首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was performed to examine lumbopelvic rotation and to identify asymmetry of the erector spinae and hamstring muscles in people with and without low back pain (LBP). The control group included 16 healthy subjects, the lumbar-flexion–rotation syndrome LBP group included 17 subjects, and the lumbar-extension–rotation syndrome LBP group included 14 subjects. Kinematic parameters were recorded using a 3D motion-capture system, and electromyography parameters were measured using a Noraxon TeleMyo 2400T. The two LBP subgroups showed significantly more lumbopelvic rotation during trunk flexion in standing than did the control group. The muscle activity and flexion–relaxation ratio asymmetries of the erector spinae muscles in the lumbar-flexion–rotation syndrome LBP group were significantly greater than those in the control group, and the muscle activity and flexion–relaxation ratio asymmetry of the hamstring muscles in the lumbar-extension–rotation syndrome LBP group were significantly greater than those in the control group. Imbalance or asymmetry of passive tissue could lead to asymmetry of muscular activation. Muscle imbalance can cause asymmetrical alignment or movements such as unexpected rotation. The results showed a greater increase in lumbopelvic rotation during trunk flexion in standing among the lumbar-flexion–rotation syndrome and lumbar-extension–rotation syndrome LBP groups compared with the control group. The differences between the two LBP subgroups may be a result of imbalance and asymmetry in erector spinae and hamstring muscle properties.  相似文献   

2.
The deep core muscles are often neglected or improperly trained in athletes. Improper function of this musculature may lead to abnormal spinal loading, muscle strain, or injury to spinal structures, all of which have been associated with increased low back pain (LBP) risk. The purpose of this study was to identify potential strategies used to compensate for weakness of the deep core musculature during running and to identify accompanying changes in compressive and shear spinal loads. Kinematically-driven simulations of overground running were created for eight healthy young adults in OpenSim at increasing levels of deep core muscle weakness. The deep core muscles (multifidus, quadratus lumborum, psoas, and deep fascicles of the erector spinae) were weakened individually and together. The superficial longissimus thoracis was a significant compensator for 4 out of 5 weakness conditions (p < 0.05). The deep erector spinae required the largest compensations when weakened individually (up to a 45 ± 10% increase in compensating muscle force production, p = 0.004), revealing it may contribute most to controlling running kinematics. With complete deep core muscle weakness, peak anterior shear loading increased on all lumbar vertebrae (up to 19%, p = 0.001). Additionally, compressive spinal loading increased on the upper lumbar vertebrae (up to 15%, p = 0.007) and decreased on the lower lumbar vertebrae (up to 8%, p = 0.008). Muscular compensations may increase risk of muscular fatigue or injury and increased spinal loading over numerous gait cycles may result in damage to spinal structures. Therefore, insufficient strength of the deep core musculature may increase a runner’s risk of developing LBP.  相似文献   

3.
People with a history of low back pain (LBP) are at high risk to encounter additional LBP episodes. During LBP remission, altered trunk muscle control has been suggested to negatively impact spinal health. As sudden LBP onset is commonly reported during trunk flexion, the aim of the current study is to investigate whether dynamic trunk muscle recruitment is altered in LBP remission. Eleven people in remission of recurrent LBP and 14 pain free controls performed cued trunk flexion during a loaded and unloaded condition. Electromyographic activity was recorded from paraspinal (lumbar and thoracic erector spinae, latissimus dorsi, deep and superficial multifidus) and abdominal muscles (obliquus internus, externus and rectus abdominis) with surface and fine-wire electrodes. LBP participants exhibited higher levels of co-contraction of flexor/extensor muscles, lower agonistic abdominal and higher antagonistic paraspinal muscle activity than controls, both when data were analyzed in grouped and individual muscle behavior. A sub-analysis in people with unilateral LBP (n = 6) pointed to opposing changes in deep and superficial multifidus in relation to the pain side. These results suggest that dynamic trunk muscle control is modified during LBP remission, and might possibly increase spinal load and result in earlier muscle fatigue due to intensified muscle usage. These negative consequences for spinal health could possibly contribute to recurrence of LBP.  相似文献   

