首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Night shift work and rapid transmeridian travel result in a misalignment between circadian rhythms and the new times for sleep, wake, and work, which has health and safety implications for both the individual involved and the general public. Entrainment to the new sleep/wake schedule requires circadian rhythms to be phase-shifted, but this is often slow or impeded. The authors show superimposed light and melatonin PRCs to explain how to appropriately time these zeitgebers to promote circadian adaptation. They review studies in which bright light and melatonin were administered to try to counteract jet lag or to produce circadian adaptation to night work. They demonstrate how jet lag could be prevented entirely if rhythms are shifted before the flight using their preflight plan and discuss the combination of interventions that they now recommend for night shift workers.  相似文献   

2.
Jet lag is caused by a misalignment between circadian rhythms and local destination time. As humans typically take longer to re-entrain after a phase advance than a phase delay, eastward travel is often more difficult than westward travel. Previous strategies to reduce jet lag have focused on shaping the perceived light-dark cycle after arrival, in order to facilitate a phase shift in the appropriate direction. Here we tested treatments that travelers could use to phase advance their circadian rhythms prior to eastward flight. Thus, travelers would arrive with their circadian rhythms already partially re-entrained to local time. We determined how far the circadian rhythms phase advanced, and the associated side effects related to sleep and mood. Twenty-eight healthy young subjects participated in 1 of 3 different treatments, which all phase advanced each subject's habitual sleep schedule by 1 h/day for 3 days. The 3 treatments differed in morning light exposure for the 1st 3.5 h after waking on each of the 3 days: continuous bright light (> 3000 lux), intermittent bright light (> 3000 lux, 0.5 h on, 0.5 off, etc.), or ordinary dim indoor light (< 60 lux). A phase assessment in dim light (< 10 lux) was conducted before and after the treatments to determine the endogenous salivary dim light melatonin onset (DLMO). The mean DLMO phase advances in the dim, intermittent, and continuous light groups were 0.6, 1.5, and 2.1 h, respectively. The intermittent and continuous light groups advanced significantly more than the dim light group (p < 0.01) but were not significantly different from each other. The side effects as assessed with actigraphy and logs were small. A 2-h phase advance may seem small compared to a 6- to 9-h time zone change, as occurs with eastward travel from the USA to Europe. However, a small phase advance will not only reduce the degree of re-entrainment required after arrival, but may also increase postflight exposure to phase-advancing light relative to phase-delaying light, thereby reducing the risk of antidromic re-entrainment. More days of preflight treatment could be used to produce even larger phase advances and potentially eliminate jet lag.  相似文献   

3.
Although extraocular light can entrain the circadian rhythms of invertebrates and nonmammalian vertebrates, almost all studies show that the mammalian circadian system can only be affected by light to the eyes. The exception is a recent study by Campbell and Murphy that reported phase shifts in humans to bright light applied with fiber-optic pads behind the knees (popliteal region). We tested whether this extraocular light stimulus could accelerate the entrainment of circadian rhythms to a shift of the sleep schedule, as occurs in shift work or jet lag. In experiment 1, the sleep/dark episodes were delayed 8h from baseline for 2 days, and 3h light exposures were timed to occur before the temperature minimum to help delay circadian rhythms. There were three groups: (1) bright (about 13,000 lux) extraocular light from fiber-optic pads, (2) control (dim light, 10-20 lux), and (3) medium-intensity (about 1000 lux) ocular light from light boxes. In experiment 2, the sleep/dark episodes were inverted, and extraocular light was applied either before the temperature minimum to help delay circadian rhythms or after the temperature minimum to help advance rhythms. Circadian phase markers were the salivary dim light melatonin onset (DLMO) and the rectal temperature minimum. There was no evidence that the popliteal extraocular light had a phase-shifting effect in either experiment. Possible reasons for phase shifts in the Campbell and Murphy study and not the current study include the many differences between the protocols. In the current study, there was substantial sleep deprivation before the extraocular light was applied. There was a large shift in the sleep/dark schedule, rather than allowing subjects to sleep each day from midnight to noon, as in the Campbell and Murphy study. Also, when extraocular light was applied in the current protocol, subjects did not experience a change from sleeping to awake, a change in posture (from lying in bed to sitting in a chair), or a change in ocular light (from dark to dim light). Further research is necessary to determine the conditions under which extraocular light might produce phase shifts in human circadian rhythms. (Chronobiology International, 17(6), 807-826, 2000).  相似文献   

