首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Various K(+) and Cl(-) channels are important in cell volume regulation and biliary secretion, but the specific role of cystic fibrosis transmembrane conductance regulator in cholangiocyte cell volume regulation is not known. The goal of this research was to study regulatory volume decrease (RVD) in bile duct cell clusters (BDCCs) from normal and cystic fibrosis (CF) mouse livers. Mouse BDCCs without an enclosed lumen were prepared as described (Cho, W. K. (2002) Am. J. Physiol. 283, G1320-G1327). The isotonic solution consisted of HEPES buffer with 40% of the NaCl replaced with isomolar amounts of sucrose, whereas hypotonic solution was the same as isotonic solution without sucrose. The cell volume changes were indirectly assessed by measuring cross-sectional area (CSA) changes of the BDCCs using quantitative videomicroscopy. Exposure to hypotonic solutions increased relative CSAs of normal BDCCs to 1.20 +/- 0.01 (mean +/- S.E., n = 50) in 10 min, followed by RVD to 1.07 +/- 0.01 by 40 min. Hypotonic challenge in CF mouse BDCCs also increased relative CSA to 1.20 +/- 0.01 (n = 53) in 10 min but without significant recovery. Coadministration of the K(+)-selective ionophore valinomycin restored RVD in CF mouse BDCCs, suggesting that the impaired RVD was likely from a defect in K(+) conductance. Moreover, this valinomycin-induced RVD in CF mice was inhibited by 5-nitro-2'-(3-phenylpropylamino)-benzoate, indicating that it is not from nonspecific effects. Neither cAMP nor calcium agonists could reverse the impaired RVD seen in CF cholangiocytes. Our conclusion is that CF mouse cholangiocytes have defective RVD from an impaired K(+) efflux pathway, which could not be reversed by cAMP nor calcium agonists.  相似文献   

2.
Mouse single-cell embryos exhibit robust Regulatory Volume Decrease (RVD). In what manner the very early mammalian embryo following zygote stage is appreciably altered by the anisotonic extracellular solution is, as yet, totally unclear. Little attention was paid to this direction since there was no way to determine the blastomere volume. This work has served to quantitatively investigate the osmotic response of bicellular mouse embryos employing Laser Scanning Microtomography (LSM) followed with three-dimensional reconstruction (3 DR). We have shown that bicellular mouse embryos in hypotonic Dulbecco's experience RVD. Embryonic cells subjected to hyposmolar exhibit rapid osmotic swelling followed by gradual shrinking back toward their original volume. The van't Hoff law defines swelling phase with the effective hydraulic conductivity of 0.3 micron x min(-1) x atm(-1). Water release during RVD in bicellular mouse embryos is abolished by Cytochalasin B (Cyto B) and the volume recovery is insensitive to ouabain treatment.  相似文献   

3.
4.
Exposure to hypotonic stress produces a transient increase in cell volume followed by a regulatory volume decrease (RVD) in both THP-1 and HL-60 cells. In contrast, cells exposed to hypotonic stress in a high K/low Na Hanks' solution not only failed to volume regulate, but displayed a secondary swelling. Thus, while an outward K gradient was required ful KVD, the secondary swelling indicated that hypotonic stress increased permeability in the absence of a negative membrane potential. The K channel blocker quinine (1–4 mM) blocked RVD in both cell types. Gramicidin's ability to overcome the quinine block of RVD indicated that RVD is mediated by a quinine-sensitive cation transport mechanism that is independent of the swelling-induced anion transport mechanism. Barium (1–4 mM), another K channel blocker, slowed the rate of RVD, while 4-aminopyridine, charybdotoxin, tetraethylammonium chloride, tetrabutylammonium chloride, and gadolinium had no effect on RVD. Furthermore, RVD was not mediated by calcium-activated conductances, since it occurred normally in Ca-free medium, in medium containing cadmium, and in BAPTA-loaded cells. Gramicidin produced little or no volume change in isotonic medium, suggesting that basal C1 permeability of both THP-1 and HL-60 cells is low. However, swelling induced an anion efflux pathway that is permeable to both chloride and bromide, but is impermeable to methanesulfonate and glutamate. The anion channel blocker 3,5-diiodosalicylic acid (DISA) antagonized RVD in both cell types. In conclusion, RVD in THP-1 and HL-60 cells is mediated by independent anion and cation transport mechanisms that involve both a DISA-sensitive anion pathway and a quinine-inhibitable K efflux pathway, neither of which requires increases in intra-cellular calcium to be activated. © 1994 wiley-Liss, Inc.  相似文献   

