首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant cDNAs encoding the alpha-subunits of Gi1, Gi2, Gi3, Go and Gs were transfected into COS cells with the pCD-PS mammalian expression vector. Expression of each G alpha was verified using subtype-specific peptide antisera on immunoblots. Quantitative immunoblotting of alpha and beta subunits indicated: i) that there was no change in expression of endogenous beta subunits, and ii) overexpression of alpha subunits could achieve a ratio of alpha:beta greater than 25:1. Despite the excess of alpha over beta, the G alpha subunits were found predominantly in the membrane fraction. The results demonstrate that G alpha subunits can attach to the membrane independently of beta gamma subunits.  相似文献   

2.
The steady-state levels of mRNAs for the G-proteins Gi alpha 2, Go alpha, and the G beta-subunits common to each were established in rat adipose, heart and liver. Uniformly-radiolabeled, single-stranded antisense probes were constructed from cDNAs or assembled from oligonucleotides. Direct comparison of the steady-state levels of the G-protein mRNAs was performed under identical assay conditions, and on a molar basis. In adipose, liver and heart, Gs alpha mRNA was more abundant than mRNA for Go alpha, Gi alpha, and G beta. In adipose tissue, mRNA levels were as follows: 19.4, 7.6, 7.0, and 2.3 amol mRNA per micrograms total cellular RNA for Gs alpha, G beta, Gi alpha 2, and Go alpha, respectively. In heart Gs alpha mRNA was less abundant than in adipose, but the relative trend among the G-protein subunits was the same. In liver, G beta mRNA was more abundant than either Go alpha or Gi alpha 2. Go alpha mRNA levels ranged from 1.2 to 2.3 amol/micrograms total RNA in liver and adipose, respectively. The present work demonstrates the many advantages of this strategy when applied to the study of a family of homologous, low-abundance proteins and establishes for the first time the molar levels of Gi alpha 2, Gs alpha, Go alpha, and G beta-subunit mRNAs in several mammalian tissues.  相似文献   

3.
Treatment of NG108-15 neuroblastoma x glioma cells (24 h) with cholera toxin (0.1-10 micrograms/ml) resulted in a concentration-dependent reduction of the membrane levels of subunits of GTP-binding regulatory proteins (G proteins), as determined by quantitative immunoblot procedures. The extent of reduction differed for different types of subunits: the levels of Go alpha and G beta 1 were reduced by 40-50%, whereas those of G alpha common immunoreactivity and Gi2 alpha were only reduced by 10-20% following treatment with 10 micrograms/ml cholera toxin. This effect of the toxin could not be mimicked by incubation with the resolved B oligomer of cholera toxin, nor by exposure of cells to agents able to raise the intracellular levels of cAMP. Basal adenylate cyclase was stimulated in a biphasic manner by cholera toxin, being stimulated at low concentrations (0.01-10 ng/ml) and then decreased at high (0.1-10 micrograms/ml) concentrations. Thus, the down regulation of G-protein subunits produced by cholera toxin requires its (ADP-ribosyl)transferase activity but does not result from a cAMP-mediated mechanism. The toxin-mediated decrease of Go alpha in the membrane was correlated with a diminution of opioid-receptor-mediated stimulation of high-affinity GTPase activity, suggesting that opioid receptors interact with Go in native membranes of NG108-15 cells. Northern-blot analysis of cytoplasmic RNA prepared from cells treated with cholera toxin showed that the levels of mRNA coding for G beta 1 did not change. Thus, the cholera-toxin-induced decrease of G-protein subunits may not result from an alteration in mRNA levels, but may involve a direct effect of the toxin on the process of insertion and/or clearance of G proteins into and/or from the membrane. These data indicate that cholera toxin, besides catalyzing the ADP-ribosylation of Gs and Gi/Go types of G proteins, can also reduce the steady state levels of Go alpha and G beta 1 subunits in the membrane and thus alter by an additional mechanism the function of inhibitory receptor systems.  相似文献   