4.
Although extraocular light can entrain the circadian rhythms of invertebrates and nonmammalian vertebrates, almost all studies show that the mammalian circadian system can only be affected by light to the eyes. The exception is a recent study by Campbell and Murphy that reported phase shifts in humans to bright light applied with fiber-optic pads behind the knees (popliteal region). We tested whether this extraocular light stimulus could accelerate the entrainment of circadian rhythms to a shift of the sleep schedule, as occurs in shift work or jet lag. In experiment 1, the sleep/dark episodes were delayed 8h from baseline for 2 days, and 3h light exposures were timed to occur before the temperature minimum to help delay circadian rhythms. There were three groups: (1) bright (about 13,000 lux) extraocular light from fiber-optic pads, (2) control (dim light, 10–20 lux), and (3) medium-intensity (about 1000 lux) ocular light from light boxes. In experiment 2, the sleep/dark episodes were inverted, and extraocular light was applied either before the temperature minimum to help delay circadian rhythms or after the temperature minimum to help advance rhythms. Circadian phase markers were the salivary dim light melatonin onset (DLMO) and the rectal temperature minimum. There was no evidence that the popliteal extraocular light had a phase-shifting effect in either experiment. Possible reasons for phase shifts in the Campbell and Murphy study and not the current study include the many differences between the protocols. In the current study, there was substantial sleep deprivation before the extraocular light was applied. There was a large shift in the sleep/dark schedule, rather than allowing subjects to sleep each day from midnight to noon, as in the Campbell and Murphy study. Also, when extraocular light was applied in the current protocol, subjects did not experience a change from sleeping to awake, a change in posture (from lying in bed to sitting in a chair), or a change in ocular light (from dark to dim light). Further research is necessary to determine the conditions under which extraocular light might produce phase shifts in human circadian rhythms. (Chronobiology International, 17(6), 807–826, 2000).  相似文献   

5.
Dark-phase light contamination can significantly disrupt chronobiologic rhythms, thereby potentially altering the endocrine physiology and metabolism of experimental animals and influencing the outcome of scientific investigations. We sought to determine whether exposure to low-level light contamination during the dark phase influenced the normally entrained circadian rhythms of various substances in plasma. Male Sprague-Dawley rats (n = 6 per group) were housed in photobiologic light-exposure chambers configured to create 1) a 12:12-h light:dark cycle without dark-phase light contamination (control condition; 123 μW/cm(2), lights on at 0600), 2) experimental exposure to a low level of light during the 12-h dark phase (with 0.02, 0.05, 0.06, or 0.08 μW/cm(2) light at night), or 3) constant bright light (123 μW/cm(2)). Dietary and water intakes were recorded daily. After 2 wk, rats underwent 6 low-volume blood draws at 4-h intervals (beginning at 0400) during both the light and dark phases. Circadian rhythms in dietary and water intake and levels of plasma total fatty acids and lipid fractions remained entrained during exposure to either control conditions or low-intensity light during the dark phase. However, these patterns were disrupted in rats exposed to constant bright light. Circadian patterns of plasma melatonin, glucose, lactic acid, and corticosterone were maintained in all rats except those exposed to constant bright light or the highest level of light during the dark phase. Therefore even minimal light contamination during the dark phase can disrupt normal circadian rhythms of endocrine metabolism and physiology and may alter the outcome of scientific investigations.  相似文献   

6.
The authors previously observed blunted phase-shift responses to morning bright light in women with premenstrual dysphoric disorder (PMDD). The aim of this study was to determine if these findings could be replicated using a higher-intensity, shorter-duration light pulse and to compare these results with the effects of an evening bright-light pulse. In 17 PMDD patients and 14 normal control (NC) subjects, the authors measured plasma melatonin at 30-min intervals from 18:00 to 10:00?h in dim (<30 lux) or dark conditions the night before (Night 1) and after (Night 3) a bright-light pulse (administered on Night 2) in both follicular and luteal menstrual cycle phases. The bright light (either 3000 lux for 6?h or 6000 lux for 3?h) was given either in the morning (AM light), 7?h after the dim light melatonin onset (DLMO) measured the previous month, or in the evening (PM light), 3?h after the DLMO. In the luteal, but not in the follicular, phase, AM light advanced melatonin offset between Night 1 and Night 3 significantly less in PMDD than in NC subjects. The effects of PM light were not significant, nor were there significant effects of the light pulse on melatonin measures of onset, duration, peak, or area under the curve. These findings replicated the authors’ previous finding of a blunted phase-shift response to morning bright light in the luteal, but not the follicular, menstrual cycle phase in PMDD compared with NC women, using a brighter (6000 vs. 3000 lux) light pulse for a shorter duration (3 vs. 6?h). As the effect of PM bright light on melatonin phase-shift responses did not differ between groups or significantly alter other melatonin measures, these results suggest that in PMDD there is a luteal-phase subsensitivity or an increased resistance to morning bright-light cues that are critical in synchronizing human biological rhythms. The resulting circadian rhythm malsynchonization may contribute to the occurrence of luteal phase depressive symptoms in women with PMDD. (Author correspondence: )  相似文献   

