首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The literature on the mouse sperm morphology test and on other sperm tests in nonhuman mammals was reviewed (a) to evaluate the relationship of these tests to chemically induced spermatogenic dysfunction, germ-cell mutagenicity, and carcinogenicity, and (b) to make an interspecies comparison to chemicals. A total of 71 papers were reviewed. The mouse sperm morphology test was used to assess the effects of 154 of the 182 chemical agents covered. 4 other murine sperm tests were also used: the induction of acrosomal abnormalities (4 agents), reduction in sperm counts, (6 agents), motility (5 agents), and F1 sperm morphology (7 agents)). In addition, sperm tests for the spermatogenic effects of 35 agents were done in 9 nonmurine mammalian species; these included analyses for sperm count, motility, and morphology, using a large variety of study designs. For the mouse sperm morphology test, 41 agents were judged by the reviewing committee to be positive inducers of sperm-head shape abnormalities, 103 were negative, and 10 were inconclusive. To evaluate the relationship between changes in sperm morphology and germ cell mutagenicity, the effects of 41 agents on mouse sperm shape were compared to available data from 3 different mammalian germ-cell mutational tests (specific locus, heritable translocation, and dominant lethal). The mouse sperm morphology test was found to be highly sensitive to germ-cell mutagens; 100% of the known mutagens were correctly identified as positives in the sperm morphology test. Data are insufficient at present to access the rate of false positives. Although it is biologically unclear why one might expect changes in sperm morphology to be related to carcinogenesis, we found that (a) a positive response in the mouse sperm morphology test is highly specific for carcinogenic potential (100% for the agents surveyed), and (b) overall, only 50% of carcinogens were positive in the test (i.e., sensitivity approximately equal to 50%). Since many carcinogens do not produce abnormally shaped sperm even at lethal doses, negative findings with the sperm test cannot be used to classify agents as noncarcinogens. We conclude that the mouse sperm morphology test has potential use for identifying chemicals that induce spermatogenic dysfunction and perhaps heritable mutations. Insufficient numbers of chemicals agents have been studied by the other sperm tests to permit similar comparisons. A comparison of 25 chemicals tested with sperm counts, motility, and morphology in at least 2 species (including man, mouse and 9 other mammals) demonstrated good agreement in response among species. With further study, interspecies comparisons of chemically induced sperm changes may be useful for predicting and evaluating human effects.  相似文献   

2.
A new international project to evaluate the relevance for human systemic and local toxicity of in vitro tests of general toxicity of chemicals has been organized by the Scandinavian Society of Cell Toxicology under the title Multicenter Evaluation of In Vitro Cytotoxicity (MEIC). The basic assumptions underlying the project, as well as the practical goals and the design of the program are outlined. The list of the first 50 reference chemicals is presented. The chemicals are an otherwise unbiased selection of compounds with known human acutely lethal dosage and blood concentrations, including LD50-values in the rat or mouse. Most agents also have other data on human toxicity and toxicokinetics, including more extensive animal toxicity data. International laboratories already using or developing in vitro tests of various partial aspects of general toxicity are invited to test the substances, the results of which will be evaluated by us. The predictivity of the in vitro results for both partial and gross human toxicity data will be determined with combined use of univariate regression analysis and soft multivariate modeling. The predictivity of the in vitro results will be compared with the predictivity of conventional animal tests for the same chemicals. Finally, batteries of tests with optimal prediction power for various types of human toxicity will be selected. The need for and possible uses of such batteries are discussed.  相似文献   

3.
For the vast majority of chemicals, mammalian germ-line (MG) mutation data do not exist. The question was examined of how best to utilize results of non-MG genotoxicity assays that are included in the Gene-Tox data base to provide information of the likelihood that genetic damage might be induced in and transmitted by the reproductive cells of exposed human beings. Two approaches were used to assess the relative value of different assays for genetic hazard identification. (1) Test results were weighted according to parameters by which conditions of an assay resemble those encountered in the potential induction of transmitted genetic damage in mammals. For this purpose, 35 assays were grouped into 16 categories that were assigned weights ranging from 1 to 15; there were 2367 chemicals in the data base. This system was evaluated by comparing the sum of weighted test results for each chemical with the outcome of MG-standard (MGst) tests where such had been reported. (MGst tests used were the specific-locus and heritable-translocation assays [SLT and HTT] for gene mutations and chromosome aberrations, respectively.) The weighting system produced a few false positives with respect to the MGst results. It produced no false negatives, but the available evidence is limited by the circumstance that MGst test have evidently been preferentially performed with chemicals that had already been shown to be positive in several other assays. (2) Findings from each MGst test were compared with those from each of the other assays in turn, provided that at least 10 chemicals had been tested in both of the assays. There were 11 such comparisons involving the SLT, and 14 such comparisons involving the HTT. The observed concordance was above random expectation in several comparisons, particularly those involving certain mammalian in vivo tests, but in only one case (HTT vs. unscheduled DNA synthesis in the testis) did the degree of elevation approach statistical significance.  相似文献   