4.
The internalization of the insulin receptor in the isolated rat adipose cell and the spatial orientation of the alpha (Mr = 135,000) and beta (Mr = 95,000) subunits of the receptor in the plasma membrane have been examined. The receptor subunits were labeled by lactoperoxidase/Na125I iodination, a technique which side-specifically labels membrane proteins in intact cells and impermeable membrane vesicles. Internalization was induced by incubating cells for 30 min at 37 degrees C in the presence of saturating insulin. Plasma, high density microsomal (endoplasmic reticulum-enriched), and low density microsomal (Golgi-enriched) membrane fractions were prepared by differential ultracentrifugation. Receptor subunit iodination was analyzed by immunoprecipitation with anti-receptor antibodies, sodium dodecyl sulfate/polyacrylamide gel electrophoresis, and autoradiography. When intact cells were surface-labeled and incubated in the absence of insulin, the alpha and beta receptor subunits were clearly observed in the plasma membrane fraction and their quantities in the microsomal membrane fractions paralleled plasma membrane contamination. Following receptor internalization, however, both subunits were decreased in the plasma membrane fraction by 20-30% and concomitantly and stoichiometrically increased in the high and low density microsomal membrane fractions, without alterations in either their apparent molecular size or proportion. In contrast, when the isolated particulate membrane fractions were directly iodinated, both subunits were labeled in the plasma membrane fraction whereas only the beta subunit was prominently labeled in the two microsomal membrane fractions. Iodination of the subcellular fractions following their solubilization in Triton X-100 again clearly labeled both subunits in all three membrane fractions in identical proportions. These results suggest that 1) insulin receptor internalization comprises the translocation of both major receptor subunits from the plasma membrane into at least two different intracellular membrane compartments associated, respectively, with the endoplasmic reticulum and Golgi-enriched membrane fractions, 2) this translocation occurs without receptor loss or alterations in receptor subunit structure, and 3) the alpha receptor subunit is primarily, if not exclusively, exposed on the extracellular surface of the plasma membrane while the beta receptor subunit traverses the membrane, and this vectorial disposition is inverted during internalization.  相似文献   

5.
The predominant guanine nucleotide-binding protein (G-protein) of bovine lung membranes, termed GL, has been purified and compared biochemically, immunochemically and functionally with Gi and Go purified from rabbit brain. The purified GL appeared to have a similar subunit structure to Gi and Go, being composed of alpha, beta and possibly gamma subunits. On Coomassie Blue-stained SDS/polyacrylamide gels and immunoblots, the alpha subunit of GL (GL alpha) displayed an intermediate mobility (40 kDa) between those of Gi and Go (Gi alpha and Go alpha). GL alpha was [32P]ADP-ribosylated in the presence of pertussis toxin and [32P]NAD+. Analysis of [32P]ADP-ribosylated alpha subunits by SDS/polyacrylamide-gel electrophoresis and isoelectric focusing showed that GL alpha was distinct from Gi alpha and Go alpha, but very similar to the predominant G-protein in neutrophil membranes. Immunochemical characterization also revealed that GL was distinct from Gi and Go, but was indistinguishable from the G-protein of neutrophils, which has been tentatively identified as Gi2 [Goldsmith, Gierschik, Milligan, Unson, Vinitsky, Maleck & Spiegel (1987) J. Biol. Chem. 262, 14683-14688]. In functional studies, higher Mg2+ concentrations were required for guanosine 5'-[gamma-[35S]thio]triphosphate (GTP[35S]) binding to GL than were required for nucleotide binding to Go, whereas Gi showed a Mg2+-dependence similar to that of GL. The kinetics of GTP[35S] binding to GL was quite different from those of Gi and Go; t1/2 values of maximal binding were 30, 15 and 5 min respectively. In contrast, the rate of hydrolysis of [gamma-32P]GTP by GL (t1/2 approximately 1 min) was approx. 4 times faster than that by Gi or Go. These results indicated that the predominant G-protein purified from lung is structurally and functionally distinct from Gi and Go of brain, but structurally indistinguishable from Gi2 of neutrophils.  相似文献   