4.
Marshall, PWM, Desai, I, and Robbins, DW. Core stability exercises in individuals with and without chronic nonspecific low back pain. J Strength Cond Res 25(12): 3404-3411, 2011-The aim of this study was to measure trunk muscle activity during several commonly used exercises in individuals with and without low back pain (LBP). Abdominal bracing was investigated as an exercise modification that may increase the acute training stimulus. After an initial familiarization session, 10 patients with LBP and 10 matched controls performed 5 different exercises (quadruped, side bridge, modified push-up, squat, shoulder flexion) with and without abdominal bracing. Trunk muscle activity and lumbar range of motion (LROM) were measured during all exercises. Muscle activity was measured bilaterally during each exercise from rectus abdominis (RA), external obliques (EO), and lumbar erector spinae (ES) with pairs of surface electrodes. Recorded signals were normalized to a percentage of maximal voluntary contractions performed for each muscle. The ES activity was lower for the LBP group during the quadruped (p < 0.05) and higher for RA and EO during the side bridge (p < 0.001), compared to for the healthy controls. Higher muscle activity was observed across exercises in an inconsistent pattern when abdominal bracing was used during exercise. The LROM was no different between groups for any exercise. The lack of worsening of symptoms in the LBP group and similar LROM observed between groups suggest that all exercises investigated in this study are of use in rehabilitating LBP patients. The widespread use of abdominal bracing in clinical practice, whether it be for patients with LBP or healthy individuals, may not be justified unless symptoms of spinal instability are identified.  相似文献   

5.
Psoas major (PM) and quadratus lumborum (QL) muscles have anatomically discrete regions. Redistribution of activity between these regions has been observed in people with low back pain (LBP). We hypothesised that the bias of activity of specific regions of PM and QL towards trunk extension may change depending on whether LBP individuals have more or less erector spinae (ES) activity in an extended/upright lumbar posture. Ten volunteers with recurring episodes of LBP and nine pain-free controls performed isometric trunk efforts in upright sitting. LBP individuals were subgrouped into those with high and low ES electromyographic activity (EMG) when sitting with a lumbar lordosis. Fine-wire electrodes were inserted into fascicles of PM arising from the transverse process (PM-t) and vertebral body (PM-v) and anterior (QL-a) and posterior layers (QL-p) of QL. The LBP group with low ES EMG had greater bias of PM-t, PM-v and QL-p towards trunk extension. The LBP group with high ES activity showed less PM activity towards extension. These findings suggest redistribution of activity within and/or between these muscles with extensor moments. This is likely to be important to consider for effective clinical interventions for individuals with LBP.  相似文献   

6.

Objectives

To investigate the effects of backward adjustable thoracic support on spinal curvature and back muscle activation during wheelchair sitting.

Methods

Twenty elderly people were recruited for this study. The backward adjustable thoracic support sitting posture was compared with the slumped, normal, and lumbar support sitting postures. Spinal curvatures (pelvic, lumbar, and thoracic angles) and muscle activations of 4 back muscles on both sides (maximal voluntary isometric contraction of the lumbar multifidus, lumbar erector spinae, iliocostalis lumborum pars thoracis, and thoracic erector spinae at T9) were measured and compared between the different sitting postures using one-way analysis of variance with repeated measures.

Results

The backward adjustable thoracic support sitting posture showed a relatively neutral pelvic tilt (−0.32±4.80°) when compared with the slumped (22.84±5.27°) and lumbar support (−8.97±3.31°) sitting postures (P<0.001), and showed relatively higher lumbar lordosis (−23.38±6.50°) when compared with the slumped (14.77±7.83°), normal (0.44±7.47°), and lumbar support (−16.76±4.77°) sitting postures (P<0.05). It also showed relatively lower back muscle activity when compared with the normal and lumbar support sitting postures (P<0.05).

Conclusions

The backward adjustable thoracic support sitting concept was suggested because it maintains a more neutral pelvic tilt, higher lumbar lordosis, and lower back muscle activation, which may help maintain a better sitting posture and reduce the risk of back pain.  相似文献   