4.
5.
The aim of the two studies presented in this paper was to further improve the predictability of the original Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) in vitro test battery for acute systemic toxicity. In the first study, whether a protein-free cytotoxicity assay could improve the prediction of human acute systemic toxicity was investigated. The cytotoxicity of 39 MEIC reference chemicals was measured by the neutral red uptake inhibition test after 30 minutes in phosphate-buffered saline (PBS), with hepatoma-derived Fa32 cells. The results were compared with the corresponding values obtained in complete culture medium, including 10% fetal calf serum. Mercuric chloride and hexachlorophene were much more cytotoxic in PBS, as was the case, to a lesser extent, for seven other chemicals. Potassium cyanide and eight other chemicals were less cytotoxic in PBS than in complete culture medium, probably because of poor physiological conditions. The correlation between the cytotoxicity measured in PBS and human acute toxicity was rather low, but became of the same order as for other assays, when mercuric chloride and hexachlorophene were withdrawn from the comparison. In the second study, modelling of human lethal blood concentrations by using the results of the three cell line tests of the original MEIC test battery were complemented by logP (octanol-water partition coefficient) values. The introduction of logP into the modelling did not improve the correlations, but some improvement of both R(2) and Q(2) was obtained by expanding the logP values with logP(2) values. The highest R(2) (0.84) and Q(2) (0.80) values were obtained for a model in which both experimental and calculated (ambiguous) logP values were used. When only experimental logP values were used, the corresponding values were 0.80 and 0.78. These two studies showed that including protein binding and the partition of chemicals in the MEIC in vitro test battery is important, in order to improve the predictability of the results obtained.  相似文献   

6.
SRAP标记与形态学标记在西瓜DUS测试中的比较   总被引:2,自引:0,他引:2  
DUS(特异性、一致性和稳定性)测试是进行新品种申请的必要步骤。本文以28个不同的西瓜品种为研究对象,分别采用21对SRAP引物标记和54个用于DUS测试的形态学标记对其进行遗传多样性分析,其中SRAP引物在不同品种间的多态信息含量(PIC)在52.5%~89.2%之间,平均值为72.0%,计算得到的各材料间相似系数在0.92至0.99之间,而形态学标记统计得到各材料间相关系数在0.50到0.85之间。采用UPGMA法对所有材料进行聚类分析,SRAP分子标记聚类划分成四类,形态学标记将其划分为五类。对两种标记所得的结果进行相关性分析得出两者的相关系数为0.218,表明形态学标记和SRAP标记在这些材料上表现的相关性不是很高,但在品种鉴定和区别上SRAP标记表现出一定的优势,可以作为DUS测试的一种有益补充。  相似文献   

7.
The genetic toxicity of human carcinogens and its implications   总被引:9,自引:0,他引:9  
23 chemicals and chemical combinations have been designated by the International Agency for Research on Cancer (IARC) as causally associated with cancer in humans. The literature was searched for reports of their activity in the Salmonella mutagenicity assay and for evidence of their ability to induce chromosome aberrations or micronuclei in the bone marrow of mice or rats. In addition, the chemical structures of these carcinogens were assessed for the presence of electrophilic substituents that might be associated with their mutagenicity and carcinogenicity. The purpose of this study was to determine which human carcinogens exhibit genetic toxicity in vitro and in vivo and to what extent they can be detected using these two widely employed short-term tests for genetic toxicity. The results of this study revealed 20 of the 23 carcinogens to be active in one or both short-term tests. Treosulphan, for which short-term test results are not available, is predicted to be active based on its structure. The remaining two agents, asbestos and conjugated estrogens, are not mutagenic to Salmonella; asbestos is not likely to induce cytogenetic effects in the bone marrow and the potential activity of conjugated estrogens in the bone marrow is difficult to anticipate. These findings show that genetic toxicity is characteristic of the majority of IARC Group 1 human carcinogens. If these chemicals are considered representative of human carcinogens, then two short-term tests may serve as an effective primary screen for chemicals that present a carcinogenic hazard to humans.  相似文献   