6.
A1 adenosine receptors and associated guanine nucleotide-binding proteins (G proteins) were purified from bovine cerebral cortex by affinity chromatography (Munshi, R., and Linden, J. (1989) J. Biol. Chem. 264, 14853-14859). In this study we have identified the pertussis toxin-sensitive G protein subunits that co-purify with A1 adenosine receptors by immunoblotting with specific antipeptide antisera. Gi alpha 1, Gi alpha 2, Go alpha, G beta 35, and G beta 36 were detected. Of the total [35S]guanosine 5'-O-(3-thio)triphosphate [( 35S]GTP gamma S) binding sites, Gi alpha 1 and Go alpha each accounted for greater than 37% whereas Gi alpha 2 comprised less than 13%. G beta 35 was found in excess over G beta 36. Low molecular mass (21-25 kDa) GTP-binding proteins were not detected. We also examined the characteristics of purified receptors and various purified bovine brain G proteins reconstituted into phospholipid vesicles. All three alpha-subunits restored GTP gamma S-sensitive high affinity binding of the agonist 125I-aminobenzyladenosine to a fraction (25%) of reconstituted receptors with a selectivity order of Gi2 greater than Go greater than or equal to Gi1 (ED50 values of G proteins measured as fold excess over the receptor concentration were 4.7 +/- 1.2, 24 +/- 5, and 34 +/- 7, respectively). Furthermore, receptors occupied with the agonist R-phenylisopropyladenosine catalytically increased the rate of binding of [35S]GTP gamma S to reconstituted G proteins by 6.5-8.5-fold. These results suggest that A1 adenosine receptors couple indiscriminately to pertussis toxin-sensitive G proteins.  相似文献   

7.
H Shinohara  K Kato  T Asano 《Acta anatomica》1992,144(2):167-171
The immunohistochemical localization of proteins Gi1 (plus Gi3). Gi2 and Go was studied in the olfactory epithelium and the main olfactory bulb of rats, using purified antibodies to the respective alpha subunits and beta gamma subunits of these G proteins. In the olfactory epithelium, only a restricted population of olfactory cells was immunopositive for Gi2 alpha, but others were not. The immunoreactivity for Gi1 alpha/Gi3 alpha was not observed. The olfactory epithelium was immunopositive for both Go alpha and beta gamma, but its apical surface was immunopositive only for beta gamma. In the main olfactory bulb, all layers were intensely immunopositive for Go alpha and beta gamma but weakly for Gi2 alpha. In contrast to the negative or weak immunostainings in the olfactory nerve fiber layer and glomeruli, the molecular and the internal granular layers were intensely immunopositive for Gi1 alpha/Gi3 alpha. These findings suggest the functional difference among Gi1/Gi3, Gi2 and Go in the signal transduction in the olfactory system.  相似文献   

8.
Two GTP-binding proteins which can be ADP-ribosylated by islet-activating protein, pertussis toxin, were purified from the cholate extract of bovine lung membranes. Both proteins had the same heterotrimeric structure (alpha beta gamma), but the alpha subunits were dissociated from the beta gamma when they were purified in the presence of AlCl3, MgCl2 and NaF. The molecular mass of the alpha subunit of the major protein (designated GLu, with beta gamma) was 40 kDa and that of the minor one was 41 kDa. The results of peptide mapping analysis of alpha subunits with a limited proteolysis indicated that GLu alpha was entirely different from the alpha of brain Gi or Go, while the 41-kDa polypeptide was identical with the alpha of bovine brain Gi. The kinetics of guanosine 5'-[3-O-thio]triphosphate (GTP[gamma S]) binding to GLu was similar to that to lung Gi but quite different from that to brain Go. On the other hand, incubation of GLu alpha at 30 degrees C caused a rapid decrease of GTP[gamma S] binding, the inactivation curve being similar to that of Go alpha but different from that of Gi alpha. The alpha subunits of lung Gi and GLu did not react with the antibodies against the alpha subunit of bovine brain Go. The antibodies were raised in rabbits against GLu alpha and were purified with a GLu alpha-Sepharose column. The purified antibodies reacted not only with GLu alpha but also with the 41-kDa protein and purified brain Gi alpha. However, the antibodies adsorbed with brain Gi alpha reacted only with GLu alpha, indicating antisera raised with GLu alpha contained antibodies that recognize both Gi alpha and GLu alpha, and those specific to GLu alpha. These results further indicate that GLu is different from Gi or Go. Anti-GLu alpha antibodies reacted with the 40-kDa proteins in the membranes of bovine brain and human leukemic (HL-60) cells. The beta gamma subunits were also purified from bovine lung. The beta subunit was the doublet of 36-kDa and 35-kDa polypeptides. The lung beta gamma could elicit the ADP-ribosylation of GLu alpha by islet-activating protein, increase the GTP[gamma S] binding to GLu and protect the thermal denaturation of GLu alpha. The antibodies raised against brain beta gamma cross-reacted with lung beta but not with lung gamma.  相似文献   