7.
Modern life leads to a more active nocturnal lifestyle, reduced sleep hours and sometimes abrupt shifts across time zones (such as jet lag and shift work) that generate chronodisruption (CD) which can result in premature ageing. CD is defined as a significant disturbance of the internal temporal order of biochemical, physiological and behavioural circadian rhythms. Epidemiological studies show that CD induced by shift work, chronic jet lag, social jet lag and excessive exposure of bright light at night is associated with an increased incidence of metabolic syndrome, cardiovascular disease, cognitive and affective impairment, sleep disorders, some cancers and premature ageing. CD may be the result of disturbances in different components of the circadian system (central pacemaker and peripheral oscillators, inputs to central clock, mainly due to visual deficiencies, and output signals from the pacemaker and oscillators). Exposure to different synchronizers (light, meal times, physical and social activities) with a regular pattern results in a chronoenhacement that can prevent age-related CD.  相似文献   

8.
The disruption of circadian rhythms following time‐zone transitions gives rise to the syndrome of jet lag. The power of some of the symptoms of jet lag to predict the amount of jet lag measured at the same and at different times of the day has been investigated. Eleven healthy subjects were studied in an Isolation Unit for two days after a simulated flight from the UK to Beijing (8 time zones to the east). At six time‐points (08:30, 11:00, 14:00, 17:00, 20:00, and 23:00 h), the subjects recorded their jet lag, and the differences from “normal” (that is, from days in which there is no jet lag) of alertness, hunger, indigestion, concentration, motivation, and irritability. They recorded at 08:30 h the type of food they had eaten since rising at 08:00 h and, at the other times, the type of food eaten in the last three hours. Assessments were made by visual analogue scales or, in the case of type of food, by a nominal scale. Following the time‐zone transition, the adjustment of meals appeared to be complete almost immediately. Jet lag and its symptoms were present during both experimental days. Jet lag tended to rise during the course of the daytime, accompanied by falls in alertness, motivation, and concentration. Correlation matrices between jet lag and each of the other variables were produced, using lags between the variable (from up to 5 time‐points before the assessment of jet lag to 5 time‐points afterwards) and pooling the results from both days. These matrices indicated that significant correlations existed only between jet lag and alertness, concentration, and motivation, and then only when these other variables were assessed at the same time as jet lag or 1 or 2 time‐points earlier. Jet lag was then treated as the dependent variable and the symptoms as covariates in analysis of covariances (ANCOVAs), with the days treated as a random effect. This analysis enabled the significance of potential predictors of jet lag, together with their β‐coefficients (the relationship between a unit change of each significant predictor and the change in jet lag), to be calculated. Falls in alertness and motivation were significant predictors of increased jet lag, provided that they were measured at the same time, when they accounted for about 50% of the jet lag; when measured at other time‐points, they did not act as significant predictors. It is concluded that the amount of jet lag varies during the course of the day and that it can be predicted from contemporaneous assessments of alertness and motivation—but not from assessments made at other times of the day, nor from other variables that are symptoms of jet lag, even though these other variables are significantly increased. In considering the results of this and our previous study, we reiterate the view that the exact meaning of “jet lag” is complex and that the particular combination of factors that contribute to it might vary with the time of day that the assessment is made. Inferences about any decrements due to time‐zone transitions cannot be made reliably at times of the day that differ from the time when jet lag is assessed.  相似文献   