8.
A high throughput toxicity biosensor has been designed and constructed using recombinant Escherichia coli cells, containing stress specific promoters (recA, fabA, or katG) or constitutive promoters (lac) fused to luciferase genes originating from Vibrio fisheri. These genetically engineered cells were immobilized in 96 well plates. By optimizing cell immobilization conditions and the strains' response specificity to toxic chemicals, bioluminescent outputs decreased or increased dose-dependently upon adding test chemicals. However, to date the toxicity data obtained using this biosensor have not been compared with the results of other toxicity tests. Phenolics were chosen to evaluate the correlation between the LD50 and the EC50 (GC2) or EC120 (DPD2540) of Daphnia magna and E. coli, respectively. Toxicity data obtained from constitutive strains by bioluminescent level decrements were compared with the results from D. magna as a standard. LD50 values were used as parameters of D. magna toxicity and EC50 of EC120 values were used for the immobilized biosensor. In the DPD2540 test, phenolics, membrane damaging toxic chemicals, for testing immobilized stress specific bacterial strains trigger dose-dependant bioluminescence increase within specific concentration. Although the stress specific responsiveness from the strains could not be compared with D. magna's LD50 values, these responses offer additional information, such as upon the mode of toxic action in the sample, in addition to the cellular toxicity results as indicated by the EC50. This novel high throughput toxicity biosensor can be implemented to investigate the toxicity of any other soluble materials, and can be used as a standardization tool for the evaluation of toxicity.  相似文献   

9.
The removal of carconogenic factors would be a most efficient measure to prevent cancer. As far as known chemicals are concerned, every effort is made to avert them, or at least to reduce the exposure to such compounds, but is necessary to detect unknown chemicals, especially those, drugs and foodstuffs for example, to which large populations are exposed. Giving suspected chemicals to laboratory animals is a standard carcinogenicity test. Studies of the carcinogenicity of unknown chemicals in animals are time consuming, expensive and cumbersome. This is why other means of establishing carcinogenicity are sought for. Several rapid tests are available to-day to select suspected carcinogens. These methods aim primarily at determining with chemicals--at the cell or tissue level--certain changes that would appear essential to trigger the carcinogenic process, such as somatic mutations. Studies are used on the mutagenicity of chemicals for bacteria of the Salmonella type, for yeast and cultured mammalian cells, together with the induction of recessive lethal mutations in Drosophila and of the unscheduled repair synthesis of DNA and the transformation of mammalian cells in vitro. Although there is an unequivocal correlation between the activity of chemicals in such tests and their carcinogenicity, discrepancies are found. Thus, the in vivo tests on laboratory animals remain the most reliable method to determine carcinogenicity. Whereas direct extrapolation of experimental data to human pathology is impossible, the experimental evidence of the carcinogenicity of any chemical should allow us to draw constructive conclusions. We shall never be able to reject drugs which produce the expected results and cannot be replaced by other drugs. But we can must the drugs whose beneficial effects are not exceptional and which can be replaced by other chemicals. As for the chemicals used in food additives and cosmetics, and recognized as carcinogenic in animals, they should be totally given up. Any decision made should be based on animal studies.  相似文献   

10.
A quantitative framework for the analysis of results of the Salmonella (Ames) test is presented, and the relationship between mutagenesis and carcinogenesis is examined. Color graphics are used for the Salmonella data to describe variability, and trends across multiple chemicals and test conditions. Positivity in the Salmonella test, using statistical criteria to classify results, is compared to positivity in carcinogenesis bioassays for 48 chemicals tested in NCI/NTP-sponsored programs. Sensitivity of the Salmonella test across 5 tester strains was 91% (21/23), while specificity was only 36% (9/25). Results were most concordant for TA100 Aroclor-induced rat S9: sensitivity was 87%, specificity 64%. The correlation of mutagenic potency and carcinogenic potency was 0.41 (p less than 0.001) for 80 chemicals, using results from both the general published literature and the NCI/NTP-sponsored programs. After removal of 3 extreme values, the correlation was 0.24 (p = 0.04).  相似文献   