9.
S C Tsai  R Adamik  Y Kanaho  J L Halpern  J Moss 《Biochemistry》1987,26(15):4728-4733
Guanyl nucleotide binding proteins couple agonist interaction with cell-surface receptors to an intracellular enzymatic response. In the adenylate cyclase system, inhibitory and stimulatory effects are mediated through guanyl nucleotide binding proteins, Gi and Gs, respectively. In the visual excitation complex, the photon receptor rhodopsin is linked to its target, cGMP phosphodiesterase, through transducin (Gt). Bovine brain contains another guanyl nucleotide binding protein, Go. The proteins are heterotrimers of alpha, beta, and gamma subunits; the alpha subunits catalyze receptor-stimulated GTP hydrolysis. To examine the interaction of Go alpha with beta gamma subunits and rhodopsin, the proteins were reconstituted in phosphatidylcholine vesicles. The GTPase activity of Go alpha purified from bovine brain was stimulated by photolyzed, but not dark, rhodopsin and was enhanced by bovine retinal Gt beta gamma or by rabbit liver G beta gamma. Go alpha in the presence of G beta gamma is a substrate for pertussis toxin catalyzed ADP-ribosylation; the modification was inhibited by photolyzed rhodopsin and enhanced by guanosine 5'-O-(2-thiodiphosphate). ADP-Ribosylation of Go alpha by pertussis toxin inhibited photolyzed rhodopsin-stimulated, but not basal, GTPase activity. It would appear from this and prior studies that Go alpha is similar to Gt alpha and Gi alpha; all three proteins exhibit photolyzed rhodopsin-stimulated GTPase activity, are pertussis toxin substrates, and functionally couple to Gt beta gamma. Go alpha (39K) can be distinguished from Gi alpha (41K) but not from Gt alpha (39K) by molecular weight.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Four members of a family of GTP-binding proteins (G-proteins) which translate stimulation of extracellular receptors into regulation of intracellular enzymes were isolated from the bovine central nervous system. These proteins were examined for functional similarities and cross-reactivity with antibodies to the G-protein (transducin, Gt) from the photoreceptor system. Two proteins, Gs and Gi, can be distinguished by their respective abilities to stimulate or inhibit adenylate cyclase. The activated alpha subunits of Gt and a fourth member of the family, Go, did not affect this enzyme. Gt was shown to be unique in its ability to stimulate cGMP-dependent phosphodiesterase. While functionally diverse, the G-proteins were shown to have some common antigenic properties. Antibodies directed against the beta subunit of Gt recognize the beta 36 subunits of all preparations but not a putative second beta 35 subunit. Antibodies specific for the alpha subunit of Gt did not recognize other alpha subunits when immune blots from sodium dodecyl sulfate gels were examined. However, Go alpha, but not Gs alpha or Gi alpha, reacted strongly with the antibodies when the native subunit was spotted directly. This suggests that Go alpha and Gt alpha have homologous structural determinants. An antiserum that recognized Gt gamma did not recognize gamma subunits from other sources. These data support the proposed diversity of function and similarity of structure among the four G-proteins. The alpha and potentially gamma subunits appear to be responsible for the specificity of function.  相似文献   

11.
Somatostatin (SRIF) induces its biological effects by interacting with membrane-bound receptors that are linked to cellular effector systems via G proteins. We have studied SRIF receptor-G protein associations by solubilizing the SRIF receptor from rat brain and AtT-20 cells and immunoprecipitating the receptor-G protein complex with peptide-directed antisera against the different subunits of the G protein heterotrimer. Antiserum 8730, which selectively interacts with all Gi alpha subtypes, maximally and specifically immunoprecipitated SRIF receptor-Gi alpha complexes. To identify the subtypes of Gi alpha that are coupled to SRIF receptors, the subtype-selective antisera 3646, 1521, and 1518, which specifically interact with Gi alpha 1, Gi alpha 2, and Gi alpha 3, respectively, were used to immunoprecipitate SRIF receptor-Gi alpha complexes. Antiserum 3646 immunoprecipitated SRIF receptor-Gi alpha 1 complexes from both brain and AtT-20 cells. Antiserum 1521 immunoprecipitated Gi alpha 2 from both brain and AtT-20 cells but did not immunoprecipitate SRIF receptors from these tissues. Antiserum 1518 immunoprecipitated AtT-20 cell SRIF receptors but uncoupled brain SRIF receptor-G protein complexes. This result was confirmed with another peptide-selective antiserum, SQ, directed against Gi alpha 3. The findings from these studies indicate that Gi alpha 1 and Gi alpha 3 are coupled to SRIF receptors, whereas Gi alpha 2 is not. Even though brain and AtT-20 cell SRIF receptors were both coupled to Gi alpha, the receptors from these tissues differed in their coupling to Go alpha. Antiserum 2353, which is directed against Go alpha, immunoprecipitated SRIF receptors from AtT-20 cells, but did not immunoprecipitate or uncouple SRIF receptor-G protein complexes from rat brain. To determine the beta subunits associated with the SRIF receptor, antisera directed against G beta 36 and G beta 35 were used to immunoprecipitate SRIF receptor-G protein complexes from brain. Peptide-directed antiserum against G beta 36 selectively immunoprecipitated solubilized brain SRIF receptors. However, antiserum directed against the G beta 35 subunit did not immunoprecipitate brain SRIF receptors, suggesting that brain SRIF receptors may preferentially associate with G beta 36. In addition to coimmunoprecipitating with Gi alpha and G beta, brain SRIF receptors coimmunoprecipitated the G protein gamma subunits, G gamma 2 and G gamma 3. These results provide the first evidence that SRIF receptors are coupled to different subunits of G proteins and suggest that selectivity exists in the association of different G protein subunits with the SRIF receptor.  相似文献   