7.
摘要 目的:分析椎旁肌退变与短节段腰椎融合内固定术后螺钉松动的相关性。方法:回顾性分析2018年6月至2020年6月广州市番禺区中医院行短节段腰椎融合内固定术治疗的251例腰椎退行性疾病患者的临床资料,根据术后螺钉松动情况分为松动组(n=47)和对照组(n=204)。收集患者的临床资料,对比两组椎间植骨融合情况、螺钉直径、螺钉长度、螺钉椎内长度、椎旁肌的肌肉相对总横截面积(rtCSA)和脂肪浸润程度(FI)。应用多因素logistic回归分析短节段腰椎融合内固定术后螺钉松动发生的危险因素,并描绘受试者工作特征(ROC)曲线检验危险因素预测短节段腰椎融合内固定术后螺钉松动的效能。结果:251例患者平均随访时间(24.16±7.28)个月,其中47例患者在最终随访时发生螺钉松动,总体松动率18.73%。两组性别、骨密度比较差异有统计学意义(P<0.05)。与对照组相比,松动组的多裂肌FI增高(P<0.05)。与对照组相比,松动组的竖脊肌rtCSA减少,竖脊肌FI增高(P<0.05)。多因素logistic回归分析显示竖脊肌FI较高是短节段腰椎融合内固定术后螺钉松动发生的独立危险因素,而竖脊肌rtCSA较高、骨密度较高则是保护因素(P<0.05)。ROC曲线分析显示:骨密度、竖脊肌rtCSA、竖脊肌FI等3指标单独及联合应用时:ROC-AUC(0.95CI)分别为0.708(0.446~0.971)、0.736(0.495~0.951)、0.648(0.335~0.965)、0.842(0.719~0.957)。联合应用预测效能较高。结论:竖脊肌的退变是短节段腰椎融合内固定术后螺钉松动的危险因素。当骨密度<-3.00 g/cm2、竖脊肌rtCSA<1.45%及FI>35.00%时,提示术后发生螺钉松动的可能性大,可作为短节段腰椎融合内固定术后评价螺钉松动风险的参考指标。  相似文献   

8.
Various stimuli such as the flexibility of lumbopelvic structures influence the neuromuscular responses of the trunk musculature, leading to different load sharing strategies and reflex muscle responses from the afferents of lumbopelvic mechanoreceptors. This link between flexibility and neuromuscular response has been poorly studied.The aim of this study was to investigate the relationship between lumbopelvic flexibility and neuromuscular responses of the erector spinae, hamstring and abdominal muscles during trunk flexion–extension. Lumbopelvic movement patterns were measured in 29 healthy women, who were separated into two groups according to their flexibility during trunk flexion–extension. The electromyographic responses of erector spinae, rectus abdominis and biceps femoris were also recorded.Subjects with greater lumbar flexibility had significantly less pelvic flexibility and vice versa. Subjects with greater pelvic flexibility had a higher rate of relaxation and lower levels of hamstring activation during maximal trunk flexion.The neuromuscular response patterns of the hamstrings seem partially modulated by pelvic flexibility. Not so with the lumbar erector spinae and lumbar flexibility, despite the assertions of some previous studies. The results of this study improve our knowledge of the relationships between trunk joint flexibility and neuromuscular responses, a relationship which may play a role in low back pain.  相似文献   

9.
The aim of this study was to compare the activity of the erector spinae (ES) and hamstring muscles and the amount and onset of lumbar motion during standing knee flexion between individuals with and without lumbar extension rotation syndrome. Sixteen subjects with lumbar extension rotation syndrome (10 males, 6 females) and 14 healthy subjects (8 males, 6 females) participated in this study. During the standing knee flexion, surface electromyography (EMG) was used to measure muscle activity, and surface EMG electrodes were attached to both the ES and hamstring (medial and lateral) muscles. A three-dimensional motion analysis system was used to measure kinematic data of the lumbar spine. An independent-t test was conducted for the statistical analysis. The group suffering from lumbar extension rotation syndrome exhibited asymmetric muscle activation of the ES and decreased hamstring activity. Additionally, the group with lumbar extension rotation syndrome showed greater and earlier lumbar extension and rotation during standing knee flexion compared to the control group. These data suggest that asymmetric ES muscle activation and a greater amount of and earlier lumbar motion in the sagittal and transverse plane during standing knee flexion may be an important factor contributing to low back pain.  相似文献   