5.
The mechanism of volume regulation in hypotonic media was analysed in human peripheral blood mononuclear (PBM) cells. Electronic cell sizing showed that hypotonic swelling is followed by a regulatory volume decrease (RVD) phase. This was confirmed by both electron microscopy and by cellular water determinations. The rate of regulatory shrinking was proportional to the degree of hypotonicity in the 0.5–0.9 X isotonic range. Cell viability was only marginally affected in this range. The content of cellular K+ decreased during RVD, while Na+ content remained unchanged. Similarly, the efflux of 86Rb (used as a K+ analog) increased upon dilution, whereas 22Na efflux was not altered. 86Rb uptake was enhanced by hypotonic stress and both ouabain-sensitive and -insensitive components were affected. A ouabain-sensitive stimulation was also seen in Na+- free media. Ouabain partially inhibited RVD only if added to the cells hours before hypotonic challenge. A normal shrinking response was observed in K+-free media, and also in Na+-free media when Li+, choline+, or Tris+ were the substitutes. In high K+ or Rb+ hypotonic media shrinking was absent and a second swelling phase was observed. Cs+ displayed an intermediate behavior, with shrinking observed at lower dilutions and secondary swelling at higher ones. The direction and magnitude of the response also changed when the external K+ concentration was varied and, with 50 mM K+, no regulatory volume change occurred following hypotonic stress. These findings suggest that RVD occurs largely by a passive loss of cellular K+, resulting from a selective increase in permeability to this ion. In addition, the (Na-K) pump appears to be activated upon cell swelling by a mechanism other than Na+ entry into the cell, but this activation is not essential for RVD.  相似文献   

6.
The pericellular matrix stiffness is strongly associated with its biochemical and structural changes during the aging and osteoarthritis progress of articular c...  相似文献   

7.
8.
9.
目的:观察人小肠上皮细胞调节性细胞容积减小(RVD)的过程,探讨参与RVD过程的离子通道机制.方法:将培养的人小肠上皮细胞暴露于低渗溶液, 利用电子细胞体积测量系统测定细胞平均容积变化过程和离子通道的参与过程;采用RT-PCR方法检测人小肠上皮细胞上离子通道的表达.结果:人小肠上皮细胞具有良好的RVD功能; 其RVD过程可被氯通道阻断剂NPPB 和钾通道阻断剂四乙铵所阻断; 进一步的研究发现, 中等电导钙激活性钾通道(IK)的特异性阻断剂Clotrimazole (CLT) (1μmol/L)可以明显抑制细胞的RVD过程,而大电导钙激活性钾通道(BK)和小电导钙激活性钾通道(SK)的特异阻断剂iberiotoxin (100 nmol/L)和apamin (100 nmol/L)对RVD过程无任何抑制作用.RT-PCR的结果也显示, 人小肠上皮细胞只有IK表达, 而无SK和BK的表达.结论:人小肠上皮细胞具有RVD功能,RVD过程的完成有赖于氯通道和钾通道的平行激活, 而其中参与容积调节的钾通道是中等电导钙激活型钾通道IK.  相似文献   

10.
Rat thymocytes displayed robust regulatory volume decrease (RVD) when suspended in NaCl-based hypotonic Ringer solutions. The RVD of thymocytes was completely abolished upon replacement of external Na+ ions with K+, indicating a role of coupled efflux of K+ and Cl- ions as a driving force of regulatory volume decrease. Osmotic water permeability (Pf) measured in KCl-based hypotonic solutions was (1.3 +/- 1.0 x 10(-4) cm/s at 25 degrees C and was temperature-dependent with low activation energy (Ea = 4.65 +/- 0.77 kcal/mol) characteristic to water transport through pores. HgCl2 and a sulfhydryl-blocking reagent, methyl methanethiosulphonate (MMTS), modulated the water permeability of thymocytes in a biphasic manner: inhibited at low dose (0.1-1 micromol/l) and restored or even enhanced at higher (10-100 micromol/l) concentrations. RVD paralleled the Pf: it was greatly suppressed at low dose of MMTS (sufficient to attenuate the water transport), but recovered at higher dose, when the water movement was restored. Therefore we suggest that thymocytes require the effective water transport for functional regulatory volume decrease.  相似文献   

11.
Mao JW  Wang LW  Jacob T  Sun XR  Li H  Zhu LY  Li P  Zhong P  Nie SH  Chen LX 《Cell research》2005,15(5):371-378
The transwell chamber migration assay and CCD digital camera imaging techniques were used to investigate the relationship between regulatory volume decrease (RVD) and cell migration in nasopharyngeal carcinoma cells (CNE-2Z cells). Both migrated and non-migrated CNE-2Z cells, when swollen by 47% hypotonic solution, exhibited RVD which was inhibited by extracellular application of chloride channel blockers adenosine 5‘-triphosphate (ATP), 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and tamoxifen. However, RVD rate in migrated CNE-2Z cells was bigger than that of non-migrated cells and the sensitivity of migrated cells to NPPB and tamoxifen was higher than that of nonmigrated cells. ATP, NPPB and tamoxifen also inhibited migration of CNE-2Z cells. The inhibition of migration was positively correlated to the blockage of RVD, with a correlation coefficient (r) = 0.99, suggesting a functional relationship between RVD and cell migration. We conclude that RVD is involved in cell migration and RVD may play an important role in migratory process in CNE-2Z cells.  相似文献   