12.
We investigated the biosynthesis of the insulin receptor in primary cultures of isolated rat adipose cells. Cells were pulse-chase-labelled with [3H]mannose, and at intervals samples were homogenized. Three subcellular membrane fractions were prepared by differential centrifugation: high-density microsomal (endoplasmic-reticulum-enriched), low-density microsomal (Golgi-enriched), and plasma membranes. After detergent solubilization, the insulin receptors were immunoprecipitated with anti-receptor antibodies and analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and autoradiography. After a 30 min pulse-label [3H]mannose first appeared in a band of Mr 190 000. More than 80% of the Mr-190 000 component was recovered in the microsomal fractions. Its intensity reached a maximum at 1 h in the high-density microsomal fraction and at 2 h in the low-density microsomal fraction, and thereafter declined rapidly (t 1/2 approx. 3 h) in both fractions. In the plasma-membrane fraction, the radioactivity in the major receptor subunits, of Mr 135 000 (alpha) and 95 000 (beta), rose steadily during the chase and reached a maximum at 6 h. The Mr-190 000 precursor could also be detected in the high-density microsomal fraction by affinity cross-linking to 125I-insulin. In the presence of monensin, a cationic ionophore that interferes with intracellular transport within the Golgi complex, the processing of the Mr-190 000 precursor into the alpha and beta subunits was completely inhibited. Our results suggest that the Mr-190 000 pro-receptor originates in the endoplasmic reticulum and is subsequently transferred to the Golgi complex. Maturation of the pro-receptor does not seem to be necessary for the expression of the insulin-binding site. Processing of the precursor into the mature receptor subunits appears to occur during the transfer of the pro-receptor from the Golgi complex to the plasma membrane.  相似文献   

13.
An isolation procedure for synaptic plasma membranes from whole chick brain is reported that uses the combined flotation-sedimentation density gradient centrifugation procedure described by Jones and Matus (Jones. D. H. and Matus. A. I. (1974) Biochim. Biophys. Acta 356, 276–287) for rat brain. The particulate of the osmotically shocked and sonicated crude mitochondrial fraction was used for a flotation-sedimentation gradient step. Four fractions were recovered from the gradient after 30 min centrifugation. The fractions were identified and characterized by electron microscopy and by several markers for plasma membrane and other subcellular organcelles. Fraction 2 was recovered from the 28.5–34% (w/v) sucrose interphase and contained the major part of the activities of the neuronal plasma membrane marker enzymes. The specific activities of the (Na++K+)-activated ATPase (EC 3.6.1.3), acetylcholinesterase (EC 3.1.1.7) and 5′-nucleotidase (EC 3.1.3.5) were, respectively, 4.5. 2.0 and 1.2 times higher than in the homogenate. However, Fraction 2 also contained considerable amounts of activities of putative lysosomal and microsomal markers in addition to lower amounts of mitochondrial and myelin markers. Although no prepurification of synaptosomes from the crude mitochondrial fraction was performed, the synaptic plasma membranes obtained showed many properties analogous to similar preparations from rat brain described in recent years.  相似文献   

