an attractive method for the development of biocontrol agents against phytopathogenic fungi.  相似文献   

17.
18.
A 36 kDa chitinase was purified by ion exchange and gel filtration chromatography from the culture supernatant of Bacillus thuringiensis HD-1. The chitinase production was independent of the presence of chitin in the growth medium and was produced even in the presence of glucose. The purified chitinase was active at acidic pH, had an optimal activity at pH 6.5, and showed maximum activity at 65 degrees C. Of the various substrates, the enzyme catalyzed the hydrolysis of the disaccharide 4-MU(GlnAc)(2) most efficiently and was therefore classified as an exochitinase. The sequence of the tryptic peptides showed extensive homology with Bacillus cereus 36 kDa exochitinase. The 1083 bp open reading frame encoding 36 kDa chitinase was amplified with primers based on the gene sequence of B. cereus 36 kDa exochitinase. The deduced amino-acid sequence showed that the protein contained an N-terminal signal peptide and consisted of a single catalytic domain. The two conserved signature sequences characteristic of family 18 chitinases were mapped at positions 105-109 and 138-145 of Chi36. The recombinant chitinase was expressed in a catalytically active form in Escherichia coli in the vector pQE-32. The expressed 36 kDa chitinase potentiated the insecticidal effect of the vegetative insecticidal protein (Vip) when used against neonate larvae of Spodoptera litura.  相似文献   

19.
The gene (chi92) encoding the extracellular chitinase of Aeromonas hydrophila JP101 has been cloned and expressed in Escherichia coli. The mature form of Chi92 is an 842-amino-acid (89.830-kDa) modular enzyme comprised of a family 18 catalytic domain, an unknown-function region (the A region), and three chitin-binding domains (ChBDs; Chi92-N, ChBD(CI), and ChBD(CII)). The C-terminally repeated ChBDs, ChBD(CI) and ChBD(CII), were grouped into family V of cellulose-binding domains on the basis of sequence homology. Chitin binding and enzyme activity studies with C-terminally truncated Chi92 derivatives lacking ChBDs demonstrated that the ChBDs are responsible for its adhesion to unprocessed and colloidal chitins. Further adsorption experiments with glutathione S-transferase (GST) fusion proteins (GST-CI and GST-CICII) demonstrated that a single ChBD (ChBD(CI)) could promote efficient chitin and cellulose binding. In contrast to the two C-terminal ChBDs, the Chi92-N domain is similar to ChiN of Serratia marcescens ChiA, which has been proposed to participate in chitin binding. A truncated derivative of Chi92 that contained only a catalytic domain and Chi92-N still exhibited insoluble-chitin-binding and hydrolytic activities. Thus, it appears that Chi92 contains Chi92-N as the third ChBD in addition to two ChBDs (ChBD(CI) and ChBD(CII)).  相似文献   

20.
AIMS: The present work aims to study a new chitinase from Bacillus thuringiensis subsp. kurstaki. METHODS AND RESULTS: BUPM255 is a chitinase-producing strain of B. thuringiensis, characterized by its high chitinolytic and antifungal activities. The cloning and sequencing of the corresponding gene named chi255 showed an open reading frame of 2031 bp, encoding a 676 amino acid residue protein. Both nucleotide and amino acid sequences similarity analyses revealed that the chi255 is a new chitinase gene, presenting several differences from the published chi genes of B. thuringiensis. The identification of chitin hydrolysis products resulting from the activity, exhibited by Chi255 through heterologous expression in Escherichia coli revealed that this enzyme is a chitobiosidase. CONCLUSIONS: Another chitinase named Chi255 belonging to chitobiosidase class was evidenced in B. thuringiensis subsp. kurstaki and was shown to present several differences in its amino acid sequence with those of published ones. The functionality of Chi255 was proved by the heterologous expression of chi255 in E. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: The addition of the sequence of chi255 to the few sequenced B. thuringiensis chi genes might contribute to a better investigation of the chitinase 'structure-function' relation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号