11.
This study was designed to compare the cytotoxic concentrations of chemicals, determined with three independentin vitro cytotoxicity testing protocols, with each other and with established animal LD50 values, and against human toxic concentrations for the same chemicals. Ultimately, these comparisons allow us to evaluate the potential ofin vitro cell culture methods for the ability to screen a variety of chemicals for prediction of human toxicity. Each laboratory independently tested 50 chemicals with known human lethal plasma concentrations and LD50 values. Two of the methods used monolayer cell cultures to measure the incorporation of radiolabeled amino acids into newly synthesized proteins and cellular protein content, while the third technique used the pollen tube growth test. The latter is based on the photometric quantification of pollen tube mass production in suspension culture. Experiments were performed in the absence or presence of increasing doses of the test chemical, during an 18- to 24-h incubation. Inhibitory concentrations were extrapolated from concentration-effect curves after linear regression analysis. Comparison of the cytotoxic concentrations confirms previous independent findings that the experimental IC50 values are more accurate predictors of human toxicity than equivalent toxic blood concentrations (HETC values) derived from rodent LD50s. In addition, there were no conclusive statistical differences among the methods. It is anticipated that, together, these procedures can be used as a battery of tests to supplement or replace currently used animal protocols for human risk assessment.Abbreviations DCP dichlorophenoxyacetic acid - DMEM Dulbecco's modified Eagles' medium - DMSO dimethylsulfoxide - IC inhibitory concentration - LD50 lethal dose 50% - MEIC Multicenter Evaluation forIn Vitro Cytotoxicity - PI50 protein inhibition 50% - PTG pollen tube growth - TCA trichloroacetic acid - TCE trichloroethane  相似文献   

12.
The relevance of the pulsed field gel electrophoresis (PFGE) assay for the estimation of the DNA damaging effects of chemicals was studied. Four chemicals were randomly chosen from the list of 50 Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) reference chemicals with known human acute systemic toxicity: acetylsalicylic acid, paracetamol, ethylene glycol and sodium chloride. Human fibroblasts (VH-10) were used as a model system. For the estimation of cytotoxic effect, cell monolayers were treated with chemicals for 24 hours. Cloning efficiency (colony-forming ability) at different concentrations of the test chemicals was estimated, and the 50% inhibitory concentration (IC50) was determined. The IC50 values obtained demonstrated a correlation with human lethal blood concentrations. The induction of DNA double-strand breaks, measured by PFGE as the fraction of activity released, was detected after treatment with paracetamol. However, the other three chemicals tested mainly induced DNA degradation.  相似文献   

13.
In ecotoxicology, in vitro assays with fish cells are currently applied for mechanistic studies, bioanalytical purposes and toxicity screening. This paper discusses the potential of cytotoxicity assays with fish cells to reduce, refine or replace acute lethality tests using fish. Basal cytotoxicity data obtained with fish cell lines or fish primary cell cultures show a reasonable to good correlation with lethality data from acute toxicity tests, with the exception of compounds that exert a specific mode of toxic action. Basal cytotoxicity data from fish cell lines also correlate well with cytotoxicity data from mammalian cell lines. However, both the piscine and mammalian in vitro assays are clearly less sensitive than the fish test. Therefore, in vivo LC50 values (concentrations of the test compounds that are lethal to 50% of the fish in the experiment within 96 hours) currently cannot be predicted from in vitro values. This in vitro-in vivo difference in sensitivity appears to be true for both fish cell lines and mammalian cell lines. Given the good in vitro-in vivo correlation in toxicity ranking, together with the clear-cut difference in sensitivity, the role of cytotoxicity assays in a tiered alternative testing strategy could be in priority setting in relation to toxic hazard and in the toxicity classification of chemicals and environmental samples.  相似文献   

14.
Experimental data are presented on ovalbumin denaturation (OD, EC10) and human acetylcholine esterase (AChE) inhibition (IC50) in vitro, following exposure to the chemicals used in the international Multicentre Evaluation of In vitro Cytotoxicity (MEIC) programme. Data were obtained for 40 (OD test) and 43 (AChE test) of the 50 MEIC chemicals. These data were compared with similar data from other methods used in the MEIC programme, and good correlations (R2) were obtained with data from MEIC studies on cell lines: 0.80 for human, 0.81 for other animal, and 0.78 for fish cell line IC50 values and AChE values, and 0.76 for human, 0.69 other animal and 0.75 for fish cell line IC50 values and OD values. The correlation increased substantially, if chemicals which freely cross the blood-brain barrier were solely considered, with R2 = 0.90 for human, 0.90 for other animal, and 0.82 for fish cell line IC50 values and AchE values, and 0.87 for human, 0.86 for other animal, and 0.92 for fish cell line IC50 values and OD values, in this case. Such chemicals are the main cause of non-specific depression of the central nervous system (CNS). The AChE IC50 permits a good prediction of human acute toxicity, similar to the IC50 values obtained with human cell lines and the same MEIC chemicals. These results confirm the basal toxicity hypothesis formulated by Bj?rn Ekwall. It is concluded that in vitro methods based on the disruption of the functions of the proteins vital for body operation can be used as an alternative to the cell culture methods, when non-specific toxic effects of chemicals on humans and animals are evaluated.  相似文献   