10.
Little is known about the motor control of the lumbo-pelvic musculature in microgravity and its simulation (bed-rest). Analysis of spectral and temporal electromyographic variables can provide information on motor control relevant for normal function. This study examined the effect of 56-days of bed-rest with 1-year follow-up in 10 male subjects on the median frequency and the activation timing in surface electromyographic recordings from five superficial lumbo-pelvic muscles during a repetitive knee movement task. Trunk fat mass (from whole body-composition measurements) and movement accuracy as possible explanatory factors were included. Increased median frequency was observed in the lumbar erector spinae starting late in bed-rest, but this was not seen in its synergist, the thoracic erector spinae (p < .0001). These changes persisted up to 1-year after bed-rest and were independent of changes in body-composition or movement accuracy. Analysis suggested decreases of median frequency (p < .0001) in the abdominal and gluteal muscles to result from increased (p < .01) trunk fat levels during and after bed-rest. No changes in lumbo-pelvic muscle activation timing were seen. The results suggest that bed-rest particularly affects the shorter lumbar erector spinae and that the temporal sequencing of superficial lumbo-pelvic muscle activation is relatively robust.  相似文献   

11.
BackgroundMovements in the lumbar spine, including flexion and extension are governed by a complex neuromuscular system involving both active and passive units. Several biomechanical and clinical studies have shown the myoelectric activity reduction of the lumbar extensor muscles (flexion–relaxation phenomenon) during lumbar flexion from the upright standing posture. The relationship between flexibility and EMG activity pattern of the erector spinae during dynamic trunk flexion–extension task has not yet been completely discovered.ObjectiveThe purpose of this study was to investigate the relationship between general and lumbar spine flexibility and EMG activity pattern of the erector spinae during the trunk flexion–extension task.MethodsThirty healthy female college students were recruited in this study. General and lumbar spine flexibilities were measured by toe-touch and modified schober tests, respectively. During trunk flexion–extension, the surface electromyography (EMG) from the lumbar erector spinae muscles as well as flexion angles of the trunk, hip, lumbar spine and lumbar curvature were simultaneously recorded using a digital camera. The angle at which muscle activity diminished during flexion and initiated during extension was determined and subjected to linear regression analysis to detect the relationship between flexibility and EMG activity pattern of the erector spinae during trunk flexion–extension.ResultsDuring flexion, the erector spinae muscles in individuals with higher toe-touch scores were relaxed in larger trunk and hip angles and reactivated earlier during extension according to these angles (P < 0.001) while in individuals with higher modified schober scores this muscle group was relaxed later and reactivated sooner in accordance with lumbar angle and curvature (P < 0.05). Toe-touch test were significantly correlated with trunk and hip angles while modified schober test showed a significant correlation with lumbar angle and curvature variables.ConclusionThe findings of this study indicate that flexibility plays an important role in trunk muscular recruitment pattern and the strategy of the CNS to provide stability. The results reinforce the possible role of flexibility alterations as a contributing factor to the motor control impairments. This study also shows that flexibility changes behavior is not unique among different regions of the body.  相似文献   

12.
Objectives:The study aims to investigate the relationship between abdominal muscle activity and the cross-sectional area (CSA) of the lumbar muscles and assess their role in the functional assessment of patients with chronic non-specific low back pain (CNSLBP).Methods:142 patients with CNSLBP were included in this study. Disability levels were evaluated with the Roland-Morris Low Back Pain and Disability Questionnaire. The functional assessments of the participants were evaluated with a 6-minute walk test. Abdominal muscle activity was measured using a pressure biofeedback unit. The CSA of the bilateral multifidus, erector spinae, and psoas muscles were measured T2-weighted MRI images at the L2-L5 levels.Results:Significant correlations were found between the abdominal muscle activity during the posterior pelvic tilt movement and the CSA of the erector spinae muscle at the L4 and L5 levels, and the psoas muscle at the L2–L5 levels (correlation coefficient range from 0.32 to 0.48). Abdominal muscle activity yielded a significant additional contribution to the variance on the functional assessment (R2 change=0.101).Conclusions:The relationship of abdominal muscle activity with lumbar muscles and the contribution of muscle activities to functional assessment should be considered in the management of patients with CNSLBP.  相似文献   