9.
Summary Locomotor activity and feeding activity were measured together with circulating levels of melatonin in pigeons which were exposed to constant bright light (LLbright, 2000 lux) following light-dark (LD) cycles. Although all the pigeons showed daily rhythms of locomotor activity, feeding activity, and melatonin levels under LD cycles, they lost all the rhythms in prolonged LLbright. Acute exposure to bright light (2000 lux) during darkness reduced plasma melatonin levels. The half-time for the suppression in melatonin levels was about 30 min after short-term light exposure. These results support the hypothesis that melatonin may control the circadian rhythms of locomotor activity and feeding activity in the pigeon.Abbreviations LD light-dark - LLdim constant dim light - LLbright constant bright light - DD constant darkness - PX pinealectomy - EX blinding - RIA radioimmunoassay  相似文献   

10.
Various combinations of interventions were used to phase-delay circadian rhythms to correct their misalignment with night work and day sleep. Young participants (median age = 22, n = 67) participated in 5 consecutive simulated night shifts (2300 to 0700) and then slept at home (0830 to 1530) in darkened bedrooms. Participants wore sunglasses with normal or dark lenses (transmission 15% or 2%) when outside during the day. Participants took placebo or melatonin (1.8 mg sustained release) before daytime sleep. During the night shifts, participants were exposed to a moving (delaying) pattern of intermittent bright light (approximately 5000 lux, 20 min on, 40 min off, 4-5 light pulses/night) or remained in dim light (approximately 150 lux). There were 6 intervention groups ranging from the least complex (normal sunglasses) to the most complex (dark sunglasses + bright light + melatonin). The dim light melatonin onset (DLMO) was assessed before and after the night shifts (baseline and final), and 7 h was added to estimate the temperature minimum (Tmin). Participants were categorized by their amount of reentrainment based on their final Tmin: not re-entrained (Tmin before the daytime dark/sleep period), partially re-entrained (Tmin during the first half of dark/sleep), or completely re-entrained (Tmin during the second half of dark/ sleep). The sample was split into earlier participants (baseline Tmin < or = 0700, sunlight during the commute home fell after the Tmin) and later participants (baseline Tmin > 0700). The later participants were completely re-entrained regardless of intervention group, whereas the degree of re-entrainment for the earlier participants depended on the interventions. With bright light during the night shift, almost all of the earlier participants achieved complete re-entrainment, and the phase delay shift was so large that darker sunglasses and melatonin could not increase its magnitude. With only room light during the night shift, darker sunglasses helped earlier participants phase-delay more than normal sunglasses, but melatonin did not increase the phase delay. The authors recommend the combination of intermittent bright light during the night shift, sunglasses (as dark as possible) during the commute home, and a regular, early daytime dark/sleep period if the goal is complete circadian adaptation to night-shift work.  相似文献   

11.
The pineal product melatonin is involved in the regulation of the sleep/wake cycle in humans. In blind individuals and in people travelling through time zones, melatonin rhythms are sometimes unsynchronized with the diel cycle, and nocturnal sleep may be disturbed. Low or distorted melatonin rhythms have repeatedly been reported in middle aged and elderly insomniacs. Melatonin administration effectively synchronized the sleep wake cycle in blind individuals and in subjects suffering from jet lag and advanced sleep onset in subjects suffering from delayed sleep phase syndrome. In elderly insomniacs, melatonin replacement therapy significantly decreased sleep latency, and/or increased sleep efficiency and decreased wake time after sleep onset. In addition, melatonin substitution facilitated benzodiazepine discontinuation in chronic users. These data show an association between melatonin rhythm disturbances and difficulties to promote or maintain sleep at night. Specific melatonin formulations may be useful to treat circadian-rhythm-related sleep disorders and age-related insomnia.  相似文献   