14.
The GTP-binding proteins involved in signal transduction now constitute a large family of so called 'G proteins'. Among them, Gs and Gi mediate the stimulation and inhibition of adenyl cyclase, respectively. Recently, another G protein (Go) abundant in brain was purified, but its function is still unknown. Like other G proteins, Go is a heterotrimer (alpha, beta, gamma) and the beta-gamma subunits seem to be identical to those of Gs and Gi. The alpha subunit of Go (Go-alpha) has a molecular weight of 39 kDa lower than those of Gi (41 kDa) or Gs (45-52 kDa). A positive immunoreativity with antibodies against Go-alpha was found in peripheral nervous tissues, adrenal medulla, heart, adenohypophysis and adipocytes. Go ressembles Gi in its ability to be ADP-ribosylated by pertussis toxin, and sequence analysis reveals a 68% homology between their alpha subunits. The GTPase activity of Go is several times higher than that of Gi. The affinity of the beta-gamma entity is about 3 times higher for Gi than for Go. In reconstitution studies, Go does not mimic the inhibitory effect of Gi on adenyl cyclase-stimulated by Gs. On the contrary, Go is as efficient as Gi in reconstituting the functional coupling with the muscarinic, alpha 2-adrenergic and chemotactic agent f-Met-Leu-Phe (fMLP), receptors. Recent studies seem to rule out Go as the coupling G protein of phospholipase C, the enzyme involved in phosphatidyl inositol trisphosphate hydrolysis. However, Go remains a putative candidate for transduction mechanisms coupled to a potassium channel or to a voltage-dependent calcium channel.  相似文献   

15.
The subcellular distribution of the enzymes involved in the metabolism of norethynodrel (17 alpha-ethynyl-17 beta-hydroxy-estr-5(10)-en-3-one) to the 3alpha and 3beta diols (17 alpha-ethynyl-3alpha (or 3beta-17 beta-dihydroxy-estr-5(10)-ene) and 17 alpha-ethinyl estradiol was studied. The purity of the male rat liver subcellular fractions was evaluated by the use of marker enzymes. Sample sections were viewed by electron microscopy. The data showed that the cytosol fraction contained the highest relative specific activity for the hydroxysteroid dehydrogenases required for the formation of the diols. The cytosol fraction also contained the highest total activity. The enzymes required for the formation of ethinyl estradiol were distributed equally among mitochondrial and microsomal fractions, however, the highest relative specific activity was associated with the heavy microsomal fraction (18,000 g).  相似文献   

16.
The subcellular distribution of the alpha 2-adrenergic receptor, pertussis-toxin substrates (Gi, the inhibitory G-protein) and adenylate cyclase was determined in human platelets. The alpha 2-adrenergic receptor and pertussis-toxin substrate activity codistribute with surface membranes identified by a novel fluorescent-lectin method. The platelet granule fractions did not contain detectable Gi. Only 2-4% of the total pertussis-toxin substrate activity appears in soluble fractions, and this amount was not increased upon addition of purified beta gamma units or after pretreatment of platelets with adrenaline. There is no evidence for compartmentation of the alpha 2-adrenergic receptor or Gi to account for the low-affinity component of agonist binding to the alpha 2-adrenergic receptor in human platelet membranes. Translocation of Gi from plasma membrane to platelet cytosol or granules does not appear to play any significant role in the mechanism of alpha 2-receptor-mediated platelet activation.  相似文献   

17.
The molecular basis of selectivity in G-protein receptor coupling has been explored by comparing the abilities of G-protein heterotrimers containing chimeric Galpha subunits, comprised of various regions of Gi1alpha, Gtalpha, and Gqalpha, to stabilize the high affinity agonist binding state of serotonin, adenosine, and muscarinic receptors. The data indicate that multiple and distinct determinants of selectivity exist for individual receptors. While the A1 adenosine receptor does not distinguish between Gi1alpha and Gtalpha sequences, the 5-HT1A and 5-HT1B serotonin and M2 muscarinic receptors can couple with Gi1 but not Gt. It is possible to distinguish domains that eliminate coupling and are defined as "critical," from those that impair coupling and are defined as "important." Domains within the N terminus, alpha4-helix, and alpha4-helix-alpha4/beta6-loop of Gi1alpha are involved in 5-HT and M2 receptor interactions. Chimeric Gi1alpha/Gqalpha subunits verify the critical role of the Galpha C terminus in receptor coupling, however, the individual receptors differ in the C-terminal amino acids required for coupling. Furthermore, the EC50 for interactions with Gi1 differ among the individual receptors. These results suggest that coupling selectivity ultimately involves subtle and cooperative interactions among various domains on both the G-protein and the associated receptor as well as the G-protein concentration.  相似文献   