15.
Many mutation tests have been developed in Neurospora crassa during the almost 40 years of its use in mutation research. These tests detect two major classes of mutation: gene mutation and meiotic nondisjunction. Within the first class, forward- and reverse-mutation tests have been used. The forward-mutation tests include those that detect mutations at many loci and at specific loci. Both kinds of forward-mutation tests have been done in homokaryons (n) and heterokaryons (n + n'). From the publications that were not rejected by our pre-established criteria, data were extracted for 166 chemicals that had been tested for mutagenicity. Only 6 of the 166 chemicals have been tested in one or more gene mutation test and the meiotic nondisjunction test; these 6 chemicals were positive in the first and negative in the second. Of the 102 chemicals tested in one or more gene mutation tests, 94 were positive and 8 were negative. Of the 70 chemicals tested in the meiotic nondisjunction test, 7 were positive and 63 were negative. Two tests, the ad-3 forward-mutation test and the meiotic nondisjunction test, have been used most frequently. These two tests are especially important for hazard evaluation, because each detects a class of mutations that is likely to be deleterious or lethal in the F1 - disomics by the meiotic nondisjunction test and multilocus deletions by the ad-3 forward-mutation test in heterokaryons. Generally, direct-acting chemicals are mutagenic in the gene mutation tests, but few chemicals that required metabolic activation have been tested. Only 31 of the 166 chemicals tested in N. crassa have been tested for carcinogenicity. Among these chemicals, there is a good association between mutagenicity in gene mutation tests and carcinogenicity but a poorer association between meiotic nondisjunction and carcinogenicity; however, only a small number of chemicals has been tested in the meiotic nondisjunction test. Further use and development of certain mutation tests in N. crassa are desirable.  相似文献   

16.
A battery of in vitro methods has been developed for the prediction of acute oral toxicity, to reduce the number of animals used for this purpose. However, the results of these tests correlate more closely with lethal serum concentrations than with lethal doses. To address this issue, we have further evaluated the HPCT-1E3 model, which may be better able to emulate toxicokinetic factors that occur in vivo, due to the presence in these hepatocytoma cells of endogenous transmembrane carriers and a basal activity of xenobiotic metabolism. IC50 values produced by using the MTT test after a 48-hour incubation with 20 randomly-selected MEIC substances, correlated better with human oral LD50 values than with LC50 data, supporting this hypothesis. As with other models, the toxicity of receptor-specific rather than cytotoxic substances, for example digoxin, was underpredicted. When digoxin was removed from the correlation analysis, the coefficient of determination (r(2)) improved to 0.81, and none of remaining chemicals were wrongly predicted by more than one order of magnitude. IC50 values obtained with HepG2 cells under similar conditions (MEIC Test No. 3, 24 hours, MTT) correlated with human LD50 data with a r(2) value of 0.55. A direct comparison of HPCT-1E3 and HepG2 cells further suggested that the differences between them may be due to transport processes. In conclusion, the HPCT-1E3 model may be valuable in improving the prediction of lethal doses, rather than lethal serum concentrations.  相似文献   

17.
In 1969, the International Agency for Research on Cancer (IARC) initiated the Monographs Programme to evaluate the carcinogenic risk of chemicals to humans. Results from short-term mutagenicity tests were first included in the IARC Monographs in the mid-1970s based on the observation that most carcinogens are also mutagens, although not all mutagens are carcinogens. Experimental evidence at that time showed a strong correlation between mutagenicity and carcinogenicity and indicated that short-term mutagenicity tests are useful for predicting carcinogenicity. Although the strength of these correlations has diminished over the past 20 years with the identification of putative nongenotoxic carcinogens, such tests provide vital information for identifying potential human carcinogens and understanding mechanisms of carcinogenesis. The short-term test results for agents compiled in the EPA/IARC Genetic Activity Profile (GAP) database over nearly 15 years are summarized and reviewed here with regard to their IARC carcinogenicity classifications. The evidence of mutagenicity or nonmutagenicity based on a 'defining set' of test results from three genetic endpoints (gene mutation, chromosomal aberrations, and aneuploidy) is examined. Recommendations are made for assessing chemicals based on the strength of evidence from short-term tests, and the implications of this approach in identifying mutational mechanisms of carcinogenesis are discussed. The role of short-term test data in influencing the overall classification of specific compounds in recent Monograph volumes is discussed, particularly with reference to studies in human populations. Ethylene oxide is cited as an example.  相似文献   