12.
Cell volume is frequently down-regulated by the activation of anion channels. The role of cell swelling-activated chloride channels in cell volume regulation has been studied using the patch-clamp technique and a non-invasive microspectrofluorimetric assay for changes in cell volume. The rate of activation of these chloride channels was shown to limit the rate of regulatory volume decrease (RVD) in response to hyposmotic solutions. Expression of the human MDR1 or mouse mdr1a genes, but not the mouse mdr1b gene, encoding the multidrug resistance P-glycoprotein (P-gp), increased the rate of channel activation and the rate of RVD. In addition, P-gp decreased the magnitude of hyposmotic shock required to activate the channels and to elicit RVD. Tamoxifen selectively inhibited both chloride channel activity and RVD. No effect on potassium channel activity was elicited by expression of P-gp. The data show that, in these cell types, swelling-activated chloride channels have a central role in RVD. Moreover, they clarify the role of P-gp in channel activation and provide direct evidence that P-gp, through its effect on chloride channel activation, enhances the ability of cells to down-regulate their volume.  相似文献   

13.
14.
The sulfhydryl group reagent N-ethylmaleimide was found to inhibit in a dose dependent manner regulatory volume decrease of human peripheral lymphocytes swollen in buffered hyposmotic NaCl media. In hyposmotic KCl media NEM treated lymphocytes prevented an additional secondary swelling seen in control lymphocytes. The data suggest that N-ethylmaleimide acts on ion transport mechanisms involved in volume regulatory changes. This effect contrasts with the stimulation by N-ethylmaleimide of apparently volume sensitive K/Cl fluxes in certain mammalian red cells.  相似文献   

15.
16.
Kerrigan MJ  Hall AC 《Biorheology》2005,42(4):283-293
Articular chondrocytes are exposed to significant changes in extracellular osmolarity during normal joint activity, which can lead to changes in cell volume and metabolism of the extracellular matrix (ECM). Chondrocytes can respond to cell swelling/shrinking by volume regulatory pathways, but the signalling pathways are poorly understood although a role for the cytoskeleton is frequently implicated. Here, we have investigated the effects of disruption of the chondrocyte F-actin cytoskeleton on the recovery of cell volume by RVD. The cytoskeleton was perturbed using the relatively specific agent latrunculin B (5 microM; 30 min) and loss of F-actin integrity quantified using fluorescent phalloidin-labelling and confocal laser scanning microscopy (CLSM). Imaging of isolated chondrocytes labelled with Fura-2 to measure the fluorescence associated with cell volume changes, showed that the extent of hypo-osmotic swelling was unaffected by latrunculin B treatment. Two categories of the chondrocyte RVD response were observed: 'fast' RVD where at 3 min post-osmotic challenge there was a recovery in cell fluorescence of >or=80%, whereas other cells exhibited 'slow' RVD. Latrunculin B increased the proportion of chondrocytes demonstrating 'fast' RVD by approximately 10 fold and reduced those cells showing 'slow' RVD. An inhibitor of chondrocyte RVD (REV 5901) had no significant effect on the integrity of the cytoskeleton showing that the RVD response could be inhibited independent of the state of the F-actin cytoskeleton. These results suggest that the intact cortical F-actin cytoskeleton has a restraining effect on the RVD response of isolated bovine articular chondrocytes.  相似文献   

17.
18.
19.
Organic osmolyte and halide permeability pathways activated inepithelial HeLa cells by cell swelling were studied by radiotracer efflux techniques and single-cell volume measurements. The replacement of extracellular Cl byanions that are more permeant through the volume-activated Cl channel, as indicated byelectrophysiological measurements, significantly decreasedtaurine efflux. In the presence of less-permeant anions, an increase intaurine efflux was observed. Simultaneous measurement of the125I, used as a tracer forCl, and[3H]taurine effluxshowed that the time courses for the two effluxes differed. InCl-rich medium the increasein I efflux was transient,whereas that for taurine was sustained. OsmosensitiveCl conductance, assessed bymeasuring changes in cell volume, increased rapidly after hypotonicshock. The influx of taurine was able to counteractCl conductance-dependentcell shrinkage but only ~4 min after triggering cell swelling. Thistaurine-induced effect was blocked by DIDS. Differences in anionsensitivity, the time course of activation, and sensitivity to DIDSsuggest that the main cell swelling-activated permeability pathways fortaurine and Cl are separate.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号