13.
In this study, we explore the relationship between moments in the frontal and sagittal planes, generated by a lifting task, vs the electromyographic (EMG) activity of right and left trunk muscle groups. In particular, we postulate that the functional dependence between erector spinae muscle activity and the applied lifting moments about the spine is as follows: the sum of left and right erector spinae processed EMG depends on the sagittal plane moment, and the difference of left and right erector spinae processed EMG depends on the frontal plane moment. A simple out-of-sagittal plane physical model, treating the lumbar spine as a two degree-of-freedom pivot point is discussed to justify these hypotheses. To validate this model, we collected surface EMG and lifting moment data for ten males performing a grid of frontal and sagittal plane lifting tasks. A digital RMS-to-DC algorithm was developed for processing raw EMG. For these tests, we measured EMG for the left and right erector spinae and for the left and right external oblique muscles. The processed EMG signals of the left and right erector spinae muscles are summed and differenced for comparison to the measured sagittal and frontal plane moments. A linear correlation (r2) of 0.96 was obtained for the sum of erector spinae EMG vs the sagittal plane moment; a corresponding value of r2 = 0.95 was obtained for the difference vs the frontal plane moment. No correlations (r2 less than 0.004) was found for the sagittal plane moment and the difference of the left and right erector spinae EMG, and the frontal plane moment and the sum of the left and right erector spinae EMG.  相似文献   

14.
The PLAD (personal lift assistive device) was designed to reduce the lumbar moment during lifting and bending tasks via elastic elements. This investigation examined the effects of modulating the elastic stiffness. Thirteen men completed 90 lifts (15 kg) using 6 different PLAD stiffnesses in stoop, squat and freestyle lifting postures. The activity of 8 muscles were recorded (latissimus dorsi, thoracic and lumbar erector spinae, rectus abdominis, external oblique, gluteus maximus, biceps femoris and rectus femoris), 3D electromagnetic sensors tracked the motion of each segment and strain gauges measured the elastic tension. EMG data were rectified, filtered, normalized and integrated as a percentage of the lifting task. The highest PLAD tension elicited the greatest reduction in erector spinae activity (mean of thoracic and lumbar) in comparison to the no-PLAD condition for the stoop (37%), squat (38%), and freestyle (37%) lifts, while prompting comparable reductions in gluteus maximums and biceps femoris activity. The highest PLAD stiffness also elicited the greatest reduction in the integrated L4/L5 flexion moment for the stoop (19.0%), squat (18.4%) and freestyle (17.4%) lifts without changing peak lumbar flexion. Each increase in PLAD stiffness further reduced the muscle activity of the posterior chain and the dynamic lumbar moment.  相似文献   

15.
The aim of the present study was to evaluate the viability of a relationship between the temporal activation pattern of parts of the erector spinae muscle and endurance. Seven subjects performed intermittent isometric contractions [4 s at 7007o maximal voluntary contraction (MVC), 2 s rest] until exhaustion, during which the electromyographical (EMG) activity of the multifidus, iliocostalis thoracis and longissimus muscle segments was recorded. Endurance was defined as the time until exhaustion. Subjects were divided into a high and a low endurance group. The high endurance group showed significantly more variability of EMG amplitude over succeeding contractions. This group demonstrated significantly more alternations of EMG activity between parts of the muscle also. Variability of the EMG amplitude within the contractions did not differ between the groups, nor did MVC. The results indicated that alternating activity between different parts of the erector spinae muscle may function to postpone exhaustion of this muscle as a whole.  相似文献   

16.
The current study examined of the effect of intermittent, short-term periods of full trunk flexion on the development of low back pain (LBP) during two hours of standing. Sixteen participants completed two 2-h standing protocols, separated by one week. On one day, participants stood statically for 2 h (control day); on the other day participants bent forward to full spine flexion (termed flexion trials) to elicit the flexion relaxation (FR) phenomenon for 5 s every 15 min (experimental day). The order of the control and experimental day was randomized. During both protocols, participants reported LBP using a 100 mm visual analogue scale every 15 min. During the flexion trials, lumbar spine posture, erector spinae and gluteus medius muscle activation was monitored. Ultimately, intermittent trunk flexion reduced LBP by 36% (10 mm) at the end of a 2-h period of standing. Further, erector spinae and gluteus medius muscle quietening during FR was observed in 91% and 65% of the flexion trials respectively, indicating that periods of rest did occurred possibly contributing to the reduction in LBP observed. Since flexion periods do not require any aids, they can be performed in most workplaces thereby increasing applicability.  相似文献   