12.
The authors previously observed blunted phase-shift responses to morning bright light in women with premenstrual dysphoric disorder (PMDD). The aim of this study was to determine if these findings could be replicated using a higher-intensity, shorter-duration light pulse and to compare these results with the effects of an evening bright-light pulse. In 17 PMDD patients and 14 normal control (NC) subjects, the authors measured plasma melatonin at 30-min intervals from 18:00 to 10:00 h in dim (<30 lux) or dark conditions the night before (Night 1) and after (Night 3) a bright-light pulse (administered on Night 2) in both follicular and luteal menstrual cycle phases. The bright light (either 3000 lux for 6 h or 6000 lux for 3 h) was given either in the morning (AM light), 7 h after the dim light melatonin onset (DLMO) measured the previous month, or in the evening (PM light), 3 h after the DLMO. In the luteal, but not in the follicular, phase, AM light advanced melatonin offset between Night 1 and Night 3 significantly less in PMDD than in NC subjects. The effects of PM light were not significant, nor were there significant effects of the light pulse on melatonin measures of onset, duration, peak, or area under the curve. These findings replicated the authors' previous finding of a blunted phase-shift response to morning bright light in the luteal, but not the follicular, menstrual cycle phase in PMDD compared with NC women, using a brighter (6000 vs. 3000 lux) light pulse for a shorter duration (3 vs. 6 h). As the effect of PM bright light on melatonin phase-shift responses did not differ between groups or significantly alter other melatonin measures, these results suggest that in PMDD there is a luteal-phase subsensitivity or an increased resistance to morning bright-light cues that are critical in synchronizing human biological rhythms. The resulting circadian rhythm malsynchonization may contribute to the occurrence of luteal phase depressive symptoms in women with PMDD.  相似文献   

13.
Light is the most important synchronizer of melatonin rhythms in fish. This paper studies the influence of the characteristics of light on plasma melatonin rhythms in sole. The results revealed that under long‐term exposure to constant light conditions (LL or DD), the total 24 h melatonin production was significantly higher than under LD, but LL and DD conditions influenced the rhythms differently. Under LL, melatonin remained at around 224 pg/ml throughout the 24 h, while under DD a significant elevation (363.6 pg/ml) was observed around the subjective evening. Exposure to 1 h light pulses at MD (mid‐dark) inhibited melatonin production depending on light intensity (3.3, 5.3, 10.3, and 51.9 µW/cm2). The light threshold required to reduce nocturnal plasma melatonin to ML (mid‐light) values was 5.3 µW/cm2. Melatonin inhibition by light also depended on the wavelength of the light pulses: while a deep red light (λ>600 nm) failed to reduce plasma melatonin significantly, far violet light (λmax=368 nm) decreased indoleamine's concentration to ML values. These results suggest that dim light at night (e.g., moonlight) may be perceived and hence affect melatonin rhythms, encouraging synchronization to the lunar cycle. On the other hand, deep red light does not seem to inhibit nocturnal melatonin production, and so it may be used safely during sampling at night.  相似文献   

14.
The endogenous circadian pacemaker of mammals is synchronized to the environmental day by the ambient cycle of relative light and dark. The present studies assessed the actions of light in a novel circadian entrainment paradigm where activity rhythms are bifurcated following exposure to a 24-h light:dark:light:dark (LDLD) cycle. Bifurcated entrainment under LDLD reflects the temporal dissociation of component oscillators that comprise the circadian system and is facilitated when daily scotophases are dimly lit rather than completely dark. Although bifurcation can be stably maintained in LDLD, it is quickly reversed under constant conditions. Here the authors examine whether dim scotophase illumination acts to maintain bifurcated entrainment under LDLD through potential interactions with the parametric actions of bright light during the two daily photophases. In three experiments, wheel-running rhythms of Syrian hamsters were bifurcated under LDLD with dimly lit scotophases, and after several weeks, dim scotophase illumination was either retained or extinguished. Additionally, "full" and "skeleton" photophases were employed under LDLD cycles with dimly lit or completely dark scotophases to distinguish parametric from nonparametric effects of bright light. Rhythm bifurcation was more stable in full versus skeleton LDLD cycles. Dim light facilitated the maintenance of bifurcated entrainment under full LDLD cycles but did not prevent the loss of rhythm bifurcation in skeleton LDLD cycles. These studies indicate that parametric actions of bright light maintain the bifurcated entrainment state; that dim scotophase illumination increases the stability of the bifurcated state; and that dim light interacts with the parametric effects of bright light to increase the stability of rhythm bifurcation under full LDLD cycles. A further understanding of the novel actions of dim light may lead to new strategies for understanding, preventing, and treating chronobiological disturbances.  相似文献   

15.

Background

The phase and amplitude of rhythms in physiology and behavior are generated by circadian oscillators and entrained to the 24-h day by exposure to the light-dark cycle and feedback from the sleep-wake cycle. The extent to which the phase and amplitude of multiple rhythms are similarly affected during altered timing of light exposure and the sleep-wake cycle has not been fully characterized.