18.
Previously, gonad-stimulating substance (GSS), which acts as a gonadotropin, was purified from radial nerves of the starfish Asterina pectinifera and its structure was elucidated. Here, the interaction of GSS with receptors was examined in ovarian follicle cells, a target of GSS. In competitive experiments using radioiodinated and radioinert GSS, highly specific binding was observed in the microsomal/plasma membrane fraction of follicle cells. GSS scarcely bound in the cytosolic fraction. Scatchard plots showed the numbers of binding sites (NBS) in whole homogenate and the crude membrane to be 1.65 and 3.42 pmoles/mg protein, respectively. Dissociation constant (K (d)) values in these two preparations were almost the same at about 0.6-0.7 nM. Furthermore, it was shown that GSS stimulated adenylyl cyclase activity in follicle cell membranes in a dose-dependent manner that required GTP. Immunoblotting with specific antibodies for G-protein subunits after SDS-PAGE of the membrane preparation showed both stimulatory (Gs) and inhibitory (Gi) regulatory α-subunits for adenylyl cyclase and a β-subunit. The results strongly suggest that GSS interacts with G-protein-coupled receptors (GPCR) located in the follicle cell membrane to stimulate Gs-protein and adenylyl cyclase activity.  相似文献   

19.
Attachment of heterotrimeric G-proteins to the inner face of the plasma membrane is fundamental to their role as signal transducers by allowing interaction with both receptors and effectors. Certain G-protein alpha subunits are anchored to the membrane by covalent myristoylation. The beta gamma complex is required for G-protein interaction with receptors and is independently membrane associated through an unknown mechanism. A series of carboxyl-terminal modifications including isoprenylation which may contribute to membrane attachment has been identified recently in G-protein gamma subunits. Expression and membrane targeting of beta and gamma subunits were examined in COS cells. The expression of either subunit was found to require cotransfection with both beta and gamma cDNAs. Mutation of the carboxyl-terminal cysteine residue of gamma shown to undergo isoprenylation and carboxymethyl-esterification preserved beta gamma expression but blocked isoprenylation and membrane attachment. These results implicate the carboxyl-terminal processing of G-protein gamma subunits and beta coexpression as necessary and sufficient for membrane targeting of the beta gamma complex.  相似文献   

20.
Noradrenaline (NA) stimulated the release of arachidonic acid (AA) from the [3H]AA-labelled rabbit platelets via alpha 2-adrenergic receptors, since the effect of NA was inhibited by yohimbine. The stimulatory effect of NA in digitonin-permeabilized platelets was completely dependent on the simultaneous presence of GTP and Ca2+. The NA- and thrombin-stimulated releases of AA were markedly decreased by the prior ADP-ribosylation of the permeabilized platelets with pertussis toxin. Antiserum directed against the pig brain Go (a GTP-binding protein of unknown function), recognizing both alpha 39 and beta 35,36 subunits, but not alpha 41, of pig brain, reacted with 41 kDa and 40 kDa bands, with not one of 39 kDa, in rabbit platelet membranes. Anti-Go antiserum inhibited guanosine 5'-[gamma-thio]triphosphate-, A1F4(-)-, NA- and thrombin-stimulated AA releases in the membranes. Although the effect of thrombin was inhibited by low concentrations of anti-Go antiserum, high concentrations of the antiserum was needed for inhibition of the NA effect. Antiserum directed against the pig brain G1 (inhibitory G-protein), recognizing both alpha 41 and beta 35,36 subunits, but not alpha 39, of pig brain, reacted with the 41 kDa band in platelets. Anti-G1 antiserum inhibited only the effect of NA. Reconstitution of the platelet membranes ADP-ribosylated by pertussis toxin with Go, not Gi, purified from pig brain restored the thrombin-stimulated release of AA. In contrast, reconstitution of those membranes with Gi, not Go, restored the NA-stimulated release of AA. These results indicate that different GTP-binding proteins, Gi- and Go-like proteins, may be involved in the mechanism of signal transduction from alpha 2-adrenergic receptors and thrombin receptors to phospholipase A2 in rabbit platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号