18.
The aim of the Evaluation-guided Development of new In Vitro Test Batteries (EDIT) multicentre programme is to establish and validate in vitro tests relevant to toxicokinetics and for organ-specific toxicity, to be incorporated into optimal test batteries for the estimation of human acute systemic toxicity. The scientific basis of EDIT is the good prediction of human acute toxicity obtained with three human cell line tests (R(2) = 0.77), in the Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) programme. However, the results from the MEIC study indicated that at least two other types of in vitro test ought to be added to the existing test battery to improve the prediction of human acute systemic toxicity - to determine key kinetic events (such as biotransformation and passage through biological barriers), and to predict crucial organ-specific mechanisms not covered by the tests in the MEIC battery. The EDIT programme will be a case-by-case project, but the establishment and validation of new tests will be carried through by a common, step-wise procedure. The Scientific Committee of the EDIT programme defines the need for a specific set of toxicity or toxicokinetic data. Laboratories are then invited to perform the defined tests in order to provide the "missing" data for the EDIT reference chemicals. The results obtained will be evaluated against the MEMO (the MEIC Monograph programme) database, i.e. against human acute systemic lethal and toxicity data. The aim of the round-table discussions at the 19th Scandinavian Society for Cell Toxicology (SSCT) workshop, held in Ringsted, Denmark on 6-9 September 2001, was to identify which tests are the most important for inclusion in the MEIC battery, i.e. which types of tests the EDIT programme should focus on. It was proposed that it is important to include in vitro methods for various kinetic events, such as biotransformation, absorption in the gut, passage across the blood-brain barrier, distribution volumes, protein binding, and renal clearance/accumulation. Models for target organ toxicity were also discussed. Because several of the outlier chemicals (paracetamol, digoxin, malathion, nicotine, paraquat, atropine and potassium cyanide) in the MEIC in vivo-in vitro evaluation have a neurotoxic potential, it was proposed that the development within the EDIT target organ programme should initially be focused on the nervous system.  相似文献   

19.
Acute cytotoxicity testing with cultured human lung and dermal cells   总被引:1,自引:0,他引:1  
Summary An extensive in vitro study with cultured cells was conducted to test the basal cytotoxicity theory. This theory suggests that most chemical injury, at least in vitro, is a manifestation of one or more insults to the basic cellular structures and functions common to mammalian cells. This accounts for the similarity of results in multilaboratory studies. Human fetal lung fibroblasts (HFL1), and human skin fibroblasts (WS1, Detroit551) were studied in culture to evaluate their potential to screen for cytotoxicity. Confluent monolayers were incubated in the absence or presence of increasing concentrations of test chemicals for 24 h, and the MTT assay was used to assess toxicity. Inhibitory concentrations were extrapolated from concentration-effect curves after linear regression analysis. Twenty-nine chemicals were tested with each cell line and the cytotoxicity data compared to rodent and human lethal concentrations. The data suggest that the experimental IC50 values are as accurate predictors of human toxicity as equivalent toxic blood concentrations derived from rodent LD50s. In addition, lung and skin fibroblasts revealed no significant differences among the three cell lines. The results support the conclusion that finite cell lines of human origin have the potential for screening chemicals for human toxicity. In combination with previously published reports, the data suggest that a basal cytotoxic phenomenon may explain the similarity of results among different human cell lines.  相似文献   

20.
Results of standard three-hour oral glucose tolerance tests (OGTT) and intravenous glucose tolerance tests (IVGTT), performed on the same subjects, were compared in an attempt to determine their value in the diagnosis of borderline diabetes. A total of 83 such tests were carried out on 81 subjects. Applying the U.S. Public Health Service point count method to the results of the OGTT test, there were 38 normals, 23 possible diabetics and 22 diabetics. A constant (K) was calculated from the glucose disappearance rate in the IVGTT curves.K disagreed with the OGTT classification to a significant extent, especially in the possible diabetic and non-diabetic groups. Also, the correlation coefficients between K and the OGTT values were not impressive. This does not mean that one test is superior to the other, only that the accuracy of either test in diagnosing early diabetes is doubtful.Technically, the IVGTT was more difficult and time-consuming, and six of the 81 subjects suffered from thrombophlebitis at the site of glucose injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号