Methodology/Principal Findings

We assessed the phase and amplitude of the rhythms of melatonin, core body temperature, cortisol, alertness, performance and sleep after a perturbation of entrainment by a gradual advance of the sleep-wake schedule (10 h in 5 days) and associated light-dark cycle in 14 healthy men. The light-dark cycle consisted either of moderate intensity ‘room’ light (∼90–150 lux) or moderate light supplemented with bright light (∼10,000 lux) for 5 to 8 hours following sleep. After the advance of the sleep-wake schedule in moderate light, no significant advance of the melatonin rhythm was observed whereas, after bright light supplementation the phase advance was 8.1 h (SEM 0.7 h). Individual differences in phase shifts correlated across variables. The amplitude of the melatonin rhythm assessed under constant conditions was reduced after moderate light by 54% (17–94%) and after bright light by 52% (range 12–84%), as compared to the amplitude at baseline in the presence of a sleep-wake cycle. Individual differences in amplitude reduction of the melatonin rhythm correlated with the amplitude of body temperature, cortisol and alertness.

Conclusions/Significance

Alterations in the timing of the sleep-wake cycle and associated bright or moderate light exposure can lead to changes in phase and reduction of circadian amplitude which are consistent across multiple variables but differ between individuals. These data have implications for our understanding of circadian organization and the negative health outcomes associated with shift-work, jet-lag and exposure to artificial light.  相似文献   

16.
The aim of the current investigation was to study the effect of lithium on circadian rhythms of pineal - testicular hormones by quantitations of pineal and serum serotonin, N-acetylserotonin and melatonin, and serum testosterone at four time points (06.00, 12.00, 18.00 and 24.00) of a 24-hr period under normal photoperiod (L:D), reversed photoperiod (D:L), constant light (L:L) and constant dark phase (D:D) in rats. Circadian rhythms were observed in pineal hormones in all the combinations of photoperiodic regimens, except in constant light, and in testosterone levels in all the photoperiodic combinations. Pineal and serum N-acetylserotonin and melatonin levels were higher than serotonin at night (24.00 hr), in natural L:D cycle, in reversed L:D cycle or similar to normal L:D cycle in constant dark phase, without any change in constant light. In contrast, testosterone level was higher in light phase (12.00 hr through 18.00 hr) than in the dark phase (24.00 hr through 06.00 hr) in normal L:D cycle, in reversed L:D cycle, similar to normal L:D cycle in constant dark (D:D), and reversed to that of the normal L:D cycle in constant light (L:L). Lithium treatment (2 mEq/kg body weight daily for 15 days) suppressed the magnitude of circadian rhythms of pineal and serum serotonin, N-acetylserotonin and melatonin, and testosterone levels by decreasing their levels at four time points of a 24-hr period in natural L:D or reversed D:L cycle and in constant dark (D:D). Pineal indoleamine levels were reduced after lithium treatment even in constant light (L:L). Moreover, lithium abolished the melatonin rhythms in rats exposed to normal (L:D) and reversed L:D (D:L) cycles, and sustained the rhythms in constant dark. But testosterone rhythm was abolished after lithium treatment in normal (L:D)/reversed L:D (D:L) cycle or even in constant light/dark. The findings indicate that the circadian rhythm exists in pineal hormones in alternate light - dark cycle (L:D/D:L) and in constant dark (D:D), but was absent in constant light phase (L:L) in rats. Lithium not only suppresses the circadian rhythms of pineal hormones, but abolishes the pineal melatonin rhythm only in alternate light - dark cycles, but sustains it in constant dark. The testosterone rhythm is abolished after lithium treatment in alternate light - dark cycle and constant light/dark. It is suggested that (a) normal circadian rhythms of pineal hormones are regulated by pulse dark phase in normal rats, (b) lithium abolishes pineal hormonal rhythm only in pulse light but sustains it in constant dark phase, and (c) circadian testosterone rhythm occurs in both pulse light or pulse dark phase in normal rats, and lithium abolishes the rhythm in all the combinations of the photoperiod. The differential responses of circadian rhythms of pineal and testicular hormones to pulse light or pulse dark in normal and lithium recipients are discussed.  相似文献   