17.
Trunk muscle onset and cessation in golfers with and without low back pain   总被引:1,自引:0,他引:1  
The knowledge of the onset and cessation timing of the paraspinal muscles that surround the lumbar spine is an important area of research for the understanding of low back pain. This study examined the timing of the erector spinae and external oblique muscle activity in a group of golfers with and without low back pain. The study compared the results of surface electromyography measurements for two groups of golfers. Twelve male golfers who had reported a mild or greater level of pain in the lower back that was experienced while playing golf were examined. A further fifteen male golfers who had reported no history of lower back pain in the previous 12 months were recruited as controls. The results showed that the low-back-pain golfers switched on their erector spinae muscle significantly in advance of the start of the backswing. This finding was not evident in the group who did not have low back pain symptoms. Low-back-pain golfers, therefore, may use the erector spinae muscle as a primary spinal stabiliser instead of the stronger deeper muscles such as transversus abdominis and multifidus. These results may have important implications for conditioning programmes for golfers with low back pain.  相似文献   

18.
The effect of backrest inclination, lumbar support and thoracic support on the erector spinae muscle when lifting while sitting has been investigated. It was found that the lowest values of the iEMG of the back muscle were obtained when: (1) the lumbar support was positioned +4 cm forward, the thoracic support inclined to +10 degrees and the backrest inclination at 110 degrees; (2) the lumbar support was positioned +4 cm forward, the thoracic support inclined to +10 degrees and the backrest inclined to 100 degrees; (3) the lumbar support was positioned +1 cm forward, the thoracic support inclined to +10 degrees and the backrest inclination 110 degrees; (4) the backrest was inclined to 100 degrees the thoracic support inclined to 10 degrees and the lumbar support 1 cm forward; (5) the backrest inclination and lumbar support were both increased; (6) the thoracic support and the backrest inclination were both increased.  相似文献   

19.
It has been hypothesized that changes in trunk muscle activity in chronic low back pain (CLBP) reflect an underlying “guarding” mechanism, which will manifest itself as increased superficial abdominal – and lumbar muscle activity. During a functional task like walking, it may be further provoked at higher walking velocities. The purpose of this cross sectional study was to investigate whether subjects with CLBP show increased co-activation of superficial abdominal – and lumbar muscles during walking on a treadmill, when compared to asymptomatic controls. Sixty-three subjects with CLBP and 33 asymptomatic controls walked on a treadmill at different velocities. Surface electromyography data of the erector spinae, rectus abdominis and obliquus abdominis externus muscles were obtained and averaged per stride. Results show that, compared to asymptomatic controls, subjects with CLBP have increased muscle activity of the erector spinae and rectus abdominis, but not of the obliquus abdominis externus. These differences in trunk muscle activity between groups do not increase with higher walking velocities. In conclusion, the observed increased trunk muscle activity in subjects with CLBP during walking supports the guarding hypothesis.  相似文献   

20.
The goal of this study was to quantify the relative contributions of each muscle group surrounding the spine to vertebral joint rotational stiffness (VJRS) during the push-up exercise. Upper-body kinematics, three-dimensional hand forces and lumbar spine postures, and 14 channels (bilaterally from rectus abdominis, external oblique, internal oblique, latissimus dorsi, thoracic erector spinae, lumbar erector spinae, and multifidus) of trunk electromyographic (EMG) activity were collected from 11 males and used as inputs to a biomechanical model that determined the individual contributions of 10 muscle groups surrounding the lumbar spine to VJRS at five lumbar vertebral joints (L1-L2 to L5-S1). On average, the abdominal muscles contributed 64.32 +/- 8.50%, 86.55 +/- 1.13%, and 83.84 +/- 1.95% to VJRS about the flexion/extension, lateral bend, and axial twist axes, respectively. Rectus abdominis contributed 43.16 +/- 3.44% to VJRS about the flexion/extension axis at each lumbar joint, and external oblique and internal oblique, respectively contributed 52.61 +/- 7.73% and 62.13 +/- 8.71% to VJRS about the lateral bend and axial twist axes, respectively, at all lumbar joints with the exception of L5-S1. Owing to changes in moment arm length, the external oblique and internal oblique, respectively contributed 55.89% and 50.01% to VJRS about the axial twist and lateral bend axes at L5-S1. Transversus abdominis, multifidus, and the spine extensors contributed minimally to VJRS during the push-up exercise. The push-up challenges the abdominal musculature to maintain VJRS. The orientation of the abdominal muscles suggests that each muscle primarily controls the rotational stiffness about a single axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号