17.
Melatonin in humans can be an independent or dependent variable. Measurement of endogenous melatonin levels under dim‐light conditions, particularly the dim‐light melatonin onset (DLMO), has received increasing attention among researchers, and for clinicians it may soon become a convenient test that can be done at home using saliva collections in the evening, without interfering with sleep. Melatonin, even at low physiological doses, can cause advances (shifts to an earlier time) or delays (shifts to a later time) depending on when it is administered on its phase‐response curve (in most sighted people, these times are approximately in the p.m. and in the a.m., respectively). Although both bright light and melatonin can be used separately or together in the treatment of circadian phase disorders in sighted people—such as advanced and delayed sleep phase syndromes, jet lag, shift‐work maladaptation, and winter depression (seasonal affective disorder, or SAD)—melatonin is the treatment of choice in totally blind people. These people provide a unique opportunity to study the human circadian system without the overwhelming effects of ocularly mediated light, thus permitting us to establish that all blind free‐runners (BFRs) studied under high resolution appear to have phase‐advancing and phase‐delaying responses to as yet unidentified zeitgebers (time givers) that are usually too weak to result in entrainment.  相似文献   

18.

Background

Circadian rhythms govern many aspects of physiology and behavior including cognitive processes. Components of neural circuits involved in learning and memory, e.g., the amygdala and the hippocampus, exhibit circadian rhythms in gene expression and signaling pathways. The functional significance of these rhythms is still not understood. In the present study, we sought to determine the impact of transiently disrupting the circadian system by shifting the light/dark (LD) cycle. Such “jet lag” treatments alter daily rhythms of gene expression that underlie circadian oscillations as well as disrupt the synchrony between the multiple oscillators found within the body.

Methodology/Principal Findings

We subjected adult male C57Bl/6 mice to a contextual fear conditioning protocol either before or after acute phase shifts of the LD cycle. As part of this study, we examined the impact of phase advances and phase delays, and the effects of different magnitudes of phase shifts. Under all conditions tested, we found that recall of fear conditioned behavior was specifically affected by the jet lag. We found that phase shifts potentiated the stress-evoked corticosterone response without altering baseline levels of this hormone. The jet lag treatment did not result in overall sleep deprivation, but altered the temporal distribution of sleep. Finally, we found that prior experience of jet lag helps to compensate for the reduced recall due to acute phase shifts.

Conclusions/Significance

Acute changes to the LD cycle affect the recall of fear-conditioned behavior. This suggests that a synchronized circadian system may be broadly important for normal cognition and that the consolidation of memories may be particularly sensitive to disruptions of circadian timing.  相似文献   

19.
The case of a 40-year-old sighted woman with free-running sleep-wake and melatonin rhythms is presented. The subject was studied for 102 days. During the pre-treatment period, both the sleep-wake and melatonin rhythms had a period of 25.1 hr, similar to the average period of humans living in temporal isolation. Treatment consisted of bright artifical light exposure (2500 lx Vita-Lite) for 2 hr each day upon awakening. Clock time of light exposure was held constant for 6 days and then slowly advanced until the subject was arising at her desired time of day. The subject continued the light treatment at home and was able to live on a 24-hr day for the 30-day follow-up study. While other factors may be operating in this situation, it is possible that the light treatment caused the stabilization of the free-running rhythms, advancement to a normal phase and entrainment to the 24-hr day. We suspect that the tendency to free-run was related to sleep onsets that were abnormally delayed relative to the circadian phase response curve for light. By scheduling a 2-hr pulse of bright light each morning, this tendency to delay would be counteracted by light-induced advances, resulting in normal entrainment.  相似文献   

20.
The case of a 40-year-old sighted woman with free-running sleep-wake and melatonin rhythms is presented. The subject was studied for 102 days. During the pre-treatment period, both the sleep-wake and melatonin rhythms had a period of 25.1 hr, similar to the average period of humans living in temporal isolation. Treatment consisted of bright artifical light exposure (2500 lx Vita-Lite) for 2 hr each day upon awakening. Clock time of light exposure was held constant for 6 days and then slowly advanced until the subject was arising at her desired time of day. The subject continued the light treatment at home and was able to live on a 24-hr day for the 30-day follow-up study. While other factors may be operating in this situation, it is possible that the light treatment caused the stabilization of the free-running rhythms, advancement to a normal phase and entrainment to the 24-hr day. We suspect that the tendency to free-run was related to sleep onsets that were abnormally delayed relative to the circadian phase response curve for light. By scheduling a 2-hr pulse of bright light each morning, this tendency to delay would be counteracted by light-induced advances, resulting in normal entrainment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号